ebook img

ARCH Models for Financial Applications PDF

558 Pages·2010·5.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ARCH Models for Financial Applications

ARCH Models for Financial Applications ARCH Models for Financial Applications Evdokia Xekalaki and Stavros Degiannakis © 2010 John Wiley & Sons Ltd. ISBN: 978-0-470-06630-0 ARCH Models for Financial Applications . Evdokia Xekalaki Stavros Degiannakis Department of Statistics Athens University ofEconomics andBusiness, Greece Thiseditionfirstpublished2010 (cid:1)2010JohnWiley&SonsLtd., Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyfor permissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththe Copyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,in anyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedby theUKCopyright,DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats. Somecontentthatappearsinprintmaynotbe availableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnames andproductnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheir respectiveowners.Thepublisherisnotassociatedwithanyproductorvendormentionedinthisbook.This publicationisdesignedtoprovideaccurateandauthoritativeinformationinregardtothesubjectmattercovered.It issoldontheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Ifprofessional adviceorotherexpertassistanceisrequired,theservicesofacompetentprofessionalshouldbesought. LibraryofCongressCataloguing-in-PublicationData Xekalaki,Evdokia. ARCHmodelsforfinancialapplications/EvdokiaXekalaki,StavrosDegiannakis. p.cm. Includesbibliographicalreferencesandindex. ISBN978-0-470-06630-0(cloth) 1. Finance–Mathematicalmodels.2. Autoregression(Statistics) I.Degiannakis,Stavros.II.Title. HG106.X452010 332.01’519536–dc22 2009052104 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN978-0-470-06630-0(H/B) Setin10/12ptTimesbyThomsonDigital,Noida,India PrintedandboundinGreatBritainbyTJInternational,Padstow,Cornwall To my husband and my son, a wonderful family Evdokia Xekalaki To thememory of the most importantperson in mylife, my father Antonis, and to my mother and my brother Stavros Degiannakis Contents Preface xi Notation xv 1 What is an ARCH process? 1 1.1 Introduction 1 1.2 The autoregressiveconditionally heteroscedasticprocess 8 1.3 The leverage effect 13 1.4 The non-trading period effect 15 1.5 The non-synchronous tradingeffect 15 1.6 The relationshipbetween conditional variance and conditional mean 16 1.6.1 The ARCH in mean model 16 1.6.2 Volatility and serial correlation 18 2 ARCHvolatilityspecifications 19 2.1 Model specifications 19 2.2 Methodsof estimation 23 2.2.1 Maximumlikelihood estimation 23 2.2.2 Numerical estimation algorithms 25 2.2.3 Quasi-maximum likelihood estimation 28 2.2.4 Other estimation methods 29 2.3 Estimating the GARCH model withEViews 6: an empiricalexample 31 2.4 Asymmetric conditional volatility specifications 42 2.5 Simulating ARCH models using EViews 49 2.6 Estimating asymmetric ARCH models with [email protected] OxMetrics: an empiricalexample 55 2.7 Misspecificationtests 66 2.7.1 The Box–Pierce and Ljung–Box Qstatistics 66 2.7.2 Tse’s residualbased diagnostic test for conditional heteroscedasticity 67 2.7.3 Engle’sLagrangemultiplier test 67 2.7.4 Engle and Ng’s sign bias tests 68 2.7.5 The Breusch–Pagan,Godfrey,Glejser,Harvey andWhite tests 69 viii CONTENTS 2.7.6 TheWald, likelihood ratio andLagrange multipliertests 69 2.8 Other ARCH volatilityspecifications 70 2.8.1 Regime-switching ARCH models 70 2.8.2 Extended ARCH models 72 2.9 Other methods of volatilitymodelling 76 2.10 Interpretation ofthe ARCH process 82 Appendix 86 3 Fractionally integratedARCHmodels 107 3.1 Fractionally integrated ARCH modelspecifications 107 3.2 Estimating fractionally integratedARCHmodels using [email protected] OxMetrics: an empirical example 111 3.3 A more detailed investigation of the normalityof the standardizedresiduals: goodness-of-fittests 122 3.3.1 EDF tests 123 3.3.2 Chi-square tests 124 3.3.3 QQ plots 125 3.3.4 Goodness-of-fittests using EViews and G@RCH 126 Appendix 129 4 Volatility forecasting: an empirical example using EViews 6 143 4.1 One-step-ahead volatilityforecasting 143 4.2 Ten-step-ahead volatility forecasting 150 Appendix 154 5 Otherdistributionalassumptions 163 5.1 Non-normally distributedstandardized innovations 163 5.2 Estimating ARCH models with non-normally distributed standardizedinnovations using [email protected] OxMetrics: an empirical example 168 5.3 Estimating ARCH models with non-normally distributed standardizedinnovations using EViews 6:an empirical example 174 5.4 Estimating ARCH models with non-normally distributed standardizedinnovations using EViews 6:the logl object 176 Appendix 182 6 Volatility forecasting: an empirical example using G@RCH Ox 185 Appendix 195 7 Intraday realizedvolatility models 217 7.1 Realized volatility 217 7.2 Intraday volatilitymodels 220 7.3 Intraday realized volatilityandARFIMAX models in G@RCH 4.2OxMetrics: anempirical example 223 7.3.1 Descriptivestatistics 223 CONTENTS ix 7.3.2 In-sample analysis 228 7.3.3 Out-of-sample analysis 232 8 Applications invalue-at-risk,expected shortfalland optionspricing 239 8.1 One-day-ahead value-at-risk forecasting 239 8.1.1 Value-at-risk 239 8.1.2 Parametric value-at-risk modelling 240 8.1.3 Intraday data andvalue-at-riskmodelling 242 8.1.4 Non-parametric andsemi-parametric value-at-risk modelling 244 8.1.5 Back-testing value-at-risk 245 8.1.6 Value-at-risk loss functions 248 8.2 One-day-aheadexpectedshortfall forecasting 248 8.2.1 Historical simulationand filtered historical simulation for expectedshortfall 251 8.2.2 Loss functions for expectedshortfall 251 8.3 FTSE100 index:one-step-ahead value-at-risk and expected shortfall forecasting 252 8.4 Multi-period value-at-riskand expectedshortfall forecasting 258 8.5 ARCH volatility forecasts inBlack–Scholes option pricing 260 8.5.1 Options 261 8.5.2 Assessingthe performance of volatility forecastingmethods 269 8.5.3 Black–Scholes option pricing usinga set ofARCHprocesses 270 8.5.4 Trading straddles based on aset of ARCH processes 271 8.5.5 Discussion 279 8.6 ARCH option pricing formulas 281 8.6.1 Computation of Duan’sARCHoption prices: an example 286 Appendix 288 9 Implied volatilityindices and ARCHmodels 341 9.1 Implied volatility 341 9.2 The VIX index 342 9.3 The implied volatility indexas anexplanatoryvariable 344 9.4 ARFIMAX model for implied volatilityindex 349 Appendix 352 10 ARCHmodel evaluation and selection 357 10.1 Evaluation ofARCH models 358 10.1.1 Model evaluationviewed interms ofinformation criteria 359 10.1.2 Model evaluationviewed interms ofstatistical loss functions 360 10.1.3 Consistentranking 367 10.1.4 Simulation, estimation andevaluation 377 10.1.5 Point, interval and density forecasts 383 10.1.6 Model evaluationviewed interms ofloss functionsbased on the use of volatilityforecasts 384 x CONTENTS 10.2 Selection of ARCH models 386 10.2.1 TheDiebold–Marianotest 386 10.2.2 TheHarvey–Leybourne–Newbold test 389 10.2.3 TheMorgan–Granger–Newboldtest 389 10.2.4 White’srealitycheck for datasnooping 390 10.2.5 Hansen’s superior predictiveabilitytest 390 10.2.6 Thestandardized predictionerror criterion 393 10.2.7 Forecastencompassing tests 400 10.3 Application ofloss functionsas methods of model selection 401 10.3.1 Applying the SPEC model selection method 401 10.3.2 Applying loss functionsas methods of model selection 402 10.3.3 Medianvalues ofloss functions asmethods of model selection 407 10.4 TheSPAtest for VaR and expectedshortfall 408 Appendix 410 11 Multivariate ARCHmodels 445 11.1 Model Specifications 446 11.1.1 Symmetric model specifications 446 11.1.2 Asymmetric and long-memory modelspecifications 453 11.2 Maximumlikelihood estimation 454 11.3 Estimating multivariate ARCH models using EViews 6 456 11.4 Estimating multivariate ARCH models using [email protected] 465 11.5 Evaluation ofmultivariateARCHmodels 473 Appendix 475 References 479 Author Index 521 Subject Index 533 Preface There has been wide interest throughout the financial literature on theoretical and applied problems in the context of ARCH modelling. While a plethora of articles existsinvariousinternationaljournals,theliteraturehasbeenrathersparsewhenit comes to books with an exclusive focus on ARCH models. As a result, students, academics in the area offinance and economics, and professional economists with only a superficial grounding in the theoretical aspects of econometric modelling, whileabletounderstandthebasictheoriesaboutmodelconstruction,estimationand forecasting, often fail toget a grasp of howthesecan beused inpractice. The present book addresses precisely these issues by interweaving practical questions with approaches hinging on financial and statistical theory: we have adopted an interactional exposition of the ARCH theory and its implementation throughout. This is a book of practical orientation and applied nature intended for readerswithabasicknowledgeoftimeseriesanalysiswishingtogainanaptitudein theapplicationsoffinancialeconometricmodelling.Balancingstatisticalmethodol- ogyandstructuraldescriptivemodelling,itaimstointroducereaderstotheareaof discretetimeappliedstochasticvolatilitymodelsandtohelpthemacquiretheability to deal with applied economic problems. It provides background on the theory of ARCHmodels,butwithafocusonpracticalimplementationviaapplicationstoreal data (the accompanying CD-ROM provides programs and data) and via examples worked with econometricspackages (EViews and the G@RCHmodule for the Ox package)withstep-by-stepexplanationsoftheiruse.Readersarefamiliarizedwith theoreticalissuesofARCHmodelsfrommodelconstruction,fittingandforecasting throughtomodelevaluationandselection,andwillgainfacilityinemployingthese models in the context of financial applications: volatility forecasting, value-at-risk forecasting,expectedshortfallestimation,andvolatilityforecastsforpricingoptions. Chapter 1 introduces the concept of an autoregressive conditionally heterosce- dastic(ARCH)processanddiscussestheeffectsthatvariousfactorshaveonfinancial time series such as the leverage effect, the non-trading period effect, and the non- synchronous trading effect. Chapter 2 provides an anthology of representations of ARCHmodelsthathavebeenconsideredintheliterature.Estimationandsimulation ofthemodelsisdiscussed,andseveralmisspecificationtestsareprovided.Chapter3 deals with fractionally integrated ARCH models and discusses a series of tests for testing the hypothesis of normality of the standardized residuals. Chapter 4 famil- iarizes readers with the use of EViews in obtaining volatility forecasts. Chapter 5 treats the case of ARCH models with non-normally distributed standardized

Description:
Autoregressive Conditional Heteroskedastic (ARCH) processes are used in finance to model asset price volatility over time. This book introduces both the theory and applications of ARCH models and provides the basic theoretical and empirical background, before proceeding to more advanced issues and a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.