ILYA KATSOV INTRODUCTION TO ALGORITHMIC MARKETING IntroductiontoAlgorithmicMarketing byIlyaKatsov Visit the book’s website at https://algorithmicweb.wordpress.com foradditionalresources. ISBN978-0-692-98904-3 Copyright©2018IlyaKatsov All rights reserved. The digital version of the book is available for download on algorithmicweb.wordpress.com and can be shared only through a link to the landing page. No part of this book may be modified,reposted,emailed,ormadeavailablefordownloadonother sitesorchannels,withoutthepriorwrittenpermissionoftheauthor. v “Atatimewhenpowerisshiftingtoconsumers,whilebrandsandretailers aregraspingforfleetingmomentsofattention,everyoneiscompetingondata andtheabilitytoleverageitatscaletotarget,acquire,andretaincustomers. This book is a manual for doing just that. Both marketing practitioners and technologyproviderswillfindthisbookveryusefulinguidingthemthrough themarketingvaluechainandhowtofullydigitizeit.Acomprehensiveand indispensablereferenceforanyoneundertakingthetransformationaljourney towardsalgorithmicmarketing.” —AliBouhouch,CTO,SephoraAmericas “Ifyou’retiredofthevaguefluffaboutAIinmarketing,andyouwantto understandtherealsubstanceofwhat’spossibletodayandhowitworks,then you must read An Introduction to Algorithmic Marketing. This is the best bookinthefieldofmarketingtechnologyandoperationsthatI’vereadyet.” —ScottBrinker, AuthorofHackingMarketing,Editorofchiefmartec.com “Its all possible now. This book brings practicality to concepts that just a fewyearsagowouldhavebeendismissedasmeretheory.Itfeaturesprincipled framingthatcaptureswhatthebestmarketersinnatelyfeelbutcannotexpress. Elegantmatharticulatestheimportantrelationshipsthataresoelusivetotra- ditionalbusinessmodeling.Thebookisunapologeticforitslackofspreadsheet examples – much of the world can not be represented linearly in just a few dimensions and devoid of uncertainty. Instead, the book embraces rigorous framingthatyieldsbetterinsightsintorealphenomenon.It’swrittenneither for the data scientist nor the marketer, but rather for the two combined! Its thispartnershipbetweenthesetwodepartmentsthatwillleadtorealimpact. Thisbookiswherethatpartnershipshouldbegin.” —EricColson,ChiefAlgorithmsOfficer,StitchFix vi “Thisbookisaliveportraitofdigitaltransformationinmarketing.Itshows how data science becomes an essential part of every marketing activity. The bookdetailshowdata-drivenapproachesandsmartalgorithmsresultindeep automationoftraditionallylabor-intensivemarketingtasks.Decision-making is getting not only better but much faster, and this is crucial in our ever- acceleratingcompetitiveenvironment.Itisamust-readforbothdatascientists andmarketingofficers–evenbetteriftheyreadittogether.” —AndreySebrant,DirectorofStrategicMarketing,Yandex “IntroductiontoAlgorithmicMarketingisn’tjustaboutmachinelearning andeconomicmodeling.It’sultimatelyaframeworkforrunningbusinessand marketingoperationsintheAIeconomy.” —KyleMcKiou, Sr.DirectorofDataScience,TheMarketingStore “Thisbooksdeliversacompleteend-to-endblueprintonhowtofullydigitize yourcompany’smarketingoperations.Startingfromaconceptualarchitecture forthefutureofdigitalmarketing,itthendelvesintodetailedanalysisofbest practicesineachindividualareaofmarketingoperations.Thebookgivesthe executives,middlemanagers,anddatascientistsinyourorganizationasetof concrete,actionable,andincrementalrecommendationsonhowtobuildbetter insightsanddecisions,startingtoday,onestepatatime.” —VictoriaLivschitz,founderandCTO,GridDynamics vii “While virtually every business manager today grasps the conceptual importance of data analytics and machine learning, the challenge of imple- menting actual competitive solutions rooted in data science remains quite daunting. The scarcity of data scientist talent, combined with the difficulty of adapting academic models, generic open-source software and algorithms to industry-specific contexts are among the difficulties confronting digital marketers around the world. This book by Ilya Katsov draws from the deep domain expertise he developed at Grid Dynamics in delivering innovative, yet practical digital marketing solutions to large organizations and helping themsuccessfullycompete,remainrelevant,andadaptinthenewageofdata analytics.” —EricBenhamou, founderandGeneralPartner,BenhamouGlobalVentures; formerCEOandChairmanof3ComandPalm “Thisbookprovidesamuch-neededcollectionofrecipesformarketingprac- titionersonhowtouseadvancedmethodsofmachinelearninganddatascience tounderstandcustomerbehavior,personalizeproductofferings,optimizethe incentives, and control the engagement – thus creating a new generation of data-drivenanalyticplatformformarketingsystems.” —KiraMakagon,ChiefInnovationOfficer,RingCentral; serialentrepreneur,founderofRedArilandOctane CONTENTS 1 introduction 1 1.1 TheSubjectofAlgorithmicMarketing . . . . . . . . . . . 2 1.2 TheDefinitionofAlgorithmicMarketing . . . . . . . . . . 4 1.3 HistoricalBackgroundsandContext . . . . . . . . . . . . 5 1.3.1 OnlineAdvertising:ServicesandExchanges . . . . . 5 1.3.2 Airlines:RevenueManagement . . . . . . . . . . . . . 7 1.3.3 MarketingScience. . . . . . . . . . . . . . . . . . . . . 10 1.4 ProgrammaticServices . . . . . . . . . . . . . . . . . . . . 11 1.5 WhoShouldReadThisBook? . . . . . . . . . . . . . . . . 15 1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 review of predictive modeling 19 2.1 Descriptive,Predictive,andPrescriptiveAnalytics . . . . 19 2.2 EconomicOptimization . . . . . . . . . . . . . . . . . . . . 20 2.3 MachineLearning . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 SupervisedLearning . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 ParametricandNonparametricModels . . . . . . . . 26 2.4.2 MaximumLikelihoodEstimation . . . . . . . . . . . . 27 2.4.3 LinearModels . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.3.1 LinearRegression . . . . . . . . . . . . . . . . . . 30 2.4.3.2 LogisticRegressionandBinaryClassification . . 31 2.4.3.3 LogisticRegressionandMultinomialClassifica- tion. . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4.3.4 NaiveBayesClassifier . . . . . . . . . . . . . . . . 34 2.4.4 NonlinearModels . . . . . . . . . . . . . . . . . . . . . 36 2.4.4.1 FeatureMappingandKernelMethods . . . . . . 36 2.4.4.2 AdaptiveBasisandDecisionTrees . . . . . . . . 40 2.5 RepresentationLearning . . . . . . . . . . . . . . . . . . . 41 2.5.1 PrincipalComponentAnalysis . . . . . . . . . . . . . 42 2.5.1.1 Decorrelation . . . . . . . . . . . . . . . . . . . . . 42 2.5.1.2 DimensionalityReduction . . . . . . . . . . . . . 46 2.5.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.6 MoreSpecializedModels . . . . . . . . . . . . . . . . . . . 52 2.6.1 ConsumerChoiceTheory . . . . . . . . . . . . . . . . 52 2.6.1.1 MultinomialLogitModel . . . . . . . . . . . . . . 54 2.6.1.2 EstimationoftheMultinomialLogitModel . . . 57 2.6.2 SurvivalAnalysis . . . . . . . . . . . . . . . . . . . . . 58 2.6.2.1 SurvivalFunction . . . . . . . . . . . . . . . . . . 60 2.6.2.2 HazardFunction . . . . . . . . . . . . . . . . . . . 62 2.6.2.3 SurvivalAnalysisRegression. . . . . . . . . . . . 64 ix x contents 2.6.3 AuctionTheory . . . . . . . . . . . . . . . . . . . . . . 68 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3 promotions and advertisements 75 3.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.2 BusinessObjectives . . . . . . . . . . . . . . . . . . . . . . 80 3.2.1 ManufacturersandRetailers. . . . . . . . . . . . . . . 80 3.2.2 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2.3 Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3 TargetingPipeline . . . . . . . . . . . . . . . . . . . . . . . 85 3.4 ResponseModelingandMeasurement . . . . . . . . . . . 88 3.4.1 ResponseModelingFramework. . . . . . . . . . . . . 89 3.4.2 ResponseMeasurement . . . . . . . . . . . . . . . . . 93 3.5 BuildingBlocks:TargetingandLTVModels . . . . . . . . 94 3.5.1 DataCollection . . . . . . . . . . . . . . . . . . . . . . 95 3.5.2 TieredModeling. . . . . . . . . . . . . . . . . . . . . . 96 3.5.3 RFMModeling . . . . . . . . . . . . . . . . . . . . . . 98 3.5.4 PropensityModeling . . . . . . . . . . . . . . . . . . . 99 3.5.4.1 Look-alikeModeling . . . . . . . . . . . . . . . . 100 3.5.4.2 ResponseandUpliftModeling . . . . . . . . . . . 104 3.5.5 SegmentationandPersona-basedModeling. . . . . . 107 3.5.6 TargetingbyusingSurvivalAnalysis. . . . . . . . . . 109 3.5.7 LifetimeValueModeling . . . . . . . . . . . . . . . . . 113 3.5.7.1 DescriptiveAnalysis . . . . . . . . . . . . . . . . . 113 3.5.7.2 MarkovChainModels. . . . . . . . . . . . . . . . 116 3.5.7.3 RegressionModels . . . . . . . . . . . . . . . . . . 119 3.6 DesigningandRunningCampaigns . . . . . . . . . . . . . 120 3.6.1 CustomerJourneys . . . . . . . . . . . . . . . . . . . . 121 3.6.2 ProductPromotionCampaigns . . . . . . . . . . . . . 123 3.6.2.1 TargetingProcess . . . . . . . . . . . . . . . . . . 123 3.6.2.2 BudgetingandCapping. . . . . . . . . . . . . . . 126 3.6.3 MultistagePromotionCampaigns . . . . . . . . . . . 131 3.6.4 RetentionCampaigns . . . . . . . . . . . . . . . . . . . 133 3.6.5 ReplenishmentCampaigns . . . . . . . . . . . . . . . 136 3.7 ResourceAllocation . . . . . . . . . . . . . . . . . . . . . . 137 3.7.1 AllocationbyChannel . . . . . . . . . . . . . . . . . . 138 3.7.2 AllocationbyObjective . . . . . . . . . . . . . . . . . . 142 3.8 OnlineAdvertisements . . . . . . . . . . . . . . . . . . . . 144 3.8.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . 144 3.8.2 ObjectivesandAttribution . . . . . . . . . . . . . . . . 146 3.8.3 TargetingfortheCPA-LTModel . . . . . . . . . . . . 149 3.8.3.1 BrandProximity . . . . . . . . . . . . . . . . . . . 151 3.8.3.2 AdResponseModeling . . . . . . . . . . . . . . . 152 3.8.3.3 InventoryQualityandBidding . . . . . . . . . . 152
Description: