ARCHITECTURAL ELEMENTS AND FACIES DISTRIBUTION ALONG AN ACTIVELY GROWING DEEPWATER BASIN MARGIN, EOCENE MORILLO STRATIGRAPHIC UNIT, AINSA BASIN, SPAIN By Prianto Setiawan A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date _____________ Signed: ____________________________ Prianto Setiawan Signed: ____________________________ Dr. Renaud Bouroullec Thesis Advisor Signed: ____________________________ Dr. David R. Pyles Thesis Advisor Golden, Colorado Date _____________ Signed: ___________________________ Dr. John D. Humphrey Associate Professor and Head Department of Geology and Geological Engineering ii ABSTRACT Deepwater depositional systems associated with actively growing basins are important targets for hydrocarbon exploration and production. Seismic data of deepwater basin-fills often reveal the occurrence of low amplitude/chaotic non-reservoir seismic facies located close to basin margins. These strata separate the basin margins from high amplitude/good continuity reservoir facies located in the axis of the basins. Outcrop studies often focus on the nature of reservoir facies in the axial part of the basin, but little is known about sedimentological and stratigraphic characteristics of basin margin strata. The Eocene Morillo stratigraphic unit in the Ainsa Basin, Spain, is an outcrop analog for sediment deposited within an actively growing deepwater basin margin. The Morillo consists of siliciclastic-dominated strata located at the basin axis and carbonate- dominated strata located at the basin margin. In this study, the Morillo is subdivided into three condensed section bounding units called Morillo 1, Morillo 2, and Morillo 3. The correlation method used allows a chronostratigrapic correlation between the siliciclastic- dominated strata located at the basin axis and the carbonate-dominated strata located along the basin margin. The aims of this study are to: 1) better understand the evolution of the Morillo stratigraphic unit through time, 2) develop a better understanding of sedimentological characteristics (facies and architectural elements) of deepwater sediments along active basin margins, and 3) quantify/measure the relationship that exists between basin margin geometry, basin margin and basin axis strata. Data used in this study consist of measured sections, paleocurrent data, photopanel interpretation, petrographic analysis, and mapping of key-surfaces. The Morillo stratigraphic unit is bounded by actively growing structures which are the Mediano Anticline to the east and Boltana Anticline to the west. Morillo deposits are delivered through four main delivery systems: (1) an east siliciclastic-dominated slope, (2) a southeast carbonate-dominated submarine canyon, (3) a southwest stable carbonate platform, and (4) a west mass transport complexes (MTCs)-dominated carbonate system. Twenty 0ne facies are identified and represent the entire spectrum of iii sediment gravity flow processes ranging from slides, slumps, debris flows to turbidity currents. Six types of architectural elements (canyon, channel, levee, MTCs, sheets, and lobes) are identified and mapped within the basin. The Morillo stratigraphic unit is interpreted to be deposited during a transgressive to highstand system tract. Both carbonate and siliciclastic systems are interpreted to display characteristics of continuous sea level rise from the Morillo 1 to the Morillo 3 depositional time. This continued sea level rise is also complicated by the local tectonics of the growing basin margin. The sedimentary record shows that the basin bounding structures were active at different times during the Morillo deposition. Cross sections built along the basin margins reveals relationships between basin margin geometry and stratal characteristics. First, slides, slumps and debris flows are empirically related to steep basin margins. Second, the angle of basin margin at the time of deposition is related to the width of non-reservoir quality strata (basin margin wedge) that physically separates the basin margin to reservoir strata in the basin axis (The steeper the basin margin is, the narrower the basin margin wedge is). These results indicate that there are geometrical relationships between basin margin geometry, architectural element proportion, and distance between basin margins to the reservoir strata. The result can be used to deduce and predict architectural element and facies in seismic data using angles relationship that can be directly measured from seismic. It is possible to use the results of this study in similar settings to reduce uncertainty in the determination of the minimum distance between basin margin and reservoir facies, which in turn could optimize drilling strategy along active basin margins. iv TABLE OF CONTENTS ABSTRACT ........................................................................................................................ ii LIST OF FIGURES ........................................................................................................... ix LIST OF TABLES .............................................................................................................xv ACKNOWLEDGMENTS ............................................................................................... xvi CHAPTER 1 INTRODUCTION .........................................................................................1 1.1 Research Objectives .....................................................................................1 1.2 Study Area ...................................................................................................2 1.2.1. Location ...........................................................................................2 1.2.2. Regional Geologic Setting ...............................................................3 1.2.1.1. Tectonics and Basin Setting ................................................3 1.2.1.2. Stratigraphy .........................................................................5 1.3 Methods and Data ........................................................................................6 CHAPTER 2 LITERATURE REVIEW ............................................................................17 2.1 Deepwater Basin Margin ...........................................................................17 2.2 Sediment Gravity Flows ............................................................................19 2.2.1. Turbidity Current .............................................................................20 2.2.2. Debris Flows ....................................................................................21 2.2.3. Co-genetic Turbidite and Debrite ....................................................22 2.2.4. Mass Transport Complexes (Slumps and Slides) ............................24 2.2.5. Sediment Gravity Flows Facies Model ............................................26 2.3 Deepwater Carbonate Depositional System ...............................................28 CHAPTER 3 SEDIMENTOLOGY AND STRATIGRAPHY OF THE MORILLO STRATIGRAPHIC UNITS ...............................................................................................45 3.1 Facies .........................................................................................................45 3.1.1 Background ....................................................................................45 3.1.2 Facies of the Morillo Stratigraphic Units .......................................45 v 3.2 Architectural Elements ...............................................................................47 3.2.1 Background ....................................................................................47 3.2.2 Architectural Elements of the Morillo Stratigraphic Units ............48 3.2.2.1. Channel Element ...............................................................48 3.2.2.2. Sheet Element ...................................................................50 3.2.2.3. MTC Element....................................................................51 3.2.2.4. Lobe Element ....................................................................53 3.2.2.5. Canyon Element ................................................................54 3.2.2.6. Levee Element ..................................................................55 3. 3. Stratigraphic Cycles .......................................................................................56 CHAPTER 4 MORILLO STRATIGRAPHIC UNIT ........................................................69 4.1 Introduction ................................................................................................69 4.2 Morillo 1 Stratigraphic Unit.......................................................................70 4.2.1. Morillo 1 Siliciclastic-Dominated Domain ....................................70 4.2.1.1. Proximal Siliciclastic-Dominated Domain: Morillo de Tou .............................................................................71 4.2.1.2. Distal Siliciclastic-Dominated Domain: Rio Ara and Rio Sieste ........................................................................72 4.2.2. Morillo 1 Carbonate-Dominated Domain ......................................77 4.2.2.1. Morillo 1 Southeastern Carbonate-Dominated Domain ...77 4.2.2.2. Morillo 1 Western Carbonate-Dominated Domain ...........79 4.2.3. Summary of the Morillo 1 Stratigraphic Unit ............................... 82 4.3 Morillo 2 Stratigraphic Unit.......................................................................84 4.3.1. Introduction ....................................................................................84 4.3.2. Southeastern Area: Samitier to Caboplano Peninsula ...................85 4.3.3. Eastern Area: Coscojuelo de Sobrarbe to Morillo de Tou .............88 4.3.4. Southwest Area: Santa Maria de la Nuez to Castellazo .................91 4.3.5. West Central Area: Rio Ena and Morcat .......................................94 4.3.6. Northwestern Area: Rio Sieste and Rio Ara ..................................97 4.3.7. Summary of the Morillo 2 Stratigraphic Unit ..............................100 vi 4.4 Morillo 3 Stratigraphic Unit.....................................................................102 4.4.1. Introduction ..................................................................................102 4.4.2. Southeastern Area: Samitier to Morillo de Tou. ..........................102 4.4.3. Southwestern Area: Santa Maria de la Nuez to Castellazo..........105 4.4.4. Northwestern Area: Rio Ena to Rio Sieste area ...........................108 4.4.5. Summary of the Morillo 2 Stratigraphic Unit. ............................ 111 4.5. Summary of the Morillo Stratigraphic Unit .............................................112 CHAPTER 5 DISCUSSION ............................................................................................174 5.1 Basin Configuration During the Morillo Stratigraphic Unit Depositional Time .........................................................................................................174 5.2 The Stratigraphic Evolution of the Morillo .............................................176 5.2.1. Paleogeography of the Morillo Stratigraphic Unit .......................176 5.2.1.1. Paleogeography of the Morillo 1 ....................................176 5.2.1.2. Paleogeography of the Morillo 2 ....................................178 5.2.1.3. Paleogeography of the Morillo 3 ....................................180 5.2.2. Sequence Stratigraphy of the Morillo Stratigraphic Unit ............181 5.2.2.1. Record of Sea Level Rise in the Basin Margin ...............181 5.2.2.2. Record of Sea Level Changes in the Basin Axis ............183 5.3. Architectural Element Distribution Along an Actively Growing Basin Margin ......................................................................................................184 5.4. Basin Margin to Axis Relationship ..........................................................185 5.5. Application to Reservoir Characterization ...............................................187 5.5.1. Basin Scale ...................................................................................187 5.5.2. Reservoir Scale ...........................................................................189 CHAPTER 6 CONCLUSIONS .......................................................................................208 6.1. Conclusions ..............................................................................................208 6.1.1. The Evolution of the Morillo Stratigraphic Unit .........................208 6.1.2. Facies and Architectural Elements Along the Growing Basin Margin ..........................................................................................211 vii 6.1.3. Axis to Margin Relationship ........................................................212 6.2. Future Research .......................................................................................213 REFERENCES CITED ....................................................................................................215 viii LIST OF FIGURES Figure 1.1. Seismic example of salt withdrawal minibasin in the Gulf of Mexico showing axis to margin relationship ............................................................8 Figure 1.2. Geographic map of the study area ...............................................................9 Figure 1.3 Geometry of the Pyrenees orogen ..............................................................10 Figure 1.4. Geologic map of the eastern Pyreneean .....................................................10 Figure 1.5. Paleogeographic map of the south Pyreneean foreland basins ..................12 Figure 1.6. Cross section of the south Pyreneean foreland basins ...............................12 Figure 1.7. General geologic map of the Ainsa Basin ..................................................13 Figure 1.8. General stratigraphic column of the Ainsa Basin fills ...............................14 Figure 1.9. Simplified stratigraphic chart of the Ainsa Basin ......................................15 Figure 1.10. Cross section from the Ainsa to Jaca Basin ...............................................15 Figure 1.11. Data distribution map within of the study area ..........................................16 Figure 2.1. Cross section of the Gull Island Formation, Ireland ..................................30 Figure 2.2. Depositional model of ponded turbidite strata, Annot Sandstone, France .........................................................................................................31 Figure 2.3. Main control parameters on deepwater basin margin ................................32 Figure 2.4. Four end members of sediment gravity flows ............................................33 Figure 2.5. The anatomy of turbidity current, showing head and body .......................34 Figure 2.6. Vertical velocity profile of turbidity current ..............................................35 Figure 2.7. Cross sectional view of debris flow, showing shear and plug ...................36 Figure 2.8. Genetic relationship between debris flow and turbidity current ................36 Figure 2.9. Classification of sediment gravity flows ....................................................37 ix Figure 2.10. Slumps as an indicator to interpret paleoflow direction ............................37 Figure 2.11. Classic turbidite facies model ....................................................................38 Figure 2.12. Density flows facies model ........................................................................39 Figure 2.13. Turbidite facies and related processes .......................................................40 Figure 2.14. Flow dynamics concept of turbidity current ..............................................41 Figure 2.15. Comparison of turbidite facies model ........................................................42 Figure 2.16. Comparison of turbidite facies model ........................................................42 Figure 2.17. Carbonate classification scheme ................................................................43 Figure 2.18 Slope profile comparison between siliciclastic, T factory, and C factory carbonate ramp ..............................................................................43 Figure 2.19. Standard facies belt of carbonate depositional system ............................. 44 Figure 2.20. Common modification standard facies model ...........................................44 Figure 3.1. Photographs of 21 facies observed within the Morillo stratigraphic unit ..60 Figure 3.2. Photomicrographs of carbonate pre-growth strata .....................................62 Figure 3.3. Photomicrographs of Type 2 sheet (F12 facies) ........................................63 Figure 3.4. Photomicrographs of F6, F14, and F20 facies ...........................................64 Figure 3.5. Map of the proportion between carbonate and siliciclastic strata identified from the petrographic description ..............................................65 Figure 3.6. Architectural elements within the Morillo stratigraphic unit .....................66 Figure 3.7. Erosional and depositional channel geometries from Mutti and Normark (1991) ........................................................................................ 67 Figure 3.8. Hierarchy of channel elements from Gardner and Borer (2000) .............. 67 Figure 3.9. Regional stratigraphic column of the Ainsa Basin ....................................68 Figure 4.1. Geologic map of the Morillo stratigraphic unit .......................................113 Figure 4.2. Panoramic view of the Morillo stratigraphic unit at Morillo de Tou .......114 x
Description: