Aspects of Quark Orbital Angular Momentum Matthias Burkardt [email protected] New Mexico State University Las Cruces, NM, 88003, U.S.A. AspectsofQuarkOrbitalAngularMomentum–p.1/33 Outline GPDs: probabilistic interpretation as Fourier transforms of impact parameter dependent PDFs 2 H(x, 0, −∆ ) −→ q(x, b ) ⊥ ⊥ H˜ (x, 0, −∆2 ) −→ ∆q(x, b ) ⊥ ⊥ E(x, 0, −∆2 ) ⊥ ֒→ ⊥ deformation of unpol. PDFs in ⊥ pol. target physics: orbital motion of the quarks ֒→ Sivers effect ˜ 2H + E −→ ⊥ deformation of ⊥ pol. PDFs in unpol. target T T correlation between quark angular momentum and quark transversity ֒→ Boer-Mulders function h⊥(x, k ) 1 ⊥ ? κ −→ Lq Summary AspectsofQuarkOrbitalAngularMomentum–p.2/33 Generalized Parton Distributions (GPDs) GPDs: decomposition of form factors at a given value of t, w.r.t. the average momentum fraction x = 1 (x + x ) of the active quark i f 2 q ˜ q dxH (x, ξ, t) = F (t) dxH (x, ξ, t) = G (t) q 1 q A Z Z q ˜ q dxE (x, ξ, t) = F (t) dxE (x, ξ, t) = G (t), q 2 q P Z Z x and x are the momentum fractions of the quark before and i f after the momentum transfer 2ξ = x − x f i GPDs can be probed in deeply virtual Compton scattering (DVCS) AspectsofQuarkOrbitalAngularMomentum–p.3/33 Generalized Parton Distributions (GPDs) formal definition (unpol. quarks): dx− x− x− − + ix p¯ x ′ + 2 ′ + e p q¯ − γ q p = H(x, ξ, ∆ )u¯(p )γ u(p) 2π 2 2 Z (cid:28) (cid:12) (cid:18) (cid:19) (cid:18) (cid:19)(cid:12) (cid:29) (cid:12) (cid:12) iσ+ν∆ (cid:12) (cid:12) 2 ′ ν +E(x, ξ, ∆ )u¯(p ) u(p) (cid:12) (cid:12) 2M in the limit of vanishing t and ξ, the nucleon non-helicity-flip GPDs must reduce to the ordinary PDFs: ˜ H (x, 0, 0) = q(x) H (x, 0, 0) = ∆q(x). q q GPDs are form factor for only those quarks in the nucleon carrying a certain fixed momentum fraction x ֒→ t dependence of GPDs for fixed x, provides information on the position space distribution of quarks carrying a certain momentum fraction x AspectsofQuarkOrbitalAngularMomentum–p.4/33 Impact parameter dependent PDFs define state that is localized in ⊥ position: [D.Soper,PRD15, 1141 (1977)] p+, R = 0 , λ ≡ N d2p p+, p , λ ⊥ ⊥ ⊥ ⊥ Z (cid:12) (cid:11) (cid:12) (cid:11) (cid:12) (cid:12) Note: ⊥ boosts in IMF form Galilean subgroup ⇒ this state has R ≡ 1 dx−d2x x T++(x) = x r = 0 ⊥ P+ ⊥ ⊥ i i i,⊥ ⊥ (cf.: working in CM frame in nonrel. physics) R P define impact parameter dependent PDF dx− x− x− + − q(x, b ) ≡ p+, R = 0 q¯(− , b )γ+q( , b ) p+, R = 0 eixp x ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 4π 2 2 Z (cid:10) (cid:12) (cid:12) (cid:11) (cid:12) (cid:12) AspectsofQuarkOrbitalAngularMomentum–p.5/33 GPDs ←→ q(x, b ) ⊥ ֒→ relate GPDs to distribution of partons in ⊥ plane q(x, b ) = d2∆⊥ ei∆⊥·b⊥H(x, 0, −∆2 ), ⊥ (2π)2 ⊥ ∆q(x, b ) = d2∆⊥ ei∆⊥·b⊥H˜ (x, 0, −∆2 ), ⊥ R (2π)2 ⊥ R no rel. corrections to this result! (Galilean subgroup of ⊥ boosts) q(x, b ) has probabilistic interpretation, e.g. ⊥ q(x, b ) ≥ |∆q(x, b )| ≥ 0 for x > 0 ⊥ ⊥ q(x, b ) ≤ |∆q(x, b )| ≤ 0 for x < 0 ⊥ ⊥ Note that x already measures longitudinal momentum of quarks ֒→ no simultaneous measurement of long. position of quarks (Heisenberg) −→ no FT w.r.t. ξ AspectsofQuarkOrbitalAngularMomentum–p.6/33 q(x, b ) in a simple model ⊥ 0.2 0.4 0.6 0.8 1 8 6 44 22 x 00 1 0.5 0 -0.5 b (fm) ? -1 AspectsofQuarkOrbitalAngularMomentum–p.7/33 Transversely Deformed Distributions and E(x, 0, −∆2 ) ⊥ M.B., Int.J.Mod.Phys.A18, 173 (2003) So far: only unpolarized (or long. pol.) nucleon! In general (ξ = 0): − + − dx eip x x hP+∆,↑|q¯(0) γ+q(x−)| P,↑i = H(x,0,−∆2 ) 4π ⊥ R dx− eip+x−x hP+∆,↑|q¯(0) γ+q(x−)| P,↓i = −∆x−i∆y E(x,0,−∆2 ). 4π 2M ⊥ R Consider nucleon polarized in x direction (in IMF) |Xi ≡ |p+, R = 0 , ↑i + |p+, R = 0 , ↓i. ⊥ ⊥ ⊥ ⊥ ֒→ unpolarized quark distribution for this state: 1 ∂ d2∆ q(x,b ) = H(x,b ) − ⊥ E(x, 0,−∆2 )e−ib⊥·∆⊥ ⊥ ⊥ ⊥ 2M ∂b (2π)2 y Z Physics: j+ = j0 + j3, and left-right asymmetry from j3 ! [X.Ji, PRL 91, 062001 (2003)] AspectsofQuarkOrbitalAngularMomentum–p.8/33 ~ Intuitive connection with L q Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates — zˆ-axis in direction of the momentum transfer) the virtual photons “see” (in the Bj-limit) only the j+ = j0 + jz component of the quark current If up-quarks have positive orbital angular momentum in the xˆ-direction, then jz is positive on the +yˆ side, and negative on the −yˆ side yˆ jz > 0 p~ γ zˆ jz < 0 AspectsofQuarkOrbitalAngularMomentum–p.9/33 ~ Intuitive connection with L q Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates — zˆ-axis in direction of the momentum transfer) the virtual photons “see” (in the Bj-limit) only the j+ = j0 + jz component of the quark current If up-quarks have positive orbital angular momentum in the xˆ-direction, then jz is positive on the +yˆ side, and negative on the −yˆ side ֒→ j+ is deformed not because there are more quarks on one side than on the other but because the DIS-photons (coupling only to j+) “see” the quarks on the +yˆ side better than on the −yˆ side. ⊥ deformation described by E (x, 0, t) q ֒→ not surprising to find that E (x, 0, t) enters the Ji relation q i i J = S dx [H (x, 0, 0) + E (x, 0, 0)] x. q q q Z (cid:10) (cid:11) AspectsofQuarkOrbitalAngularMomentum–p.10/33
Description: