ebook img

Arctic Tipping Points PDF

190 Pages·2015·16.86 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Arctic Tipping Points

FACULTY  OF  SCIENCE  AND  TECHNOLOGY       DEPARTMENT  OF  MATHEMATICS  AND  STATISTICS         Arctic  Tipping  Points     —   Valentina  Smolkova     MAT-­‐3900  Master’s  Thesis  in  Mathematics,  May  2015 Abstract The Arctic is warming much faster than the entire planet, and this causes severe melting of sea ice. However, the climate of different regions of the Earth is inter- connected, and changes in the amount of ice in the Arctic can dramatically affect the climate across the whole planet. Some scientists claim that a possible tipping point is the event of the ice-free Arctic Ocean in summer. Certain predictions point towards ice-free Arctic summers around the year 2050, whereas others pre- dict this will occur in 2016. There are also others arguing that only a year-round sea ice loss can represent a tipping point in the Arctic. The disagreement between scientists on this topic is an indication that more detailed studies of tipping points are needed to be done. In this thesis, we use five different models to explore possible tipping points of sea ice loss in the Arctic Ocean. The results show that the tipping point will most probably occur between years 2017 and 2021, with sea ice loss average from 11 million km sq to 4 million km sq during one seasonal cycle. iii iv Acknowledgment First of all, I would like to thank my supervisor Martin Rypdal for offering a very interesting project topic and for help in writing this thesis. I would also like to thank all my professors at the UiT The Arctic University of Norway and especially, professorKristofferRypdal. Thisworkcouldnothavebeendonewithouthiscourse of lectures and practical lessons in Climate Dynamics. I am also grateful to my parents, friends from the university and my boyfriend for support during this year. v vi Contents 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Significance of the project . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Bifurcations in dynamical systems 5 2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 First-order bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Saddle-node bifurcation . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Transcritical bifurcation . . . . . . . . . . . . . . . . . . . . 7 2.2.3 Pitchfork bifurcation . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Bifurcations in higher-dimensional systems . . . . . . . . . . . . . . 10 2.3.1 Two-dimentional saddle-node bifurcation . . . . . . . . . . . 10 2.3.2 Hopf bifurcation . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.3 Fast-slow systems . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Stochastic dynamical systems 13 3.1 Stochastic calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 The Hurst exponent and Brownian motion . . . . . . . . . . 14 3.1.2 Stochastic integral and differential equation . . . . . . . . . 16 3.1.3 The Langevin equation and the Ornstein-Uhlenbeck process 18 3.2 Stochastic dynamical systems and their solutions . . . . . . . . . . 19 3.2.1 Pullback attractor . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.2 Variance in fast-slow systems . . . . . . . . . . . . . . . . . 21 vii viii CONTENTS 4 Arctic climate system 25 4.1 The Arctic region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Energy budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 Arctic climate change and its impacts . . . . . . . . . . . . . . . . . 28 4.3.1 Past Arctic tipping points . . . . . . . . . . . . . . . . . . . 29 4.3.2 Potential Arctic tipping points . . . . . . . . . . . . . . . . . 31 5 Early warning signals and tipping points 33 5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 Basic example of tipping point with white noise . . . . . . . . . . . 34 5.3 Basic example of tipping point with Brownian motion . . . . . . . . 37 5.4 Parameters estimation . . . . . . . . . . . . . . . . . . . . . . . . . 39 6 Global temperature 43 6.1 White noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2 Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.3 Linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7 Arctic temperature 51 7.1 White noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.2 Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 8 Discussion 59 8.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 8.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 A Example of tipping point with white noise 69 B Finding the Hurst exponent 75 C Example of tipping point with Brownian motion 81 D Global temperature and white noise 87 E Global temperature and Brownian motion 103 CONTENTS ix F Linear model 119 G Mean Arctic temperature 135 H Vardø temperature and white noise 147 I Vardø temperature and Brownian motion 163 x CONTENTS

Description:
interesting project topic and for help in writing this thesis. I would also like to of lectures and practical lessons in Climate Dynamics. I am also .. bifurcation, and if a stable point splits into one stable and two unstable, it is subcritical . If we take a fixed time, then Xt(ω) is just a ran
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.