ebook img

Approximate Behavior of Tandem Queues PDF

424 Pages·1979·6.87 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approximate Behavior of Tandem Queues

Lecture Notes in Economics and Mathematical Systems (Vol. 1-15: Lecture Notes in Operations Research and Mathematical Economics. Vol. 16-59: Lecture Notes in Operations Research and Mathematical Systems) Vol. 1: H. Buhlmann. H. Loeffel. E. Nievergelt. Einliihrung in die Vol. 30: H. Noltemeier, Sensitivitatsanalyse bei diskreten IInearen Theorie und Praxis der Entscheidung bel Unsicherheit. 2. Auflage. Optimlerungsproblemen. VI, 102 Seiten. 1970. IV. 125 Seiten 1969. Vol. 31: M. Kuhlmeyer. O,e nichtzentrale t-Verteilung. II. 106 Sei Vol. 2: U. N. Bhat. A Study of the Oueueing Systems M/G/l and ten. 1970. GI/M/1. VIII. 78 pages. t968. Vol. 32: F. Bartholomes und G. Hotz, Homomorphismen und Re Vol. 3: A Strauss. An Introduction to OptImal Control Theory. duktionen linearer Sprachen. XII, 143 Seiten. 1970. OM 18.- Out of print Vol. 33: K. Hinderer. Foundations of Non-stationary DynamIC Pro Vol. 4: Branch and Bound: Eine EinfUhrung. 2 .. geanderte Auflage. gramming with Discrete Time Parameter. VI, 160 pages. 1970. Herausgegeben von F. Weinberg. VII. 174 Seiten. 1973. Vol. 34: H. StOrmer, Semi-Markoff-Prozesse mit endlich vlelen Vol. 5: L. P. Hyvarinen. Informahon Theory for Systems EngIneers. Zustiinden. Theorie und Anwendungen. VII. 128 Seiten. 1970. VII. 205 pages. 1968. Vol. 35: F. Ferschl. Markovkelten. VI. 168 Seiten. 1970. Vol. 6: H. P. Kunzl. O. Muller. E. Nlevergelt. Einliihrungskursus in die dynamische Programmierung. IV. 103 Seiten. 1968. Vol. 36: M. J. P. Magill. On a General Economic Theory of Motion. VI. 95 pages. 1970. Vol. 7: W. Popp. Einliihrung in die Theorie der Lagerhaltung. VI. 173 Seiten. 1968 Vol. 37: H. Muller-Merbach. On Round-Off Errors in Linear Pro gramming. V. 48 pages. 1970. Vol. 8: J. Teghem. J. Loris·Teghem. J. P. Lambolte. Modeles d' Allente M/GII et GI/MII a Arrivees et Services en Groupes. III. Vol. 38: Statistische Methoden I. Herausgegeben von E. Walter. 53 pages. 1969. VIII. 338 Seiten. 1970. Vol. 9: E. Schultze. E,nliihrung in die mathematischen Grundlagen Vol. 39: Statistische Methoden II Herausgegeben • ..., E. Walter. der Informationstheorie. VI. 116 Seiten 1969. IV. 157 Se,ten. 1970. Vol. 10: D. Hochstadter. Stochastische Lagerhaltungsmodelle. VI. Vol. 40: H. Drygas, The CoordInate-Free Approach to Gauss 269 Seiten 1969. Markov Estimation. VIII. 113 pages. 1970. Vol. 11/12: Mathematical Systems Theory and Economics. Edited Vol. 41 . U. Ueing, Zwel LOsungsmethoden liir nichtkonvexe Pro by H. W. Kuhn and G. P. SzegO. VIII. III. 486 pages. 1969. grammierungsprobleme. IV. 92 Seiten. 1971. Vol. 13: Heuristische Planungsmethoden. Herausgegeben von Vol. 42: A. V. Balakrishnan. IntroductIon to OptImization Theory in F. WeInberg und C. A. Zehnder. II. 93 Seiten. 1969. a Hilbert Space. IV. 153 pages. 1971. Vol. 14: Computing Methods in Optimization Problems. V. 191 pages. Vol. 43: J. A. Morales. Bayesian Full Information Structural Analy 1969. sis. VI. 154 pages. 1971. Vol. 15: EconomIc Models. EstImation and Risk ProgrammIng: Vol. 44, G. Feichtinger. Stochastische Modelle demographischer Essays in Honor of Gerhard Tintner. Edited by K. A. Fox. G. V. L. Prozesse. IX. 404 Seiten. 1971. Naraslmham and J. K. Sengupta. VIII. 461 pages. 1969. Vol. 45: K. Wendler. Hauptaustauschschrllte (Principal Pivoting). Vol. 16: H. P. Kunzi und W. Oeltli. Nichtlineare Optimierung: II. 84 Seiten. 1971. Neuere Verlahren. Bibliographie. IV. 180 Seiten. 1969. Vol. 48: C. Boucher, Lec;ons sur la thearie des automates ma Vol. 17: H. Bauer und K. Neumann. Berechnung optimaler Steue· thematiques. VIII, 193 pages. 1971. rungen. Maximumprinzip und dynamische Optimierung. VIII. 188 Vol. 47: H. A Nour Eldin. Optimierung linearer Regelsysteme Seiten.1969. mit quadrati scher Z,elfunktion. VIII. 163 Seiten. 1971. Vol. 18: M. Wolff. Optimale Instandhaltungspolitiken in einfachen Systemen. V. 143 Seiten. 1970. Vol. 48: M. Constam. FORTRAN liir Anfiinger. 2. Auflage. VI. 148 Seiten. 1973. Vol. 19: L. P. Hyvarinen. MathematIcal Modeling for Industrial Pro· cesses. VI. 122 pages. 1970. Vol. 49: Ch. Schneewei6. Regelungstechnlsche stochastische Optimierungsverlahren XI, 254 Seiten. 1971. Vol. 20: G. Uebe, Optimale Fahrplane. IX, 161 Seiten. 1970. Vol. 50: Unternehmensforschung Heute - Obersichtsvortrage der Vol. 21: Th. M. Liebling, Graphentheorie in Planungs· und Touren· Zuricher Tagung von SVOR und OGU, September 1970. Heraus problemen am Beispiel des stiidtlschen Stra6endlenstes. IX. gegeben von M. Beckmann. IV. 133 Seiten. 1971. 118 Seiten. 1970. Vol. 51: Digitale Simulation. Herausgegeben von K. Bauknecht Vol. 22: W. Eichhorn. Theorie der homogenen Produktionsfunk· und W. Nef. IV. 207 Seiten. 1971. tion. VIII, 119 Seiten. 1970. Vol. 52: Invariant Imbedding. Proceedings 1970. Edited by R. E. Vol. 23: A Ghosal, Some Aspects of Queueing and Storage Bellman and E. D. Denman. IV. 148 pagea. 1971. Systems. IV. 93 pages. 1970. Vol. 24: G. Feichtinger. Lernprozeese in slochastischen Automaten. Vol. 53: J. RosenmOIIer. Kooperative Spiele und Miirkte. III. 152 V, 66 Seiten. 1970. Seiten. 1971. Vol. 25: R. Henn und O. Opitz, Konsum· und Produktionalheorie I. Vol. 54: C. C. von WeiZ8llcker, Steady State Capital Theory. III. II. 124 Saiten. 1970. 102 ~s. 1971. Vol. 26: D. Hochstadter und G. Uebe, Okonometrische Methoden. Vol. 55: P. A. V. B. Swamy. Statistical Inference in Random Coef XII, 250 Seiten. 1970. ficient Regression Models. VIII. 209 pages. 1971. Vol. 27: I. H. Mufti, Computational Methods in Optimal Control Vol. 56: Mohamed A. E1·Hodiri. Constrained Extrema. Introduction Problems. IV, 45 pages. 1970. to the Differentiable Case with Economic Applications. III, 130 Vol. 28: Theoretical Approaches to Non-Numerical Problem Sol pages. 1971. ving. Edited by R. B. Banerji and M. D. MellllfOVic. VI, 466 pages. Vol. 57: E. Freund. Zeitvariable Mehrgr06ensysteme. VIII.160 Sei 1970 ten. 1971. Vol. 29: S. E. Elmaghraby, Some Network Models in Management Vol. 58: P. B. Hagelachuer, Theorie der linearen Dekomposition. Science. III. 176 pages. 1970. VII. 191 Saiten. 1971. continuation on page 411 Lectu re Notes in Economics and Mathematical Systems Managing Editors: M. Beckmann and H. P. Kiinzi Operations Research 171 G. F. Newell Approximate Behavior of Tandem Queues Spri nger-Verlag Berlin Heidelberg New York 1979 Editorial Board H. Albach' A. V. Balakrishnan' M. Beckmann (Managing Editor) P. Dhrymes . J. Green' W. Hildenbrand' W. Krelle H. P. Kunzi (Managing Editor) . K. Ritter' R. Sato . H. Schelbert P. Schonfeld Managing Editors Prof. Dr. M. Beckmann Prof. Dr. H. P. Kunzi Brown University Universitat Zurich Providence, RI 02912/USA 8090 Zurich/Schweiz Author Gordon F. Newell Institute of Transportation Studies University of California Berkeley, CA 94720/USA ISBN-13:978-3-540-09552-1 e-ISBN-13:978-3-642-46410-2 001: 10.1007/978-3-642-46410-2 AMS Subject Classifications (1980): 60K25, 90 B22, 90-02 Library of Congress Cataloging in Publication Data Newell, Gordon Frank, 1925- Approximate behavior of tandem queues. (Lecture notes in economics and mathematical systems; 171 : Operations research) Bibliography: p. Includes index. 1. Queuing theory. I. Title. II. Series: Lecture notes in economics and mathematical systems; 171.T57.9.N486 519.8'279-20953 This work is subject to copyright. All rights are reserved, whether the whole or part of the material iis concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin Heidelberg 1979 2142/3140-543210 Preface The following monograph deals with the approximate stochastic behavior of a system consisting of a sequence of servers in series with finite storage between consecutive servers. The methods employ deterministic queueing and diffusion approximations which are valid under conditions in which the storages and the queue lengths are typically large compared with 1. One can disregard the fact that the customer counts must be integer valued and treat the queue as if it were a (stochastic) continuous fluid. In these approximations, it is not necessary to describe the detailed probability distribution of service times; it suffices simply to specify the rate of service and the variance rate (the variance of the number served per unit time). Specifically, customers are considered to originate from an infinite reservoir. They first pass through a server with service rate ~O' vari ance rate ~O' into a storage of finite capacity cl . They then pass through a server with service rate ~l' variance rate ~l' into a storage of capacity c2 ' etc., until finally, after passing through an nth server, they go into an infinite reservoir (disappear). If any jth storage become full j = 1, 2, , n , the service at the j-lth server is interrupted and, of course, if a jth storage becomes empty the jth server is inter rupted; otherwise, services work at their maximum rate. Equivalently one could have a system of servers 1, 2, ••. ,n fed by an arrival process of rate ~O ' variance rate ~O. If the storage cl is full, the arrival process is considered either to be interrupted or to throw any excess arrivals that cannot enter the full storage out of the system ("lost call") or back into the infinite source. IV The properties of the system are described in terms of the random in which D. (t) is the cumulative J number of customers to pass the jth server by time t starting from some initial state at time 0 • Chapter I first describes the general formulation of the problem. The deterministic approximation (~j 0) is then analysed leading to an ex- plicit evaluation of the D. (t) starting from an arbitrary initial state J and for arbitrary choices of the ~j and n. For sufficiently large t all servers will serve at the rate ~ .. min~. of the "bottleneck." For J ~j > 0, the stochastic properties of the Dj(t) are described in terms of their time-dependent joint probability density. This probability den- sity is shown to satisfy (approximately) a diffusion equation in n+l space variables. plus time. The density must, in addition, satisfy certain bound- ary conditions when one or more of the storages is either empty or full. Various general properties of the system of equations, such as overall service rate, marginal queue length distributions, etc., are described. Subsequent chapters will deal with solutions of the equations in whatever special cases one can obtain solutions in some ~nageable form. Chapter II will deal with the case n = I a single queue. The analysis is for arbitrary choices of the ~O' ~O' cI ' ~l' ~l and describes the time-dependent behavior of the joint distribution of DO(t) , DI(t) from an arbitrary initial state. In contrast with previous treat ments of a single server system, this analysis describes both the input and the output or equivalently the queue length and the output. In partic- ular, the results give an explicit formula for the equilibrium service rate ~ and the equilibrium variance rate of the output as a function of the storage capacity cI (and the ~O' ~O' ~l' ~l)' v Chapters III and IV will deal with equilibrium queue distributions for n = Z in the special cases ~O = ~l = ~Z ' but arbitrary cl ' Cz ' ~O ' ~l and ~Z. The joint probability density of the two queue lengths satisfies a diffusion equation inside a rectangle (sides cl ' cZ) in a two-dimensional space, but a linear transformation of coordinates will map the equilibrium distribution into a solution of Laplace's equation in a parallelogram (sub- ject to an unconventional type of boundary condition). These equations are solved through a series of conformal mappings which eventually yield a solu- tion in parametric form. Chapter III describes the formal solution. Chapter IV gives numerical evaluations of the marginal queue length distributions and the dependence of service rate ~ and Chapter V deals with the time-dependent properties of the joint proba- bility distributions of the cumulative departures DO(t) , DI(t) ,DZ(t) past servers 0, 1, and Z for a two-server system with infinite storage (c = c =(0) I Z and equal variance coefficients ~O = ~l = ~Z· It gives general solutions for this joint distribution starting from any initial state DO(O) , Dl (0) , DZ(O) or initial distribtuion of states. This is derived by image methods, but the solution requires multiple reflections over several boundaries and gives a rather unwieldy formula containing six terms, each of which involves some multiple integrals. Although the methods used can be generalized to more servers, the conclusion of this chapter is little more than "it can be done." The general results seem to be too clumsy to be of much practical use. Chapters VI and VII employ Laplace Transform and techniques similar to the Wiener-Hopf factorization to derive the joint equilibrium queue distribution for the two-server system with very large (00) storages cl ' Cz but general service rates ~O' ~l ,~Z and variance coefficients VI Chapter VI discusses the case ~O < ~l ' ~2' i.e., an input rate ~O less than the service rates of servers I and 2. The joint distribution of QI' Q2 and particularly the marginal distribution of Q2 are analyzed in some detail for the special case ~O = ~2 = 0 , ~l > 0 (regular input, regular server at 2). Properties of the queue distribution for general ~j are described but explicit solutions are obtained only for a few other special choices of the ~. , including J ~l = 0 , ~O' ~2 > 0; ~O = ~l' ~2 > 0; and ~O 0 ~l = ~2 . Com- parisons are made between the distributions of Q2 for ~O < ~l' ~2 and corresponding systems from Chapters III, IV with ci < 00 c2 = 00 = = but with the chosen so that the input rate to server 2 ~o ~l ~2 in the latter system is equal to the ~O of the former. Chapter VII deals with the case of arbitrarily large but ~l < ~O' ~2' i.e., server I is a bottleneck. One is concerned here with the joint distribution of the number of vacant storage spaces Q' I ci - QI upstream of server I and the queue Q2 downstream. The mar- ginal distributions of QI' and Q2 for cI' c2 + 00 are known to be exponential (for arbitrary ~O' ~2 > ~l and , ~.J IS) so the main emphasis is on the statistical dependences between particularly the QI' Q2' asymptotic properties for large These distributions are then used to estimate the effect of finite but large values of and The main conclusion is that the reductions in the overall service rate due to fini te and to finite are nearly additive. Chapters III, IV, VI, and VII all deal with equilibrium queue dis- tributions for a system with an input server followed by two other servers in tandem. The queues QI' Q2 behind servers I and 2 depend upon the service rates ~O' ~l' ~2' variance rates ~O' ~l' ~2 and the storages VII cl ' c2 • No practical analytic method was found for evaluating these dis- tributions accurately if are finite and the are different. Chapters III, IV deal with ~O = ~l = ~2 and cl ' c2 < 00 giving special attention to the analytic singularities at corners of the state space, and the blocking effects. Chapters VI and VII deal with ~O # ~l # ~2 but cl = c2 = 00 , giving special attention to the effect of different ~j on the shape of the queue distribution. By comparing the effects of different ~j and the effects of finite cl ' c2 ' one can, however, infer how the queue distributions vary qualitatively with all the parameters. This is probably all that one would want from an analytic formulation anyway, since, for any specific choice of the parameters, one could evaluate the distribution by simulation. Chapter VIII, Epilogue, is a commentary on how one can (usually) analyze a real tandem queueing system with many servers by identifying a critical server or a critical pair of interacting servers with finite storage. There is also a discussion of where the problem now stands and what techniques are likely to produce further advances. The research described in this monograph was supported in part by the National Science Foundation under a series of grants entitled, "Application of Mathematics to Transportation Studies." The work was done over a time span from 1974 to 1978 and was previously distributed as Research Report UCB-ITS-RR-78-3 and UCB-ITS-RR-77-l9. The typing of the manuscript was done by Inta Vodopals. Contents I. General Theory 1. Introduction 1 2. Graphical Representations and Deterministic Approximation 5 3. Motion of Holes 11 4. Diffusion Equation 15 5. Queue Length Distribution 27 6. Soft Boundaries 31 7. Moments 37 References 42 II. A Single Server 1. Diffusion Equation 43 2. Queue Dis tribution 44 3. Service Rates 47 4. Longtime Behavior of the Joint Dis tributions 49 5. Service Variances 62 6. Image Solution cl 00 67 7. Longtime Behavior cl = 00 78 8. Discussion 86 III. Equilibrium Queue Distributions Two Servers, ~O = ~l = ~2' Theory 1. Introduction 90 2. Formulation 93 3. Conformal Mappings 106 4. Marginal Distributions 110 5. Symmetry 121 x 6. Saddle Points and Singularities 124 7. One Large Storage 134 8. Expansions of the Marginal Distributions 139 References 148 IV. Equilibrium Queue Distributions, Two Servers ~O = ~l = ~2' Numerical Results 1. Introduction 149 2. Marginal Distributions for c2 = 00 150 3. Relation between c*l ' c*2 and wI' w3 171 4. Marginal Distributions c*l ' c*2 < 00 178 5. The Service Rate 189 6. Joint Distributions 208 v. Time-dependent Solutions ~O ~l 1. Introduction 218 2. Image Solution 219 3. Time-dependent Queue Distribution 229 VI. Laplace Transform Methods, Equilibrium Queue Distributions for n 1. Analysis of Transforms 231 2. Equilibrium Distributions cl c2 00 , ~O ~2 0 241 3. Numerical Evaluations 248 4. Equilibrium Distributions cl c2 00 262 5. Other Special Cases 283 6. Interpretation 304 VII. Equilibrium Queue Distributions; n 2·, ~l < ~O' ~2; cl ' c2 ->-00 1. In troduc tion 313 2. Joint Distribution for ~O = ~2 = 0 316 3. Joint Distribution for ~O' ~2 > 0 331

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.