13.1mm The publication is intended primarily for code S S a f e t y R e p o r t s S e r i e s a f users or reviewers involved in the analysis of et y severe accidents for NPPs. It is applicable mainly R e p to countries with a developing nuclear energy sec- o N o. 5 6 r t tor. It is assumed that users have some knowledge s S of severe accident phenomena and also of the use e r i of computer codes for accident analysis, although es N such users may not have been actively involved in o . 5 severe accident research or analysis activities. 6 A p p r o a c h e s a n d T o o A p p r o a c h e s a n d To o l s f o r l s f o r S e ve S e v e r e A c c i d e n t A n a l y s i s r e A c c i d e n f o r N u c l e a r P o w e r P l a n t s t A n a l y s i s f o r N u c l e a r P o w e r P l a n t s INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–101608–9 ISSN 1020–6450 08-28011_P1327_covI-IV.indd 1 2008-11-04 13:54:31 APPROACHES AND TOOLS FOR SEVERE ACCIDENT ANALYSIS FOR NUCLEAR POWER PLANTS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA PAKISTAN ALBANIA HAITI PALAU ALGERIA HOLY SEE PANAMA ANGOLA HONDURAS PARAGUAY ARGENTINA HUNGARY PERU ARMENIA ICELAND PHILIPPINES AUSTRALIA INDIA POLAND AUSTRIA INDONESIA PORTUGAL AZERBAIJAN IRAN, ISLAMIC REPUBLIC OF QATAR BANGLADESH IRAQ REPUBLIC OF MOLDOVA BELARUS IRELAND ROMANIA BELGIUM ISRAEL RUSSIAN FEDERATION BELIZE ITALY SAUDI ARABIA BENIN JAMAICA SENEGAL BOLIVIA JAPAN SERBIA BOSNIA AND HERZEGOVINA JORDAN SEYCHELLES BOTSWANA KAZAKHSTAN BRAZIL KENYA SIERRA LEONE BULGARIA KOREA, REPUBLIC OF SINGAPORE BURKINA FASO KUWAIT SLOVAKIA CAMEROON KYRGYZSTAN SLOVENIA CANADA LATVIA SOUTH AFRICA CENTRAL AFRICAN LEBANON SPAIN REPUBLIC LIBERIA SRI LANKA CHAD LIBYAN ARAB JAMAHIRIYA SUDAN CHILE LIECHTENSTEIN SWEDEN CHINA LITHUANIA SWITZERLAND COLOMBIA LUXEMBOURG SYRIAN ARAB REPUBLIC COSTA RICA MADAGASCAR TAJIKISTAN CÔTE D’IVOIRE MALAWI THAILAND CROATIA MALAYSIA THE FORMER YUGOSLAV CUBA MALI REPUBLIC OF MACEDONIA CYPRUS MALTA TUNISIA CZECH REPUBLIC MARSHALL ISLANDS TURKEY DEMOCRATIC REPUBLIC MAURITANIA UGANDA OF THE CONGO MAURITIUS UKRAINE DENMARK MEXICO UNITED ARAB EMIRATES DOMINICAN REPUBLIC MONACO UNITED KINGDOM OF ECUADOR MONGOLIA GREAT BRITAIN AND EGYPT MONTENEGRO NORTHERN IRELAND EL SALVADOR MOROCCO UNITED REPUBLIC ERITREA MOZAMBIQUE ESTONIA MYANMAR OF TANZANIA ETHIOPIA NAMIBIA UNITED STATES OF AMERICA FINLAND NEPAL URUGUAY FRANCE NETHERLANDS UZBEKISTAN GABON NEW ZEALAND VENEZUELA GEORGIA NICARAGUA VIETNAM GERMANY NIGER YEMEN GHANA NIGERIA ZAMBIA GREECE NORWAY ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. SAFETY REPORTS SERIES No. 56 APPROACHES AND TOOLS FOR SEVERE ACCIDENT ANALYSIS FOR NUCLEAR POWER PLANTS INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2008 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Sales and Promotion, Publishing Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books © IAEA, 2008 Printed by the IAEA in Austria October 2008 STI/PUB/1327 IAEA Library Cataloguing in Publication Data Approaches and tools for severe accident analysis for nuclear power plants. - Vienna : International Atomic Energy Agency, 2008. p. ; 24 cm. - (Safety reports series, ISSN 1020-6450 ; no. 56) STI/PUB/1327 ISBN 978–92–0–101608–9 Includes bibliographical references. 1. Nuclear power plants -- Safety measures. — 2. Nuclear power plants -- Accidents. I. International Atomic Energy Agency. II. Series. IAEAL 08–00537 FOREWORD Severe accidents at nuclear power plants involve very complex physical phenomena that take place sequentially during various stages of accident progression. Computer codes are essential tools for understanding how the reactor and its containment might respond under severe accident conditions. The codes are used as a tool to support engineering judgement, based on which specific measures to mitigate the effects of severe accidents are designed. They are also used to determine accident management strategies and for probabilistic safety assessment. It is very important to use these sophisticated tools in accordance with certain rules derived from knowledge accumulated worldwide. Severe accidents are addressed in the IAEA Safety Standards Series: in the Safety Requirements for Safety of Nuclear Power Plants (Safety Standards Series Nos NS-R-1 and NS-R-2) and the Safety Guide on Safety Assessment and Verification for Nuclear Power Plants (Safety Standards Series No. NS-G- 1.2). These recommend that severe accident sequences be identified, using a combination of engineering judgement and probabilistic methods, to determine those sequences for which reasonably practicable preventive or mitigatory measures should be evaluated and potentially implemented. The IAEA Safety Report on Accident Analysis for Nuclear Power Plants (Safety Reports Series No. 23) provides practical guidance for performing accident analysis based on present good practices worldwide. All the steps required to perform such an analysis are covered in the report, for example, the selection of initiating events, acceptance criteria, computer codes and modelling assumptions, preparation of input data and presentation of calculation results. It covers both design basis accidents and beyond design basis accidents, including severe accidents, however, only basic guidance is provided for severe accident analysis. Therefore, a specific publication on accident analysis for severe accidents is needed and is provided through this publication. The objective of this publication is to provide a set of suggestions, using current good practices worldwide, on how to perform deterministic analyses of severe accidents using the available computer codes. This publication provides a description of factors important to severe accident analysis, an overview of severe accident phenomena and the current status in their modelling, categorization of available computer codes, and differences in approach for various applications of severe accident analysis. The report covers both the in-vessel and ex-vessel phases of severe accidents, and is consistent with the IAEA Safety Report on Accident Analysis for Nuclear Power Plants. It can be considered a complementary report specifically devoted to the analysis of severe accidents. Although the publication does not explicitly differentiate between various reactor types, it has been written essentially on the basis of the available knowledge and databases developed for light water reactors. Its application is, therefore, oriented mainly towards pressurized water reactors and boiling water reactors and, to a more limited extent, Russian WWER type reactors and pressurized heavy water reactors. The IAEA officer responsible for this publication was S. Lee of the Division of Nuclear Installation Safety. EDITORIAL NOTE Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. CONTENTS 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Objectives and scope of the report . . . . . . . . . . . . . . . . . . . . . . . 4 1.3. Structure of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. IMPORTANT IN-VESSEL PHENOMENA . . . . . . . . . . . . . . . . . . . 5 2.1. Thermohydraulics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1. Natural circulation of steam and non-condensable gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2. Reflooding of hot, damaged cores . . . . . . . . . . . . . . . . . 8 2.2. Oxidation of core materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1. Zircaloy oxidation in steam . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2. Oxidation of B C in steam . . . . . . . . . . . . . . . . . . . . . . . . 12 4 2.3. Loss of core geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1. Ballooning and rupture of the cladding . . . . . . . . . . . . . 13 2.3.2. Liquefaction and relocation of control and structural materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.3. Liquefaction and relocation of zircaloy cladding . . . . . 14 2.3.4. Liquefaction and slumping of the fuel . . . . . . . . . . . . . . 15 2.3.5. Relocation of molten pool materials into the lower plenum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.6. Fragmentation of embrittled core materials . . . . . . . . . 17 2.4. Heating and failure of the lower head . . . . . . . . . . . . . . . . . . . . 18 2.5. Other factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5.1. Impact of alternative core/vessel designs . . . . . . . . . . . . 19 2.5.2. Recriticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5.3. Fission product release and transport . . . . . . . . . . . . . . . 22 3. IMPORTANT EX-VESSEL PHENOMENA . . . . . . . . . . . . . . . . . . 23 3.1. Containment thermohydraulics . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.1. Sources and sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2. Pressurization and depressurization . . . . . . . . . . . . . . . . 26 3.1.3. Gas/water interflows between containment compartments (transport) . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.4. Heat and mass transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.5. Hydrogen issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2. Aerosol and iodine behaviours . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.1. Aerosol behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.2. Iodine behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3. Melt behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.1. Melt release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.2. Direct containment heating . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.3. Melt coolability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.4. Fuel coolant interactions . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.5. Molten corium concrete interaction . . . . . . . . . . . . . . . . 40 3.3.6. Relocation of melt and spreading . . . . . . . . . . . . . . . . . . 42 3.3.7. Interactions with refractory and sacrificial materials . . 43 3.4. Selected engineering systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.1. Systems impacting transport . . . . . . . . . . . . . . . . . . . . . . 43 3.4.2. Systems impacting containment leakages . . . . . . . . . . . 44 3.4.3. Safety engineering systems . . . . . . . . . . . . . . . . . . . . . . . 44 4. STATUS IN THE MODELLING OF IN-VESSEL PHENOMENA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1. Modelling of individual phenomena . . . . . . . . . . . . . . . . . . . . . . 45 4.1.1. Thermohydraulics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.2. Heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.1.3. Fission and decay heat . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.1.4. Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.1.5. Material interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.1.6. Material relocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.7. Lower plenum behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.1.8. Fission products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2. Implications of modelling options and categories of codes. . . . 63 4.3. Uncertainties in modelling severe accident phenomena. . . . . . 65 4.3.1. Well understood phenomena (high level of knowledge) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.2. Phenomena not fully understood (medium level of knowledge) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.3. Phenomena only partially understood (low level of knowledge) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5. STATUS IN THE MODELLING OF EX-VESSEL PHENOMENA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1. Containment thermohydraulics . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1.1. Sources and sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.2. Pressurization and depressurization . . . . . . . . . . . . . . . . 70 5.1.3. Gas/water cell interflows . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.1.4. Heat and mass transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.1.5. Hydrogen issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2. Aerosol and iodine behaviours . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.1. Aerosol behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.2. Iodine behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3. Melt behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3.1. Melt release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3.2. Direct containment heating . . . . . . . . . . . . . . . . . . . . . . . 85 5.3.3. Coolability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3.4. Fuel coolant interactions . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.3.5. Molten corium concrete interaction . . . . . . . . . . . . . . . . 90 5.3.6. Relocation of melt and spreading . . . . . . . . . . . . . . . . . . 92 5.3.7. Interactions with refractory and sacrificial materials . . 93 5.4. Modelling of selected engineering systems . . . . . . . . . . . . . . . . 94 5.4.1. General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.4.2. Systems impacting transport . . . . . . . . . . . . . . . . . . . . . . 94 5.4.3. Systems impacting containment leakages . . . . . . . . . . . 95 5.4.4. Safety engineering systems . . . . . . . . . . . . . . . . . . . . . . . 95 6. USE OF COMPUTER CODES FOR THE ANALYSIS OF SEVERE ACCIDENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.1. Classification of severe accident computer codes . . . . . . . . . . . 97 6.1.1. Fast running integral codes . . . . . . . . . . . . . . . . . . . . . . . 98 6.1.2. Detailed codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.3. Special (dedicated) codes . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.4. Capability assessment of present generation computer codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2. Requirements for modelling severe accident phenomena . . . . 101 6.2.1. General requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2.2. Required level of sophistication of models for different applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3. Verification and validation of computer codes . . . . . . . . . . . . . 107 6.4. User qualification and user effect on accident analysis . . . . . . 113
Description: