ebook img

Analysis and Synthesis of Nonlinear Control Systems: A Convex Optimisation Approach PDF

349 Pages·2022·6.282 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis and Synthesis of Nonlinear Control Systems: A Convex Optimisation Approach

Studies in Systems, Decision and Control 408 Miguel Bernal Antonio Sala Zsófia Lendek Thierry Marie Guerra Analysis and Synthesis of Nonlinear Control Systems A Convex Optimisation Approach Studies in Systems, Decision and Control Volume 408 SeriesEditor JanuszKacprzyk,SystemsResearchInstitute,PolishAcademyofSciences, Warsaw,Poland The series “Studies in Systems, Decision and Control” (SSDC) covers both new developments and advances, as well as the state of the art, in the various areas of broadly perceived systems, decision making and control–quickly, up to date and withahighquality.Theintentistocoverthetheory,applications,andperspectives on the state of the art and future developments relevant to systems, decision making,control,complexprocessesandrelatedareas,asembeddedinthefieldsof engineering,computerscience,physics,economics,socialandlifesciences,aswell astheparadigmsandmethodologiesbehindthem.Theseriescontainsmonographs, textbooks, lecture notes and edited volumes in systems, decision making and control spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other. Of particular valuetoboththecontributorsandthereadershiparetheshortpublicationtimeframe and the world-wide distribution and exposure which enable both a wide and rapid disseminationofresearchoutput. IndexedbySCOPUS,DBLP,WTIFrankfurteG,zbMATH,SCImago. AllbookspublishedintheseriesaresubmittedforconsiderationinWebofScience. Moreinformationaboutthisseriesathttps://link.springer.com/bookseries/13304 · · · Miguel Bernal Antonio Sala Zsófia Lendek Thierry Marie Guerra Analysis and Synthesis of Nonlinear Control Systems A Convex Optimisation Approach MiguelBernal AntonioSala DepartmentofElectricalandElectronics InstitutoUniversitariodeAutomáticae Engineering InformáticaIndustrial SonoraInstituteofTechnology UniversitatPolitècnicadeValència Obregon,Sonora,Mexico Valencia,Spain ZsófiaLendek ThierryMarieGuerra DepartmentofAutomation DepartmentofAutomationandControl, TechnicalUniversityofCluj-Napoca LAMIHUMRCNRS8201 Cluj-Napoca,Romania UniversitéPolytechniqueHauts-de-France Valenciennes,France ISSN2198-4182 ISSN2198-4190 (electronic) StudiesinSystems,DecisionandControl ISBN978-3-030-90772-3 ISBN978-3-030-90773-0 (eBook) https://doi.org/10.1007/978-3-030-90773-0 MATLABisaregisteredtrademarkofTheMathWorks,Inc.Seehttps://www.mathworks.com/trademarks foralistofadditionaltrademarks. MathematicsSubjectClassification: 34H05, 37N35, 93B36, 93B51, 93C10, 93C35, 93D05, 93D09, 93D20,93D23,93D25,93D30,52A41,90C25,90C22,90C23 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 Introduction ................................................... 1 References ..................................................... 3 2 ProblemstoBeSolvedandScopeoftheBook ..................... 5 2.1 SomeUsefulClassesofDynamicalSystems .................... 5 2.2 ControlObjectives .......................................... 8 2.3 Models ................................................... 11 2.3.1 ModelApproximations ............................... 12 2.3.2 ModelswithConvexStructure ......................... 13 2.4 TheConvex-StructureApproachtoControl:Motivation .......... 18 2.5 SummaryandConclusions ................................... 19 References ..................................................... 19 3 ModellingviaConvexStructures ................................ 23 3.1 Introduction ............................................... 23 3.2 Takagi–SugenoModels ...................................... 24 3.2.1 TheSectorNonlinearityApproach ...................... 27 3.2.2 ApproximateModels ................................. 44 3.2.3 PiecewiseandAffineModels .......................... 56 3.3 PolynomialRepresentations .................................. 58 3.4 DescriptorRepresentations .................................. 64 3.5 TheLinearFractionalTransformationStructure ................. 76 3.5.1 LFTinPhysicalModelling ............................ 78 3.5.2 StructureoftheUncertainty/NonlinearityBlockΔ ........ 85 3.5.3 RelationshipwithDescriptorModels ................... 87 3.5.4 UncertainModels .................................... 87 3.6 SummaryandConclusions ................................... 93 References ..................................................... 93 4 StabilityAnalysis ............................................... 97 4.1 Introduction ............................................... 97 4.2 QuadraticStabilityofTSModels ............................. 100 v vi Contents 4.2.1 TheContinuous-TimeCase ............................ 102 4.2.2 TheDiscrete-TimeCase .............................. 108 4.2.3 Shape-DependentQuadraticStability ................... 113 4.3 PiecewiseLyapunovFunctions ............................... 114 4.3.1 TheContinuous-TimeCase ............................ 114 4.3.2 TheDiscrete-TimeCase .............................. 119 4.4 Parameter-DependentLyapunovFunctions ..................... 121 4.4.1 TheContinuous-TimeCase:BoxLPVModel ............ 122 4.4.2 The Continuous-Time Case for Takagi–Sugeno Models ............................................. 123 4.4.3 TheDiscrete-TimeCaseforTakagi–SugenoModels ...... 131 4.5 StabilityofPolynomialModels ............................... 141 4.5.1 LocalityIssuesinthePolynomialApproach ............. 145 4.6 StabilityofDescriptorModels ................................ 146 4.7 QuadraticStabilityofLFTSystems ........................... 153 4.7.1 Non-AugmentedLMIs ................................ 153 4.7.2 Multiplier-BasedConditions ........................... 154 4.7.3 ChoiceofMultipliers ................................. 156 4.7.4 Relation to Polytopic/TS Quadratic Stability Conditions .......................................... 157 4.8 Non-QuadraticStabilityofLFTModels ....................... 159 4.9 SummaryandConclusions ................................... 163 References ..................................................... 163 5 StateFeedback,Performance,andRobustness .................... 169 5.1 Introduction ............................................... 169 5.2 QuadraticStabilisationofTSModels .......................... 169 5.3 Parameter-DependentLyapunovFunctions ..................... 179 5.3.1 TheContinuous-TimeCase ............................ 180 5.3.2 TheDiscrete-TimeCase .............................. 183 5.4 StabilisationofPolynomialModels ........................... 190 5.5 StabilisationofDescriptorModels ............................ 191 5.6 PerformanceSpecificationsandRobustness .................... 198 5.6.1 ConstraintsontheSystemInputandOutput .............. 198 5.6.2 H∞Attenuation ..................................... 202 5.6.3 RobustControl ...................................... 210 5.7 ApplicationCaseStudy:WheelchairSwing-Up ................. 217 5.8 SummaryandConclusions ................................... 223 References ..................................................... 223 6 ObservationandOutputFeedback ............................... 227 6.1 Introduction ............................................... 227 6.2 ObserverDesign ........................................... 227 6.2.1 ObserverDesignforTSModels ........................ 228 6.2.2 ObserverDesignforDescriptorModels ................. 241 Contents vii 6.2.3 Observer Design: Unmeasurable Membership Functions ........................................... 251 6.3 Observer-BasedStabilisation ................................. 255 6.4 OutputFeedbackforLFTModels ............................. 263 6.4.1 Closed-LoopEquation ................................ 265 6.4.2 ConvexificationoftheSynthesisConditions ............. 267 6.4.3 ControllerReconstruction ............................. 270 6.5 Application Case Study: Sitting Control for People withSpinalInjury .......................................... 274 6.6 Application Case Study: Observer-Based Control forWheelchairs ............................................ 282 6.7 SummaryandConclusions ................................... 290 References ..................................................... 291 7 ConclusionsandPerspectives .................................... 295 AppendixA:UsefulMatrixandNormResults ....................... 297 AppendixB:LyapunovStability .................................... 317 AppendixC:ConvexOptimisationTools ............................. 323 AppendixD:ConvexSumRelaxations ............................... 331 Index ............................................................. 343 Notation and Abbreviations Conventions Thefollowingconventionsareusedthroughoutthebook: • The standard control-theoretic conventions are used. For instance, the state is denoted by x, the control action by u, the process dynamics by f, and the measurementsby y. • All the vectors are column vectors. The transpose of a vector is denoted by the superscriptT.Forinstance,thetransposeofx isxT. • Boldfacenotationisusedforvectororvectorfunctions,e.g. f isavectorfunction. SymbolsandNotation GeneralNotation I Identitymatrix. 0 Zeromatrix. (∗) Hermitianofamatrix A+(∗)= A+ AT. A>0 Aisapositive-definitematrix. (cid:2)x Estimatedvalueofthesignalx. x˙ Derivativeofthesignalx. X Domainwherethevariablex isdefined. C Domainwherethevariablezisdefined. (cid:4)·(cid:4) Euclideannormofavectororinducednormofamatrix. γ,μ Positiveconstantsusedasbounds. i, j,k,l Indices. ix x NotationandAbbreviations DynamicSystems x Statevector. u Inputvector. y Outputvector. d Disturbance/unknowninput. e Errorvector(observation/tracking). n Dimensionofthestatevector. m Dimensionoftheinputvector. q Dimensionoftheoutputvector. f Statetransitionfunction;generalnonlinearvectorfunction. h Measurementfunction;generalnonlinearvectorfunction. A Statetransitionmatrix(linearsystems). B Inputmatrix(linearsystems). C Measurementmatrix(linearsystems). a Affineterminthestateequation(linearsystems). c Affinetermintheoutputequation(linearsystems). t Time(realforcontinuous-timesystems,integerfordiscrete-timeones). TSModels z ithschedulingvariable. i z Schedulingvector. p Dimensionoftheschedulingvector. wj Weightingfunctionofz . ij j h Membershipfunctionof z. i i, j Indicesforvertexmodels. r Numberofvertexmodels. A Statematrixoftheithvertexmodel. i B Inputmatrixoftheithvertexmodel. i C Measurementmatrixoftheithvertexmodel. i a Affinetermintheithvertexmodel. i c Affinetermintheithvertexmeasurementmodel. i P Lyapunov’smatrix. V Lyapunov’sfunction. K Standardobservergainoftheithvertexmodel. i F Standardcontrollergainoftheithvertexmodel. i A(x) Matrixfunction.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.