ebook img

Aspects of Quark Orbital Angular Momentum PDF

33 Pages·2006·0.83 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Aspects of Quark Orbital Angular Momentum

Aspects of Quark Orbital Angular Momentum Matthias Burkardt [email protected] New Mexico State University Las Cruces, NM, 88003, U.S.A. AspectsofQuarkOrbitalAngularMomentum–p.1/33 Outline GPDs: probabilistic interpretation as Fourier transforms of impact parameter dependent PDFs 2 H(x, 0, −∆ ) −→ q(x, b ) ⊥ ⊥ H˜ (x, 0, −∆2 ) −→ ∆q(x, b ) ⊥ ⊥ E(x, 0, −∆2 ) ⊥ ֒→ ⊥ deformation of unpol. PDFs in ⊥ pol. target physics: orbital motion of the quarks ֒→ Sivers effect ˜ 2H + E −→ ⊥ deformation of ⊥ pol. PDFs in unpol. target T T correlation between quark angular momentum and quark transversity ֒→ Boer-Mulders function h⊥(x, k ) 1 ⊥ ? κ −→ Lq Summary AspectsofQuarkOrbitalAngularMomentum–p.2/33 Generalized Parton Distributions (GPDs) GPDs: decomposition of form factors at a given value of t, w.r.t. the average momentum fraction x = 1 (x + x ) of the active quark i f 2 q ˜ q dxH (x, ξ, t) = F (t) dxH (x, ξ, t) = G (t) q 1 q A Z Z q ˜ q dxE (x, ξ, t) = F (t) dxE (x, ξ, t) = G (t), q 2 q P Z Z x and x are the momentum fractions of the quark before and i f after the momentum transfer 2ξ = x − x f i GPDs can be probed in deeply virtual Compton scattering (DVCS) AspectsofQuarkOrbitalAngularMomentum–p.3/33 Generalized Parton Distributions (GPDs) formal definition (unpol. quarks): dx− x− x− − + ix p¯ x ′ + 2 ′ + e p q¯ − γ q p = H(x, ξ, ∆ )u¯(p )γ u(p) 2π 2 2 Z (cid:28) (cid:12) (cid:18) (cid:19) (cid:18) (cid:19)(cid:12) (cid:29) (cid:12) (cid:12) iσ+ν∆ (cid:12) (cid:12) 2 ′ ν +E(x, ξ, ∆ )u¯(p ) u(p) (cid:12) (cid:12) 2M in the limit of vanishing t and ξ, the nucleon non-helicity-flip GPDs must reduce to the ordinary PDFs: ˜ H (x, 0, 0) = q(x) H (x, 0, 0) = ∆q(x). q q GPDs are form factor for only those quarks in the nucleon carrying a certain fixed momentum fraction x ֒→ t dependence of GPDs for fixed x, provides information on the position space distribution of quarks carrying a certain momentum fraction x AspectsofQuarkOrbitalAngularMomentum–p.4/33 Impact parameter dependent PDFs define state that is localized in ⊥ position: [D.Soper,PRD15, 1141 (1977)] p+, R = 0 , λ ≡ N d2p p+, p , λ ⊥ ⊥ ⊥ ⊥ Z (cid:12) (cid:11) (cid:12) (cid:11) (cid:12) (cid:12) Note: ⊥ boosts in IMF form Galilean subgroup ⇒ this state has R ≡ 1 dx−d2x x T++(x) = x r = 0 ⊥ P+ ⊥ ⊥ i i i,⊥ ⊥ (cf.: working in CM frame in nonrel. physics) R P define impact parameter dependent PDF dx− x− x− + − q(x, b ) ≡ p+, R = 0 q¯(− , b )γ+q( , b ) p+, R = 0 eixp x ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 4π 2 2 Z (cid:10) (cid:12) (cid:12) (cid:11) (cid:12) (cid:12) AspectsofQuarkOrbitalAngularMomentum–p.5/33 GPDs ←→ q(x, b ) ⊥ ֒→ relate GPDs to distribution of partons in ⊥ plane q(x, b ) = d2∆⊥ ei∆⊥·b⊥H(x, 0, −∆2 ), ⊥ (2π)2 ⊥ ∆q(x, b ) = d2∆⊥ ei∆⊥·b⊥H˜ (x, 0, −∆2 ), ⊥ R (2π)2 ⊥ R no rel. corrections to this result! (Galilean subgroup of ⊥ boosts) q(x, b ) has probabilistic interpretation, e.g. ⊥ q(x, b ) ≥ |∆q(x, b )| ≥ 0 for x > 0 ⊥ ⊥ q(x, b ) ≤ |∆q(x, b )| ≤ 0 for x < 0 ⊥ ⊥ Note that x already measures longitudinal momentum of quarks ֒→ no simultaneous measurement of long. position of quarks (Heisenberg) −→ no FT w.r.t. ξ AspectsofQuarkOrbitalAngularMomentum–p.6/33 q(x, b ) in a simple model ⊥ 0.2 0.4 0.6 0.8 1 8 6 44 22 x 00 1 0.5 0 -0.5 b (fm) ? -1 AspectsofQuarkOrbitalAngularMomentum–p.7/33 Transversely Deformed Distributions and E(x, 0, −∆2 ) ⊥ M.B., Int.J.Mod.Phys.A18, 173 (2003) So far: only unpolarized (or long. pol.) nucleon! In general (ξ = 0): − + − dx eip x x hP+∆,↑|q¯(0) γ+q(x−)| P,↑i = H(x,0,−∆2 ) 4π ⊥ R dx− eip+x−x hP+∆,↑|q¯(0) γ+q(x−)| P,↓i = −∆x−i∆y E(x,0,−∆2 ). 4π 2M ⊥ R Consider nucleon polarized in x direction (in IMF) |Xi ≡ |p+, R = 0 , ↑i + |p+, R = 0 , ↓i. ⊥ ⊥ ⊥ ⊥ ֒→ unpolarized quark distribution for this state: 1 ∂ d2∆ q(x,b ) = H(x,b ) − ⊥ E(x, 0,−∆2 )e−ib⊥·∆⊥ ⊥ ⊥ ⊥ 2M ∂b (2π)2 y Z Physics: j+ = j0 + j3, and left-right asymmetry from j3 ! [X.Ji, PRL 91, 062001 (2003)] AspectsofQuarkOrbitalAngularMomentum–p.8/33 ~ Intuitive connection with L q Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates — zˆ-axis in direction of the momentum transfer) the virtual photons “see” (in the Bj-limit) only the j+ = j0 + jz component of the quark current If up-quarks have positive orbital angular momentum in the xˆ-direction, then jz is positive on the +yˆ side, and negative on the −yˆ side yˆ jz > 0 p~ γ zˆ jz < 0 AspectsofQuarkOrbitalAngularMomentum–p.9/33 ~ Intuitive connection with L q Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates — zˆ-axis in direction of the momentum transfer) the virtual photons “see” (in the Bj-limit) only the j+ = j0 + jz component of the quark current If up-quarks have positive orbital angular momentum in the xˆ-direction, then jz is positive on the +yˆ side, and negative on the −yˆ side ֒→ j+ is deformed not because there are more quarks on one side than on the other but because the DIS-photons (coupling only to j+) “see” the quarks on the +yˆ side better than on the −yˆ side. ⊥ deformation described by E (x, 0, t) q ֒→ not surprising to find that E (x, 0, t) enters the Ji relation q i i J = S dx [H (x, 0, 0) + E (x, 0, 0)] x. q q q Z (cid:10) (cid:11) AspectsofQuarkOrbitalAngularMomentum–p.10/33

Description:
If up-quarks have positive orbital angular momentum in the xˆ-direction, thenjz is positive on the +ˆyside, Aspects of Quark Orbital Angular Momentum
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.