ebook img

An Introduction to Quantitative Finance PDF

192 Pages·2013·1.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introduction to Quantitative Finance

An Introduction to Quantitative Finance STEPHEN BLYTH ProfessorofthePracticeofStatistics,HarvardUniversity ManagingDirector,HarvardManagementCompany 3 3 GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©StephenBlyth2014 Themoralrightsoftheauthorhavebeenasserted FirstEditionpublishedin2014 Impression:1 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressControlNumber:2013941968 ISBN978–0–19–966658–4(hbk.) ISBN978–0–19–966659–1(pbk.) Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY ForAthena,SophiaandAnita This page intentionally left blank PREFACE ThisbookisbasedonAppliedQuantitativeFinanceonWallStreet,anupperlevelunder- graduatestatisticscoursethatIhavetaughtforseveralyearsatHarvardUniversity.The studentstakingtheclassaretypicallyundergraduateconcentratorsinmathematics,applied mathematics,statistics,physics,economicsandcomputerscience;master’sstudentsinstat- istics;orPhDstudentsinquantitativedisciplines.Nopriorexposuretofinanceorfinancial terminologyisassumed. Many students who are considering a career in finance study this material to gain an insightintothemachineryoffinancialengineering.However,someofmystudentshave nointerestinafinancialcareer,butsimplyenjoyprobabilityandaremotivatedtoexplore oneofitscompellingapplicationsandinvestigateanewwayofthinkingaboutuncertainty. Othersmaybecuriousaboutquantitativefinanceduetotheregulatoryandpolicy-making attentiontheindustryhasreceivedsincethefinancialcrisis. Thebookconcernsfinancialderivatives,aderivativebeingacontractortrade(orbet, depending on your prejudices) between two entities or counterparties whose value is a function of—derives from—the price of an underlying financial asset. We define vari- ous derivative contracts and describe the quantitative and probabilistic tools that were developedtoaddressissuesencounteredbypractitionersasmarketsdeveloped.Thebook issteepedinpractice,asthemethodsweexploreonlydevelopedtosuchanextentbecause themarketsthemselvesgrewexponentiallyfast.Whilstwedeveloptheoryhere,thisbookis nottheoreticalinthe‘existingonlyintheory’sense.Theproductsweconsideraretradedin significantsizeandhavemeaningfuleconomicimpact. Probability provides the key tools for analysing and valuing derivatives. The price of a stock or a bond at some future time is a random variable. The payout of a derivative contractisafunctionofarandomvariable,andthusitselfanotherrandomvariable.We showthatthepriceoneshouldpayforaderivativeiscloselylinkedtotheexpectedvalue ofitspayout,andthatsuitablyscaledderivativepricesaremartingales,whicharefunda- mentallyimportantobjectsinprobabilitytheory.Thebookfocuseslargelyoninterestrate derivatives—wheretheunderlyingfinancialvariableisaninterestrate—forthreereasons. First,theyconstitutebyfarthelargestandmosteconomicallyimportantderivativemar- ketintheworld.Secondly,theyaretypicallythemostchallengingmathematically.Thirdly, theyhavegenerallybeenlesswelladdressedbyfinancetextbooks. Backgroundandmotivation The structure and content of the book are shaped by the experiences of my career in bothacademiaandonWallStreet.IreadmathematicsasanundergraduateatCambridge UniversitywhereIwasfortunatetobetaughtprobabilitybybothFrankKellyandDavid vi | preface Williams.IobtainedaPhDinStatisticsatHarvardUniversitywithKjellDoksumbefore teaching for two years at Imperial College London, where I lectured the introductory probabilitycourseformathematicsundergraduates. MymovetoWallStreetwascatalysedindirectlybyPresidentClinton’sdecisiontocan- celthesuperconductingsupercolliderin1993.TwoHarvardhousemates,boththeoretical physicists,sawtheacademicjobmarketforphysicistscollapseovernightandbothquickly foundemploymentatGoldmanSachsinNewYork.Theirassertionthatderivativemar- kets(whateverinfacttheywere)were‘prettyinteresting’andmathematicallychallenging convincedmetocontemplateamovefrommynascentacademiccareer. IstartedatHSBCinLondon,hireddirectlybyaCambridgePhDmathematician.On myfirstdayatworkIwastaskedtocalculatetheexpectedvalueofafunctionofbivariate normalrandomvariables.ImovedsubsequentlytoMorganStanleyinNewYorkwhereI becamemanagingdirectorandthemarketmakerforUSinterestrateoptions.Throughout mystintatMorganStanleyIworkedwithanotherCambridgemathematician.Together wedevelopedatrainingprogramfornewanalysts,motivatedbymathematicalandprob- abilisticchallengesandsubtletiesweencounteredintherapidlydevelopinginterestrate optionsmarketsofthelate1990s.Severaloftheproblemsfromthatmini-coursehavefound their way into this book. Indeed much of the theory I develop is motivated by a desire toprovideasuitablyrigorousyetaccessiblefoundationtotackleproblemsIencountered whilst trading derivatives. This fundamental motivation led me to create the course at Harvardandsubsequentlydevelopthisbook,whichIbelievecombinesanunusualblendof derivativestradingexperienceandrigorousacademicbackground. AfteraspellinLondonrunninganinterestrateproprietarytradinggroupatDeutsche Bank, I rejoined Harvard in 2006 where I currently wear two hats: head of public mar- ketsattheHarvardManagementCompany,thesubsidiaryoftheuniversityresponsiblefor managingtheendowment;andProfessorofthePracticeofstatisticsatHarvardUniversity, whereIteachthecourse.MyroleattheendowmentincludesresponsibilityforHarvard’s investment activities across public bond, equity and commodity markets. This ongoing presenceattheheartoffinancialmarkets—Icontinuetotradeeachdayderivativecontracts explainedinthetext—meansthatthecourse,andthusIhopethebook,retainsimmediacy toitsfield.Inparticular,thefinancialcrisisof2008–2009challengedmanybasicfound- ationalassumptionsbothacademicsandpractitionershadtakenforgrantedandIdetail severaloftheseintheexposition,somesurprisinglyearly. The Harvard statistician Arthur Dempster made the distinction between ‘procedural’ statistics,involvingtheroteapplicationofproceduresandmethods,and‘logicist’statist- icsinwhichreasoningabouttheproblemathand—usingsubject-matterknowledgeand judgmentinadditiontoquantitativeexpertise—playsacentralrole.Thisbookiswrittenin thelogicisttradition,interweavingexperienceandjudgmentfromtherealworldoffinance withthedevelopmentofappropriatequantitativetechniques. Itisoftennotobvioustoanoutsiderwhichissuesareparticularlyimportanttotraders andinvestorsintheWallStreetderivativemarkets.Whilsteverythinginthisbookistosome extentmotivatedbythepracticalworld,wehighlightareaswherethedegreeofmarketrel- evanceisnotimmediatelyapparent.Wealsoincludemarketanecdotesandtalesfromthe Streettoprovideinsightsandrichnessintothematerial. preface | vii ThisbookhasbeenmotivatedbyanddistilledfrommyexperienceonWallStreet,and alsobymyloveforprobability.Inadditiontowantingtounderstandelementsofquant- itativefinanceinpractice,studentsmaywishtoreadthebooksimplybecausetheyhave enjoyedtheirintroductiontoprobabilityandhaveadesiretoseehowitcanbeapplied. Whilst there are many ways to approach financial mathematics, I find the probabilistic routebothappealingandfulfilling.Therearehighlyintuitiveelementstothetheory,for examplepricesbeingexpectedvalues.Furthermore,weintroduceinastraightforwardman- ner powerful concepts such as numeraires and martingales that drive much of modern theory, and discover that there are subtleties in various unexpected places that demand preciseandnon-trivialunderstanding. Prerequisites Thesoleprerequisiteformasteringthematerialinthisbookisasolidintroductoryunder- graduatecourseinprobability(representedbyStatistics110atHarvard,PartIAProbability atCambridgeUniversity,orProbability&StatisticsIatImperialCollege).Familiarityis requiredwith:discreteandcontinuousrandomvariablesanddistributions;expectation,in particularexpectationofafunctionofarandomvariable;conditionalexpectation;thebino- mialandnormaldistributions;andanelementaryversionofthecentrallimittheorem.The single-variablecalculustypicallyassociatedwithsuchacourse—integrationbyparts,chain rulefordifferentiationandelementaryTaylorseries—isusedatseveralpoints.Exercisesat theendofthisprefacegiveasenseoftheprobabilityprerequisite. Thebookisotherwiseself-containedandinparticularrequiresnoadditionalpreparation orexposuretofinance.Thenecessaryfinancialterminologyisintroducedandexplainedas required.Itellmystudentsthattheedificeofquantitativefinancewaslargelybuiltbypion- eersfromacademicphysicsormathematicswhoenteredWallStreetwithnoknowledgeof financeandhavingreadnofinancebooks,andwhostillhavenot. Thisisnotabookoneconomics.Therearemanyexcellenteconomicstextsoncapital markets,corporatefinance,portfoliotheoryandrelatedmatters,whichcomplementthis material.However,derivativemarketsareaworldlargelypopulatedbytradersandmath- ematicians,noteconomists.Noristhisabookontimeseriesmethodsorprediction.Aswe seeearlyon,derivativepricing—eventhatconcerningthepriceofaforwardcontractwhich isanexchangeofanassetinthefuture—islargelyunrelatedtoprediction. The mathematical prerequisite is modest and no more extensive than that for an introductoryundergraduateprobabilitycourse,althoughadeptnessatlogicalquantitative reasoningisimportant.Whilstwebuildanappropriatelyrigorousbaseforourresults,this isnotatheoreticalmathematicsbook.Bydevelopingmostofourtheoryusingdiscrete-time methods, we can address important issues in finance without exposure to stochastic processes,Itocalculus,partialdifferentialequations,MonteCarloorothernumericalmeth- ods,allofwhichplayimportantrolesincontinuous-timefinancialmathematics.Weraise signpoststoareasoffurtherstudyintheroughguidetocontinuoustimethatconcludesthe book. viii | preface IhavenecessarilyhadtoberuthlesswithmaterialIhaveexcludedinordertokeepthe bookappropriatetoaone-semestercourseofapproximately33lecturehours.Thebook isselectiveratherthanencyclopaedicandmovesatalivelypace.Thisenablesstudentsto beexposedtopowerfultheoryandsubstantiveproblemsinonesemester.Throughoutthe bookIraisesignpoststomoreadvancedtopicsandtodifferentapproachestothematerial which naturally arise from the exposition. Even an encyclopaedic tome cannot cover all dimensionsofderivativemarketsandassociatedtheory. Outline The book is organized in five parts. The first, short part contains some preliminaries regardinginterestratesandzerocouponbonds,andaverybriefsketchofassets. ThebulkofthematerialiscontainedinPartsII-IV.InPartII,wedefineandexplore basicderivativeproductsincludingforwards,swapsandoptions.Ourfirstderivative—the forwardcontract—isintroducedandweconsidermethodsforvaluationandpricingwhich wediscoverdonotdependonanyprobabilisticmodelling.Recentviolationsoftraditional assumptions during the financial crisis are soon encountered. We introduce elementary interestratederivatives,suchasforwardrateagreements(FRAs)andswaps,anddefine futures,thefirstcontractwhosepricedependsondistributionalassumptionsoftheunderly- ingasset.Westateformallytheno-arbitrageprinciple,afoundationofquantitativefinance, which makes precise the arguments to which we have already appealed. Recent empir- ical challenges to the principle of no-arbitrage manifested during the financial crisis are discussed.Wethenintroduceanddefinecallandputoptions,keybuildingblocksofmod- ernderivativemarkets.Weinvestigateoptionpropertiesandestablishmodel-independent bounds on their price. We also review options on forwards, an area that can still cause puzzlementonWallStreet. Part III focuses on the key pricing arguments of replication and risk-neutrality. We formalizeargumentsregardingreplicationandhedgingonabinomialtree,anddefinerisk- neutral valuation in this setting. We show that prices are appropriately scaled expected values under the risk-neutral probability distribution, a result which leads to the funda- mentaltheoremofassetpricingforthebinomialtree,themostpowerfulresultofthebook. Introducinginanaturalmannertheconceptsofnumeraireandmartingale,wegiveageneral formofthefundamentaltheorem,whichstatesthatno-arbitrageisequivalenttotheratios ofpricestoanumerairebeingmartingales.Bridginginasimplemannertocontinuoustime, wetakelimitsusingthecentrallimittheoremandmovetoacontinuouscasewhereexpect- ationunderalognormaldensityimmediatelygivestheBlack–Scholesformula.Wereview itspropertiesandintroducetheconceptsofdeltaandvega.Thekeydualitybetweenoption pricesandprobabilitydistributionsisthenexploredinseveralways. PartIVdevelopstheunderstandingofinterestrateoptions,thelargest,mostimportant andmostmathematicallychallengingofoptionsmarkets.Nobookcoversthematerialpar- ticularlywellandthefabricofthesemarketsistypicallyonlyseenclearlybyitspractitioners. Weintroduceandvalueinterestratecaps,floorsandswaptions,usinganelegantchoiceof numeraire.WethendefineBermudanswaptionsandderivearbitrageboundsfortheirvalue, preface | ix andconstructtradesusingcancellableswaps.Twofurthertopicsininterestrateoptionsare discussed:libor-in-arrearsandgeneralconvexitycorrections,inparticularthedetailsofone ofthegreattradesinderivativeshistory;andabriefdescriptionoftheBGMmodelandits volatilitysurfaces,whichunderliesmuchofcurrentinterestratemodelling. IntheconcludingPartV,weprovideabriefintroductorysketchofthecontinuous-time analogueofthetheorydevelopedinthebook,andraisesignpoststothepartialdifferential equationapproachtomathematicalfinance. Thebookincludessubstantivehomeworkproblemsineachchapter(otherthanPartV) whichillustrateandbuildonthematerial.Theaimistomakethebookfulfilling,challenging andentertaining,andtoconveytheimmediacyandpracticalcontextofthematerialwe cover. .................................................................................................................... exercises Thefollowingexercisesprovideanindicationofthelevelofprobabilityproficiencythatis requiredtomasterthematerialinthisbook. 1. Thenormaldistributionandexpectation LetX ∼N(μ,ψ2)andKbeaconstant.Calculate (a) E(I{X >K})whereIistheindicatorfunction. (b) E(max{K–X,0}). Hint Use(K–X)=(K–μ)–(X–μ). (c) E(etX). Leaveanswerswhereappropriateintermsofthenormalcumulativedistributionfunc- tion(cid:3)(·). Note Inthelanguageofderivatives(a)isessentiallythepriceofadigitalcalloption and(b)isthepriceofaputoption.WeencountertheseinChapter7. 2. Thelognormaldistribution ArandomvariableY issaidtobelognormallydistributedwithparametersμandσ if logY ∼N(μ,σ2).WesometimeswriteY ∼lognormal(μ,σ2). (a) UsingyouranswertoQuestion1(c),calculateE(Y)andVar(Y). (b) Supposeμ=log f – 1σ2foraconstantf >0.CalculateE(Y)andshowthat 2 Var(Y)=f2σ2(1+ σ2 + σ4 + higherorderterms). 2 6

Description:
The worlds of Wall Street and The City have always held a certain allure, but in recent years have left an indelible mark on the wider public consciousness and there has been a need to become more financially literate. The quantitative nature of complex financial transactions makes them a fascinatin
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.