ebook img

An idealized model for dust-gas interaction in a rotating channel PDF

0.43 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An idealized model for dust-gas interaction in a rotating channel

000,000–000(0000) Printed5February2008 (O*kLATEXstylefilev2.2) An idealized model for dust-gas interaction in a rotating channel ⋆ O.M. Umurhan , DepartmentofAstronomy,CityCollegeofSanFrancisco,SanFrancisco,CA94112,USA DepartmentofGeophysicsandPlanetarySciences,Tel–AvivUniversity,Israel DepartmentofPhysics,Technion-IsraelInstituteofTechnology,32000Haifa,Israel 7 0 0 5February2008 2 n a ABSTRACT J A2D model representing the dynamical interaction ofdustand gasin aplanetary channel is explored. Thetwo 1 componentsaretreatedasinterpenetrating fluidsinwhichthegasistreatedasaBoussinesqfluidwhilethedustis 1 treatedaspressureless.Theonlycouplingbetweenbothfluidstatesiskinematicdrag.Thechannelgasexperiencesa temperaturegradientinthespanwisedirectionanditisadversetheconstantforceofgravity.Thelattereffectsonly 2 thegasandnotthedustcomponentwhichisconsideredtofreefloatinthefluid.Thechannelisalsoconsideredon v anf-planesothatthebackgroundvorticitygradientcancauseanyemergingvortexstructuretodriftlikeaRossby 7 wave.Alineartheoryanalysis isexploredandanonlinearamplitude theoryisdeveloped fordisturbances ofthis 1 arrangement. Itisfoundthat the presence ofthe dustcanhelp generate andshape emerging convection patterns 2 anddynamicsinthegassolongasthestateofthegasexceedsasuitablydefinedRayleighnumberappropriatefor 1 describingdrageffects.Inthelinearstagethedustparticlescollectquicklyontositesinthegaswherethevorticityis 0 minimal,i.e.wherethedisturbancevorticityisanticylonicwhichisconsistentwithpreviousstudies.Thenonlinear 7 theoryshowsthat,inturn,thelocalenhancementofdustconcentrationinthegaseffectsthevigoroftheemerging 0 convectiverollbymodifyingtheeffectivelocalRayleighnumberofthefluid.Itisalsofoundthatwithoutthef-plane / approximationbuiltintothemodelthedynamicsthereisanalgebraicrunawaycausedbyunrestrainedgrowthinthe h dustconcentration.ThebackgroundvorticitygradientforcestheconvectiverolltodriftlikeaRossbywaveandthis p causesthedustconcentrationenhancementstonotrunaway. - o 1 INTRODUCTIONANDSUMMARYOFRESULTS removedsufficientlyoroneisinvestigatingthedynamicstakingplacenear r t thediscmidplane, where planetesimals arelikely tobestrongly concen- s Therehasbeengrowinginterestinrecentyearsinthepossibilitythatpersis- trated. a tentvortexstructuresinprotoplanetarydiscsmaybethesiteswhereplan- Asathoughtexperiment,supposethegasinamodelshearingenvi- : etesimalsareformed(Barge&Sommeria,1995,Tangaetal.,1996,Bracco v ronmentdevelops,throughsometypeofdynamicalinstability,aseriesof etal,1999,Barranco&Marcus,2000,Barranco&Marcus,2006).These i long-livedvortexstructures.Inadditiontoobviouslyeffectingthedusttra- X investigators haveputforththescenarioinwhichadisc,ladenwithdust, jectoryinthewayitisusuallyenvisioned,itseemsreasonabletosuppose supportssometypeoflong-lastingvortex(drivenbysomeunspecifiedexci- r thatthepresenceofdustwoulddynamicallyinfluence,becauseoftheirmu- a tationmechanism,exceptforKlahr&Bodenheimer,2003andBarranco& tualdynamiccoupling(e.g.kinematicdrag),themannerinwhichemerging Marcus2006)thatmanagestoattractthedustthroughthecombinedaction gasstructuresevolve.Thisallwouldbeplausibleunderconditionsinwhich ofgas-particle dragandCoriolis forcing (forexample, Barranco &Mar- thegasanddusthaveequaldynamicalinfluenceuponeachother.Youdin cus,2000).Separately, itisalsowell-known that stronglyshearingflows andGoodman(2005)haveconductedasimilarstudyconsideringthelinear (Keplerian discsqualifyunderthisclassification) inrotatingframespref- instability emergingfrominterpenetrating streamsofgasanddustwhose erentially supportthepersistenceofanti-cyclonic structures whilealmost onlyinteractionisthroughkinematicdrag2. entirely wiping outcyclonic vortices 1 (Bracco, etal.,1999). Inlight of Presentedhereisasimpleandidealizedmodelforthewaythistypeof this,oneoftheinterestingresultsoftheaforementioneddust-vortexinter- interactiondevelopsinamodelconfinedenvironment.Thephysicalmodel actionstudiesisthatanti-cyclonicvorticesalsohappentobethesitesonto employedhereisaflowinarotatingchannel.Thematerialistreatedastwo whichdiscdustcollectsmostrapidly(mostnotably,Braccoetal.,1999). interpenetrating fluidsofuniformdensity,onerepresenting apressureless Intheinvestigationsmentioned,thedynamicsofthesedust-discsce- dust“fluid”andtheotheranincompressibleBoussinesqgas.Thegasther- nariosaretreatedasone-way:thedustpassivelyrespondstothegasflow modynamicsisgovernedbythermalconductionandwesupposethatthere withoutanyback-reactionofthedustuponthegas.Giventhatthecurrent isaconstantgradientofthegastemperaturefromonewalltotheother(in hypothesis of protoplanetary discs is that their dust contributes no more thespanwiseor“wall-normal” direction). Aspartoftheidealization that thanafewpercentofthetotalmassdensityofthedisc(Hayashi,1983),it goesintothemodelconsideredhere,thegascomponentaloneissubjectto isreasonabletotreatthedustasacollection ofLagrangiantracerswhich aconstantforceinthewall-normaldirectionandthattheBoussinesqbuoy- respondstothevortexinducedgasflowandhavingnodynamicalinfluence ancyeffects areassociated withthisforceintheusualway.Wesuppose, onthegasitself. further, that thegasanddustarebothsubject toanexternal forcewhich However,itisinterestingandinstructivetoturnthequestionaround givesrisetoalinearCouetteshearofbothfluidsinthedirectionparallelto andexaminewhatwouldresultifthedustdoesdynamicallyeffectthegas. thechannelwalls.Thecouplingbetweenthegasanddustisthroughasim- Onecouldenvisionasituationinwhicheitherthegasinthedischasbeen plekinematic (Darcy)dragprescription like,forexample,inTangaetal. 1 Acoherentvortexstructureissaidtobeanti-cyclonicifthesignatureof 2 Therehavebeenanumberofstudiesofthissortinwhichtheinterpene- thebackgroundvortexstateinwhichitisembeddedisoppositethesignof tratingstreamsarecoupledtoeachotherthroughgravity.Foramorerecent thevortexstructureitself. studyseeBertin&Cava(2006)andreferencestherein. 2 O.M. Umurhan (1995).Thereisnoviscosity.Theingredientsofthishypotheticalscenario fu(y)xˆ +ρ (2) alreadypredisposesthegascomponentsusceptibletobuoyantinstabilityala (cid:26) Fk−fu(x)yˆ (cid:27) RayleighBenard.Finally,becausethedustfluidistreatedasbeingpressure- ∂ less,noapriorirestrictionsuponthecompressibilityofthedustismade. ρCp +u T = K 2T. (3) ∂t ·∇ ∇ InSection2weshowthedevelopmentofRayleigh-Darcytypeofcon- (cid:16) (cid:17) vection.Intheformulationoftheproblem,thedustdensitydecouplesfrom Inwhich u is the gas velocity and ud is the dust velocity, P is the gas thelinearanalysisofthedevelopingconvectionroll.Asimplerelationship pressure, The dust density is ρd while the gas density is simply ρ. The is demonstrated that further shows that a steady vortex roll at the corre- superscript(x)and(y)appearinginfrontofvelocityexpressionsarere- spondingcriticalwavenumbercausesthedustdensitytogrowalgebraically spectivelytheirxˆandyˆcomponents.Thekinematicdragbetweenphases whentherollisanti-cyclonicand,conversely,thedensityisdepletedwhere ismitigated bythe“stopping-time” ts andweassumeittobeconstant- therolliscyclonic. seesimilartreatmentsbyCuzzi(1993)andTangaetal,(1995).Ifthechan- InSection3anonlinearasymptoticanalysisisdevelopedinthelimit nelrotateswithrateΩindirectionˆzthentheCoriolistermf isgivenby oflargeaspectratioandunderconditionsoffixedthermalfluxonthechan- 2Ω.BecausethegasphaseisassumedtobeBoussinesqitsthermodynam- nelwallsandwherethebackgroundvorticityismodeledasanf-planewith icsismodeledbytheusualexpression ofafluidundergoingfluctuations aweakgradient.Inadditiontothis,theimpositionofaweakexternalforce underconstantpressureconditionswhereCpisthespecificheatatconstant willpromoteasteadyflowexhibitingaweakamountofshear(hereitwill pressure. beCouette). Theasymptoticanalysis proceedsundertheassumptionthat Sincethisisatwo-dimensionalmodel,itwillbemoreconvenientfor both(i)thatthethermaltimeismuchgreaterthantheduststoppingtime ustoconsiderthegasphasemomentumequationsintermsofasingleequa- and,(ii)thatthetimescalederivedfromthegeometricmeanofthether- tionforthegasvorticity.Sincethegasphaseisdivergencefreeexceptwhen malandrotationtimesisalsomuchgreaterthanthestoppingtimeofthe coupledtog,wemayconsiderthegasvelocityasresultingfromastream- dust.Thetwoconditions translates toasituation inwhichtheduststop- functionψsuchthat pingtimeisactuallymuchlongerthanthelocalrotationtime.Thisscaling ∂ψ ∂ψ regimealsoimpliesthatthedustvelocitybehavesasifitwereirrotational u(x),u(y) = , . (4) atleadingorder. (cid:2) (cid:3) h−∂y ∂xi Themodelshowsalgebraicinstability(inthedustcomponent)unless It follows that by defining the vorticity as the curl of the fluid velocity, someamountofbackgroundvorticitygradientispresentintheflow(aspro- ω= u,thenwehave videdbytheweakf-planeprescription).Thisgradientstabilizesthegrowth ∇× bypromotingaRossbywavedriftofthetheconvective roll(vortex)pat- ∂u(y) ∂u(x) ∂2ψ ∂2ψ ω = + . (5) tern.BecausetheRossbywavedriftspeedofthevortexpatternisdifferent ≡ ∂x − ∂y ∂x2 ∂y2 thanthebackgroundvelocityfieldtheeffecthereisforthefluidpatternto Bytakingthecurlof(2)wefindthefollowing driftpastthedustcomponent.Asgivenregionsofthedustareexposedto overallreductionsofthetotalfluidvorticity(asmeasuredwithrespectto ∂ω ∂ρ 1 thebackgroundvorticityarisingfromthechannel’s rotation)thedustbe- ρh∂t +J(ω,ψ)i = −g∂x − tshρd(ω−ωd) gHadioniwsntefiovnecirtoublmleeccbateuacssaeuetxshepeetphcateettldeorwfnrovimsonrttohicteistbtyaetphioaarnvtaiooryrftpthhreeedvdiocurtsettedxcabpnyanttotheterlnolicwnaeilalllyrptchaoselsolerocynt. + (u(x)−u(dx))∂∂ρyd −(u(y)−u(dy))∂∂ρxdi(,6) throughagivenlocaldustregion.Inturn,thedustregionwillbeexposed therebyeliminatingdirectreferencetothegasphase’sdivergencefreena- topatches offluidpassingbywithenhanced vorticity and,consequently, tureandreducingthenumberofequationsfromthreetotwo.TheJacobian willexperienceareductioninthelocaldustconcentration.Itisfound,how- appearingin(6)isdefinedas ever,thatsecondarygrowingoscillationsalsoappearinthisformulationand ∂f ∂g ∂f ∂g thesearewipedoutwhenacertainamountofdiffusioninthedustconcen- J(f,g) . ≡ ∂y∂x − ∂x∂y trationisaddedtothemodel.Itisalsofoundthataccordingtothemodel, placeswherethedustconcentrationisenhanced(depleted)correspondsto Unlikeitsgascounterpart, thedustphaseisassumedtobecompressible, zones where the convective roll is slightly weakened (strengthened). We andthisiswhywehaveretainedallspatialdependencesofρdin(6).Fur- showthat this canbeexplained byaneffective modification ofthelocal thermore,thedustphasevorticity,ωd,isdefinedfromthedustphaseveloc- Rayleighnumberduetothenonlinearrearrangementofthedustconcentra- ity,ud,intheusualway,viz., tion. ∂u(y) ∂u(x) ωd≡ ∂dx − ∂dy (7) Thedustphaseismodeledasapressureless,compressiblefluidunder 2 TWODIMENSIONALFLOWEQUATIONS theinfluenceofparticledrag,theforce andtheCorioliseffect, Fk ConsideratwofluiddescriptionofadustladensimpleBoussinesqfluidin arotatingchannel.Forthesakeofgeneralitywesupposethatonlythegas ∂∂ρtd +∇·(ρdud) = 0 (8) phasehascertainpropertieswhichcauseittobedynamicallyinfluencedby anexternalconstantforceofmagnitudegandwithdirectionnormaltothe ∂ fu(y)xˆ channelwalls(viz.inyˆdirection).Inthistoymodelweadditionallyposit ρd(cid:16)∂t +ud·∇(cid:17)ud = ρd(cid:26) Fk−dfu(dx)yˆ (cid:27)−ρd(ud−u)/t(9s). theretobeasecondforcerepresentedbytheterm whichalsoactsinthe yˆdirectionanditsdependenceisonyonly:inothFekrwords,Fk =Fk(y). Sbointhcefluthidesu,nitdwerillylipnrgovmeabsesnedfiencisailtytostwatreitseadreepaprrteusruemsoedfthtoebdeusctodnesntsaintyt iinn Udynnliakmeitchaelloythcoerupfolerdcetog,ththeedfuosrtcbeeFcakusaeffoefcstsimboptlhekgianseamnadtidcudsrt.agThmeeflasuuidreids termsofafractionaldensityparameter,δ,definedby, bythedifferenceinvelocitiesbetweenthegasanddustphase.Finally,we assumethatthethermodynamictransferpropertiesofthegasaremodeled ρd=ρ¯d(1+δ). (10) bysimplethermalconduction. Thus,theequations ofmotionforthegas phasearesummarizedtobe, 2.1 SteadyState u = 0 (1) ∇· ∂ Athermal steady stateiswhenthegasconducts intheyˆ direction. This ρ(cid:16)∂t +u·∇(cid:17)u = −∇P −ρgyˆ−ρd(u−ud)/ts meansthatthereislineartemperaturegradientinygivenby,T¯ = T∗− An idealizedmodelfordust-gasinteractionin a rotatingchannel 3 βTy,inwhichT∗isthebackgroundtemperaturescaleandwherethecon- ThevariableC˜,definedby svtiarnotnmβTenrt.epDreenseontitns,giun¯aansdenu¯sde,atshethsetesatedaydbyavceklgorcoiutyndprhoefialtesfl,uaxsoofluthtieonenis- C˜ ∂u˜(dx) + ∂u˜(dy), (21) u¯=u¯d,alongwith, ≡ ∂ξ ∂Y fu¯(x)=fu¯(dx)=Fk(y), u¯(dy)=u¯(y)=0, and ∂∂Py¯ =−ρ¯g.(11) vreeplorecsiteyntsscathleeddtioladta/tiτo.nTohfetRheaydluesigthphnausme.bTerh,eRte,rimsdu˜edfinreedprteosebnetsthedust aAsnsudmasedprteovbioeucsolynsmtaenntt.ioWneedc,otnhseiddeernsstietiaedsyofcobnodthitiflounisdtsotahtaevse,ρ¯noanxˆddρ¯idre,cis- R= 1gαβTts Cpρ¯d2 ρ¯ , (22) tiondependences.Thus,thetemperaturesteadystateconditionis ρ¯ (cid:18) K (cid:19)(cid:16)ρ¯d(cid:17) ∂2T¯ whileaneffectivePrandtlnumberPrisidentifiedwith K =0, (12) ∂y2 Pr= τ = Cpρ¯d2. (23) whichyieldsasteadyfluxstateofthegaswithatemperatureprofileT¯ = ts Kts T∗−βy,whereβisaconstantrelatedtothebackgroundfluxstateofthe Finally,theCoriolisparameterisscaledtothestoppingtime:f˜ fts. gasandwhereT∗isthebackgroundtemperaturescale. Wenotethatinthedustmomentumequation,outofwhich≡both(19) and(20)areformed,allappearancesofthedustdensityanditsfluctuation, 2.2 LinearTheory ρ′d/ρ¯d,explicitlydropout,Inpracticethismeansthat(18)explicitlydecou- plesinanormalmodeanalysisoftheperturbationequationset(15)-(20). For the sake transparency, we consider linear disturbances of the steady Thisobservationhasaninterestingconsequenceforthenonlineartheoryin arrangementprescribedabovewhentheforce iszero.Thismeansthat theupcomingsection. Fk perturbations ensue under static conditions: u¯ = u¯d = 0. Temperature Thelimited coupled set ofequations (15)-(17)and (19)-(20)admit fluctuationsarerepresentedby steady(i.e.∂/∂t = 0)solutions.Theparticlephasevariables aresimply relatedtothegasphasevariablesby, T =T∗ βy+θ, (13) − ω˜ whereθrepresentsthetemperaturedisturbanceawayfromthestaticstate. ω˜d = 1+f˜2 (24) Except for buoyancy effects, the gas density is constant. Therefore the Bousinessqapproximationsaysthat, C˜ = f˜ω˜ , (25) ′ 1+f˜2 ρ =ρ ρ¯= αθ, (14) − − Notethat (25)saysthat thedustdilatation is related tothe gasvorticity, whereherethecoefficientofthermalexpansionatconstantpressureisrep- whichwillhaveconsequenceshortly.Thegasphaseequationsbecome, resentedbyα.Aprimeonanydensityquantityismeanttodesignate its deviationfromthesteadyuniformstate,whichwillbedesignatedwithan ∂Θ overbaroverthequantity. 0 = R∂ξ −(ω−ωd), (26) Wesupposethatalldynamical disturbances occuronalengthscale ∂ψ˜ ∂2 ∂2 ofd.Consequentlyspatialscalesarenondimensionalizedondand,further- 0 = + + Θ, (27) more,theyarewrittenas ∂ξ (cid:18)∂ξ2 ∂Y2(cid:19) x=ξd , y=Yd alongwith(17)unalteredasitappears.Combining(17)with(24-27)yields ∂ 1 ∂ ∂ 1 ∂ asingleequationforψ˜, , ∂x → d∂ξ ∂y → d∂Y ∂2 ∂ 2 1+f˜2∂2ψ˜ τ =Cpρd2/Kisathermaltimescaleand,assuch,wescalealltemporal (cid:18)∂Y2 + ∂ξ2(cid:19) ψ˜+R f˜2 ∂ξ2 =0 (28) derivativesbyit.Temperaturedisturbancesarescaledbyβdandiswritten innondimensionaltermsasθ=Θβd.Velocitiesscalewithd/τwhichsets (28)issupplementedwithboundaryconditions.Asforthethermalcondi- thescalingforboththestreamfunctionandvorticity(forbothfluidphases), tions:weexploretwodifferenttypesofrequirements,namelythatthe(i)the temperaturesarefixedattheboundariesor(ii)thethermalfluxesarefixed d2 1 ψ= ψ˜, ω= ω˜, attheboundaries.Theformerconditionisthemorefamiliarofthetwoin τ τ which,inpractice,itrequiresthatthetemperaturefluctuations arezeroat inwhich ψ˜and ω˜ arethe nondimensional stream function andvorticity, theboundaries.Thesecondconditionis,effectively,thermalinsulationand respectively.Inthisformalismthenondimensionallinearizedperturbation it,inpractice,amountstosetting∂Θ/∂Y =0attheboundaries. equationsforthegasare, Assuming,ingeneralforallquantities,periodicsolutionsinthehori- zontalξdirectionwithcorrespondinghorizontalwavenumberq,e.g. ρ 1 ∂ω˜ ∂Θ (cid:16)ρd(cid:17)Pr ∂t = R∂ξ −(ω˜−ω˜d) (15) ψ˜=ψ¯(Y)expiqξ+c.c., ∂Θ = ∂ψ˜+ ∂2 + ∂2 Θ (16) wefindthatforfixed-temperature boundaryconditions thelowestnormal ∂t ∂ξ (cid:18)∂ξ2 ∂Y2(cid:19) modesolutioninY forψ˜is ω˜ = ∂2 + ∂2 ψ˜. (17) ψ˜∼expiqξcosπY, (29) (cid:18)∂ξ2 ∂Y2(cid:19) wherethesystemeigenvalue,whichisaneffectiveRayleighnumberdefined Whilstforthedustphase, by, ∂ ρ′d +C˜ = 0, (18) Reff 1+f˜2 R, (30) ∂t(cid:18)ρ¯d(cid:19) ≡(cid:18) f˜2 (cid:19) P1r∂∂ωtd = −(ωd−ω)−f˜C˜, (19) mustsatisfy, P1r∂∂Ct˜ = −C˜+f˜ωd. (20) Reff = (π2+q2q2)2. (31) 4 O.M. Umurhan (a) Conducting Boundaries (b) Insulating Boundaries (a) s =0.21 (b) s =1.26 (c) s =1.8711 100 4 5 Rayleigh Number5678900000 Unstable to Rolls Rayleigh Number345000 Unstable to Rolls Temperature−000...0252 −2 0 2 −−02642 −2 0 2 −085 −2 0 2 FieffR: Effective gu1234r000000e1R.ecfCf =2r 4iqπt:2i sccaaqllc4e =dR πwaayvSeltn6eaubimlgeb hteor nR8oullmsbe10rasafeffuR: Effective n12c0000tiono2fqs: cscaalRle4eecdfdf =w ha1v2oeSrn6tiuazmbolben etrot a8Rlolwlsav10e- VorticityDust Concentration−−000...00555 −2 0 2 −−−−−13210000024042 −2 0 2 −−−−−264200000246042 −2 0 2 lengthq.(a)Conductingboundariesand(b)insulating (fixed-flux)bound- −2 spa0ce 2 −2 spa0ce 2 −2 spa0ce 2 aries. (d) Maximum Absolute Amplitude, Time Series 8 30 fTohresruecihsmaamrgininimalusmoluvtailounesotfoRexeifstf.Wateadcernitoictealthweamveinnuimmubmervqaclureeqoufirtehde Max |F|χ246 ∆Max ||1200 befofuenctdivareyRcaoynlediigtihonnsumqcbe=rasπRaecnfdf,aRnecdfwfe=find4πth2at≈for4fi0xe-d-wtehmicpheriastuthree 00 0.5 Tim1e: s 1.5 2 00 0.5 Tim1e: s 1.5 2 numberexpectedforRayleigh-Darcyconvection(Horton&Rogers,1945). Thesolutionforperfectlyinsulatingboundariesresiststhestraightfor- Figure2.RepresentativeprofilesforModelA:β˜=˜b1=0andr2=5.30 wardformcharacterizingthefixedtemperatureresult.Itprovestobeeasier andφ˜ = 10. Plotted arethe lowest order temperature amplitude F,the toseeknumericalsolutionshereinstead.Figure1(b)displaystheRayleigh lowest ordervorticity amplitude Fχ,followed bythedustconcentration, numberasafunctionofhorizontalwavenumberforthesemarginalcondi- ∆.Panel(a),attimes∼ 0.21.Panel(b),times∼ 1.25.Panel(c),blow tions.ItturnsoutthatRecff = 12anditoccursatq = 0.Theresultthat uptime s ∼ 1.87.Thescaled dustconcentration always seemstotrace thecriticalRayleighnumberoccursatinfinitehorizontalscales,thoughcu- the gas vorticity Fχ even throughout the blow up time. Panel (d) is the rious, is a well known result in standard Rayleigh-Benard problems and timeseriesfortheabsolutevaluesofvorticityscaleanddustconcentration, itsimplicationshavebeenstudiedbymanyinvestigators(e.g.Chapman& respectively. Proctor,1980). Irrespectiveofthethermalboundaryconditionassumedthemarginal rollstatecancausethedustdensitytogrowalgebraically.Toseethiscon- This extreme ordering says physically that the dust stopping time, ts, is sider(20)withthedustdilatation termre-expressedintermsoftherela- muchlongerthanthelocalrotationtime Ω−1.Thisscalinghoweveralso tionship(25).Itisfoundthatthetimerateofchangeofthedustdensityis ∼ saysthattheduststoppingtimeismuchlessthanthegeometricmeanofthe expressedby thermalandrotationtimes.Inotherwords, ∂∂t(cid:18)ρρ¯d′d(cid:19)=−1+f˜ω˜f˜2. (32) Ωτ ≫t2s, and Ωts≫1. ForthesakeofthisasymptoticcalculationwetakePr . Inotherwords,thedustdensitychangeslinearlyintime(sincethereis →∞ Furthermore we will suppose that the horizontal lengths scales are notimedependenceinω˜)and,additionally,thischangeisfastestatplaces muchlargerthanthescalesindirectionofgravityandwewillintroducethe wherethevortexamplitudeisextremal.Giventherelationshipin(32)itis smallscalingparameterǫtorepresentthisextremestate.Correspondingto apparentthatdustdensitygrowsfastestnearanti-cyclonicvortexperturba- thissituationweintroducethescaledhorizontalvariableX=ǫξ,whereX tions:thisisclearsincetheRHSoftheexpressionispositiveonlyifthe product f˜ω˜ ispositiveandthiscanonlyhappenifthesignsoff˜andω˜ isanorderonequantity.Additionallyweintroduceanorder1scaledtime − variable T suchthatT = ǫ4t.Thus,wereplace allderivative operators areopposite. with Tobemoreaccurateinthisdescriptionofgrowingdustconcentration it should be stated that if the sign of the growing vortex perturbation is ∂ ∂ negativeitonlymeansthatthispartofthefluidstatestartsappearingtohave ∂ξ →ǫ∂X, ∂t →ǫ4∂T (33) lowervorticitythantheoriginalglobalstate.Theresultofthislineartheory, Fromnowonwewillappeal totheshorthandnotationforderivative op- takeninthislight,isnottoosurprisingbecauseearlierworkonthebehavior erationsforcompactnessofnotationandclarityofderivation.Correspond- ofLagrangiantracerparticlesinfullydevelopedisotropicturbulenceflow ingly,wefindthatadistinguishedlimitexistswhenthestreamfunctionis (SquiresandEaton,1991)showthatparticlesconcentrateinthosepartsof (ǫ)thetemperaturefluctuation.Specifically,wesaythat theflowwhichareregionsoflowervorticityandhighstrainrate. O ψ˜=ǫΨ, ω˜ =ǫΩ, whereΨandΩarenoworder1quantities. 3 ANASYMPTOTICNONLINEARMODEL Weintroduce the external force, , into the analysis in which its Fk nondimensionalizationisexpressedthroughtherelationship, Inorder to understand how to handle the curious situation involving the algebraic growthoftheparticle density perturbation eventhoughthegas d phaseisneithergrowingnordecayingweasymptoticallyanalyzethegov- Fk(y)= τ2F˜k(Y), erning equations under certain extreme conditions. Inparticular, wewill explore the nonlinear development ofdisturbances forfixedthermal flux whereF˜kisnondimensional.Weassumethatthesteadyexternalforcehas boundaryconditions.FurthermorewewillassumethatthePrandtlnumber theform ismuchlargerthanthescaledCoriolisparameter,f˜whichwillalsobemuch 1 greaterthanone,viz., F˜k = ǫ4bφY, (34) Pr f˜ 1. wherebandφareorder1constants. ≫ ≫ An idealizedmodelfordust-gasinteractionin a rotatingchannel 5 Inordertoachieveproperasymptoticbalanceweexploitthefreedom ThenewJacobiansymbol, isdefinedonthevariablesXandY.Inthe J wehaveinchoosingthe“largeness”oftheCoriolisparameterbyscalingit nextsectionwesetouttosolve,orderbyorder,thesetofequations(43-48) (adhoc)as withfixedfluxthermalboundaryconditions. 1 β f˜= φ 1+ ǫ6Y (35) ǫ5 (cid:16) φ (cid:17) 3.1 Expansions whereφis,asbefore,order1.Thebizarrechoicebehindthisasymptotic orderingismotivated byintroducing thedustdisturbance termδ˜intothe Thesetofequations(43-48)aresolvedasaperturbationseriesexpansionin subsequentanalysisattherightstage.TheβY term,whichtacitly repre- powersofǫ2.Thus,thefollowingexpansionsarepresumedforthispurpose, sentsanassumptionofaweakf-planeeffect(seePedlosky),isintroduced Θ=Θ0+ǫ2Θ2+ǫ4Θ4+ (49) aprioriinordertoensurestabilityofthenonlinearmodel.Thoughitisan ··· artificialdevice,ithastheeffectofcausingaRossbywavetypeofdriftofa Ψ=Ψ0+ǫ2Ψ2+··· (50) vortexpattern. Ω=Ω0+ǫ2Ω2+ (51) ··· Withrespectto(11),theresultingsteadyx-directionflowisweakly δ=δ2+ǫ2δ4+ (52) Couette.DenotingthesteadyflowbyUandUdthenwehave ··· (44)tolowestorderbecomessimply, U =Ud=ǫbY +O(cid:0)ǫ7(cid:1). (36) D2Θ0=0. (53) Fromhereonout,weconsiderdisturbancesofthedustandgasvelocities ontopandoverthisbasestate. Thesolutionofthisequationsubjecttotheconditionthatthefluxremain Withthesescalingsinplacewefindthatthedustquantitiesrequirethe fixedontheboundaryis, followingscalingsinorderfortheretobenontrivialbalance:thefractional dustdensityscalesasǫ2andfromhereonoutitiswrittenas Θ0=f(X,T), (54) ρ′ meaningtosaythatthelowestordertemperatureperturbationisindepen- d =ǫ2δ. (37) dentoftheverticalcoordinate.Therestoftheexpansionprocedureisstan- ρ¯d dardandwerelegate itsfullexposition toAppendix A.Whatresults are Wefindthatthedustdilatationisfirstnontrivialatorderǫ6anditiswritten twocoupledevolutionequationsforthetemperaturedisturbancef andthe as, lowestorderparticledensityδ2in(A23)and(A32).Thesearereproduced below, C˜=ǫ6C6+ ǫ8 (38) whereastheduOst(cid:0)vor(cid:1)ticity scalesevensmallersuchthatitisnontrivial at fT = −κfXXXX+µ(fX3)X−[(r2−δ2)fX]X orderǫ11!Inotherwords, −b1S(fX2)X−βBfXXX, (55) ω˜d=ǫ11Ωd. (39) δ2T = −φR0fX. (56) Becauseofthislastobservationwewill,forallintentsandpurposes,treat Thepositiveconstantsκ,µ,B,SaredefinedinAppendixA.r2 isanef- thedustvelocityasderivedfromapotentialwhichsimilarlyscalesonorder fectivedeparturefromthecriticalRayleighnumberR0=12givenby ǫv6el.oIcnityotshcearlewsoarsds, ud = ǫ6∇Γ.As such, each component ofthe dust r2= R122 − 1b2210. u˜(dy)=ǫ6v6=ǫ6∂∂YΓ, u˜d(x)=ǫ7w7=ǫ7∂∂XΓ. (40) Tfrhoempcarriatmiceatleitryrw2hciacnhbinecilnutdeerpsrethteedfaacstrethpartesaenctoinngstaannte(flfiencetaivr)esdheepaarrtiusrea stabilizinginfluenceagainsttheonsetofrollsinthelinearregime. Togetherwiththescalingrelationship(38)andgeneraldefinition(21)itis clearthatattheseinitialordersthedustvelocitysatisfiesaPoissontypeof equation, 3.2 CanonizationandIdentificationofEffects 2Γ=C6. (41) ∇ Itismoreconvenienttodefineanumberofrescalingsof(55)and(56)in Withthesescalingsandassumptionsinplaceweconsiderthetemporal ordertotransparently displaythestructure ofthetwocoupledequations. developmentofdisturbanceswhentheRayleighnumberdeviatesfromits Onemaydefinenewspaceandtimecoordinates,ξandsalongwithnew criticalvaluebyanorderǫ2amountwrittenas, amplitudescalingsF and∆by, R R0+ǫ2R2. (42) T sκ, X √κχ, → → → Forthisanalysis wewillconsiderthedevelopment intermsoffixed-flux κ 1/2 boundaryconditionswhichmeansthatthecriticalRayleighnumberabout f(X,T)→(cid:16)µ(cid:17) F(χ,s), δ2(X,T)→∆(χ,s). (57) which we will be expanding around will be 12. However, the following Consequently,(55)and(56)rewrittenintermsofthedefinitions(57)is calculationself-consistentlyselectsthepropervalueofR0.Thegoverning equations(inthePr limit)withthesescalingsinsertednowreads forthegasphase, → ∞ Fs = −Fχχχχ+(Fχ3)χ− (r2−∆)Fχ (cid:16) (cid:17)χ R0(cid:16)1+ǫ2RR02(cid:17)∂XΘ−(1+ǫ2δ2)Ω = ǫ2β∂XΨ (43) ∆s = φ˜−F˜bχ1,(F,χ2)χ−β˜Fχχχ, ((5598)) ǫ4∂TΘ+ǫ2J(Θ,Ψ)+ǫ2b1Y∂XΘ = ǫ2∂XΨ+ǫ2∂X2Θ+D(244Θ) where − Ω = D2+ǫ2∂2 Ψ, (45) X S B κ andfortheparticlephasetheyare, (cid:0) (cid:1) ˜b1≡b1µ, β˜≡β√κ, φ˜≡φR0√µ. 0 = ǫΩ ǫφC6+ ǫ7 (46) Themodelset(58)and(59)arenowinamoretransparentformandallows − O 0 = −ǫ6C6+ǫ6φΩd(cid:0)+O(cid:1) ǫ12 (47) uRsHtSodoifsc(5u8ss)athreewefefellctksntohweync(osenetaCinh.aTphmearnol&eoPfrothcetofir,rs1t9t8w0o)treersmpescotinvetlhye, ǫ6∂Tδ+ǫ6C6 = 0+O ǫ8 (cid:0) (cid:1) (48) (i) todamp the temperature profile due to horizontal thermal dissipation (cid:0) (cid:1) 6 O.M. Umurhan (a) Time Series: no dissipation (b) Time Series: with dissipation Vorticity Peaks 4 4 Max. Amplitude123 VorticityDust Concentration Max. Amplitude123 DVourstti cCitoyncentration Time s 23..23455 1.5 00 5 10 15 20 00 5 10 15 20 1 Time: s Time: s 0.5 (c) s =0.84 (d) s =1.722 (e) s =20.958 0 −3 −2 −1 Spa0ce 1 2 3 mperature 0.05 −00..055 02 Figure4.Positionofthepeaksofthevorticity profileforModelB.The Te−0.5 −1 −2 maximumpeakislabelledwithacircleandallsecondarypeaksaredenoted −2 0 2 2 −2 0 2 −2 0 2 Vorticity −011 −011 −022 stwhyiesthtpemexa’ksg.oiAsestfrtaefrcroetmdheomutrtualwntisipitehlenatpdreeaaaskdhsjeutdostlmoinneelnyatnopdnheiat.sieAsfiestveriodvtehenrist(ttnhiemaateri,tstphr∼eoppa2agt)hattheoesf Dust Concentration−00..022 −2 0 2 −00..055 −2 0 2 −022 −2 0 2 from0l.e5fttorighton(ath) isΘsp aTcemetpiemrateured, i sa =g1r8a.9m. −2 0 2 −2 0 2 −2 0 2 3 space space space 2 1 Figure3.Representative profilesforModelB:˜b1 = 0andr2 = 5.30, Y 0 0 φ˜ = 10,β˜ = 10.(a), maximum amplitude ofthe dustconcentration −1 andthescaledvo−rticitywhenthereisdissipation( =0).Theamplitudes −2 oscillatewithgrowingsizeonalong-timescale.(Bb),maximumamplitude −0.5−3 −2 −1 χ0 1 2 3 −3 ofthedustconcentrationandthescaledvorticitywithdissipationpresent, ( = 1).Theoscillationsarequelledwhiletheoverallaveragemaximum B (b) Ψ Stream Function, s =18.9 amplitudeofthestructuresarepreserved.Panels(c-e)representingprofiles 0.5 15 ofF,Fχ,∆atvariousstagesintheensuingevolution.Itshouldbeobserved 51 0 thatthedustconcentration,∆,eventuallylocksontothetemperatureprofile, 0 F,atlatetimes. Y 0 HVoigrhti c i t y Low Vorticity −−150 −15 −20 −25 −30 and(ii)tocontrolamplitudeduetononlinearadvectionoftemperature.The −0.5−3 −2 −1 χ0 1 2 3 r2 expression inthethird term onthe RHSof(58)constitutes theusual sourceofamplitudegrowthbecauseofpositivedeparturesfromthecritical Figure5.RepresentativecontoursforModelBwhenthegrowthhassettled Rayleighnumber.The∆termexpressesthefactthatastheparticleconcen- ontothesteadystate.Forthesecontoursǫ=1.(a)Temperaturefluctuation trationgrowsthelocalRayleighnumberofthefluidgoesdownsomewhat. contours,Θ.(b)Streamfunctioncontours,Ψ. ThisisbestseenbyobservingthedefinitionoftheRayleighnumber(22): ifthedustdensityρdgoesupthenRgoesdownandviceversa.Theother termsontheRHSof(58)represent,respectively,(iii)thenonlineartwist- whosetotalamplitudedidnotexceed10−2.Thedustconcentrationalways ing of the temperature profile due to shear and (iv) an effective Rossby startedoutwithzeroinitialamplitude. wavetypeofdriftofanemergingprofile.Asdiscussedintheprevioussec- Weconsiderherefourselectedmodelstodiscuss; tion,(59)representsthelocalenhancementofdustconcentrationduetothe emergingconvectionroll’svorticity,whichis,tolowestorder,proportional ModelA.Nobackgroundvorticitygradientandnoshear,˜b2=β˜=0, toFχasdemonstratedinAppendixA. wh•iler2=5.3andthedustcouplingissetφ˜=10, knownNototeptrhoamtottheesnuobnclriintiecaarl tterarmnsit(iFonχ2s)χinaRssaoycleiaigtehd-Bwenitahrdthceonsvheecatrioins the•reMisondoeslhBe.arT˜bh2e=ba0ck,galroonugndwvitohrtri2cit=y g5r.a3daienndtφ˜is=ne1g0ataivned,,β˜ = −10, (Gertsberg&Sivashinsky,1981)andwilldosohereinthismodelaswell ModelCSomeamountofshearwithaprogradesense,˜b1 = 10.0 butwewillnotexplorethisfeatureinthisstudy.Thistermappearsgeneri- alo•ngwiththesamevaluesofr2,φ˜andβ˜ofModelB. − callysolongasthereissomesortofsymmetry-breakingeffectinthesystem It should be noted that in all models the background vorticity is getting (e.g.seeDepassier&Spiegel,1982). smallerwithincreasingY.Additionally,theresultsreportedhererequired theretobesomedissipationaddedtotheequationdescribingthedustcon- centrationevolutionorotherwisethesolutionsblowup.Thisisdiscussed 3.3 SelectedSolutions inmoredetailforModelB. Thereducedasymptoticequations(58-59)areevolvedaccordingtothenu- mericalspectralschemeoutlinedinAppendixBandissimilartothetac- 3.3.1 ModelA ticsusedinUmurhan&Regev(2004).Therobustnessoftheschemewas checkedagainsttheanalyticsolutions ofasimilarevolutionequation de- Thisandothermodelslikeit,whereβ˜ = 0,areunstable.Theamplitude rivedbyChapmanandProctor(1980).Thetestsdemonstratedagreement anddustconcentrationsteadilyrunawayoncethedustconcentrationlocks between the numerical scheme and the analytical results to one part in intothestandingvorticityprofilethatemerges.Toseethismorereadilyre- 10−7.Theresultsreportedhereweregenerallycomputedon256Fourier fertoFigure2.Atearlytimesinthesimulationthelocaldustconcentration modesandwhenconvergencewasdoubted,theresultswerecheckedagainst growsfastestwhereverG = Fχ,whichisproportionaltotheleadingor- simulationsbasedon512and1024modes.Becausetherearefourthorder dervorticity, is greatest. Thisbehavior isinline with theconclusions of derivativesinthelineartermsof(58)wenotethat,(a)noartificialviscos- thelineartheorysection.Forr2 = 5.3andφ˜ = 0,thefastestgrowing itywasneededand,(b)smalltimestepsontheorderofdt = 10−4were wavenumberisn =2andthisreadilyshowninthelineartheoryanalysis typicallytaken.AllsimulationsstartedoutwithrandomwhitenoiseforF of(58).Despitethelineartheoryexpectationshowever,thefinalrollprofile An idealizedmodelfordust-gasinteractionin a rotatingchannel 7 willgofrombeingdoublehumpedtobeingsinglehumpedaswasshownby (a) Time Series: with dissipation ChapmanandProctor(1980).Thisisbecausethenonlinearstabilityanal- ysisnigslsehWrooiwtlhls.tφ˜hantothne-zseyrost,emtheprseafmerestsooretvoenftulaatlelytismetetlebeohnatvoioarpirsofiolbeswerivtheda. Max(|Amplitude|)246 46 1 1.5 2 2.5 VorticDituyst Concentration Thedustconcentration alsoqualitatively resembles thevorticity distribu- tion and it, similarly to the linear theory, appears to grow/deplete with- 00 2 4 6 8 10 12 14 16 18 20 Time: s outbound.Thoseplaceswherethevorticityamplitudeisgreatestarethose (b) s =0.84 (c) s =1.722 (d) s =20.958 2 4 plRolaacycaleteisoignwhsheninruemtthhbeeerdgutahssetrcceoobnryrceescnpatuorasnitdniogntotihsgegrerroeaatllltylpyredonefihplaelnetcteheded.reCvaotolnusecesoqnuoteifnnutthleye,gtlrhooocwsae-l Temperature −011 02 −0242 ing, inwhat appears tobe, without bound. Naturally, the validity ofthis −2 0 2 −42 −2 0 2 5 −2 0 2 predictedblowupshouldbequestionedsinceunboundedgrowthmeansthe 2 2 asymptoticsolutionhasceasedbeingvalid. Vorticity −02 −−042 −05 Dust Concentration−00−..0242 −2 0 2 −00−−..05615 −2 0 2 −011 −2 0 2 3.3.2 ModelB:VorticityGradientwithNoShear −2 0 2 −2 0 2 −2 0 2 space space space Introductionofβ˜stabilizestherunawaygrowthseeninModelA.Theam- plitudeoftheemergingconvectionrollsettlesontothevicinityofagiven Figure6.Representative profiles forModel Cshowing aprograde shear value though onoscillation setsin. Onaverylongtime scale this oscil- profile:r2 = 5.30andφ˜= 10,β˜= 10alongwith˜b1 = 10.These − − lation, whichshowsupinboththerollamplitude anddustconcentration resultsweregeneratedwith = 1.(a)Timeseriesoftheabsoluteampli- B amplitude,exhibitsagrowthinamplitudeanditeventuallyblowsupasis tudeofFχand∆.Theamplitudesreachasteadyaveragevaluebuteach evidencedinFigure3a.Thishappensforallmodelsinwhichφ˜isnotzero profileexperiencesasmallamplitudeoscillationthatneithergrowsnorde- andtheseculargrowthtimescaleisshorterasφ˜becomeslarger.Inorder cayswithtime.Insetisshownahigherresolutionprofileofthetransient tostabilizethelongtimebehavioradissipationtermisintroducedintothe phaseforthevorticitynears 2.Theprofilegoesfromnominallytwo ∼ dustevolutionequationsothat,andfromhereonout,insteadof(59)the largescalehumpstoone.Panels(b-d)showprofilesofvariousquantitiesat followingequationisevolved, threedifferenttimes:(b),initialgrowthphase,times 0.84,(c),transient ∼ adjustmentphase,times 1.72,(d),steadystatephase,times 20.0.In ∆s= φ˜Fχ+ ∆χχ, (60) (d)itisclearthatthevorti∼citytakesonsignificantandcomplicate∼dstructure − B anditisalsoapparentthatthoseregionswherethevorticityisnegativeare is the scale of the dissipation and in the simulations it is taken to be stronglyconcentrated. B unity.Withthesimulationrunwith =1,theresultingmaximumabsolute B amplitudeisshowninFigure3b.Theoscillationsobservedfor = 0are removedandtheoverallaverageamplitudeoftheunderlyingstruBcturesare 3.3.3 ModelC:ProgradeShear preserved. SheardoesnotchangethebasicfeaturesoftheresultsfoundforModelB. Thetimeevolutionofthesesimulationsbeginwithaninitialgrowth However,itdoesaltertheappearenceofthefinallydevelopedconvection phase. Forr2 = 5.3, the linear theory predicts that the fastest growing rollbygivingitamuchmorecomplicatedstructure.Asbefore,theevolution Fouriermodeisk = 2and,assuch,intheearlystages thetemperature goesthroughaninitialgrowthstagefollowedbyatransientreadjustment profileisdoublehumpedasinFigure3b.AsChapmanandProctor(1980) phasebeforesettlingontoaroughlysteadyprofile(Figure6a).Thegreat demonstrated,thistypeofprofileisnonlinearlyunstableandeventuallythe difference betweentheseresultsandthatofModelBisthatthenegative systemundergoes aphaseoftransient readjustment (arounds = 1.5)in vorticity oftheroll is strongly concentrated into asmallregion inspace whichthetemperature andvorticity gofrombeingatwo-humpedprofile whereasthepositivevorticity,includingallthesubstructureslikeinFigure down to a one-humped profile. Figure 3c shows the state of this profile 6d,arespreadoutoverlargerareasofspace(Figure7b). readjustmentnearthetimes 1.7. ∼ Additionally, Figure 4 demonstrates how the profile drifts with in- creasingχasafunctionoftime.Inthissteadydriftingstate,theprofilesare singlehumpedand,asinFigure3d,afterthepostreadjustmentphasethe dustconcentrationprofilelocksontothetempertureprofiletightly.Therea- ACKNOWLEDGMENTS sonthatthedustconcentrationdoesnotgrowwithoutboundwhentheroll patterndriftsissimple.InModelA,becauseβ˜ = 0,thetemperatureand IwouldliketothanktheDPWatBRC(2002)forprovidingandmaintaining vorticityprofilethatdevelopsdoessoinplace.Becausethedustconcentra- thedesertfieldfacilitiesinwhichtheideasforthisworkfirstoriginated. tionrespondstolocalvariationsofthevorticity,placesinthegrowingroll profilewherethevorticityismostreducedarealsowheretherateofdust collectionisgreatest.Withoutasuitablesaturationmechanismthegreatly REFERENCES enhanceddustconcentrationbeginstomodifythelocalRayleighnumberof thefluid.This,inturn,causestherollamplitudetogrowwithferocity.With BargeP.&Sommeria,J.,1995,A&A,295,L1. alargeramplitudeinthevorticitywillcomeaneverincreasedconcentra- BarrancoJ.A.&Marcus,P.S.,2000,SummerProgramProceedings,Center tionofdust.Inthiswaythecyclefeedsonitselfanditrunsaway.Onthe ForTurbulenceResearch,NASAAmes/StanfordUniv.97. otherhand,whentherollprofiledrifts,localenhancementsofdustdonot BarrancoJ.A.&Marcus,P.S.,2005,ApJ,623,1157. growwithoutboundbecausethelowvorticitypatchofthefluidthatcauses Bertin,G.&Cava,A.,2006,A&A,459,333. thedusttoconcentrate willeventually driftpast.Thelocaldustwillthen Bracco,A.,ChavanisP.H.,Provenzale,A.&SpiegelE.A.,1999,Phys.of encounter gaswithahigherthannormaldegreeofvorticity andthiswill Fluids,11,2280. causethethedustconcentrationtobegintodiminish. Chandresekhar,S.,1954,Proc.Roy.Soc.(London)A,225,173. Finally,Figures5(a-b)showthetemperatureandstreamfunctionin Chapman,C.J.&Proctor,M.R.E.,1980,J.FluidMech.,101,759. thefull2Ddomain. Chiang,E.I.&Goldreich,P.,1997,ApJ,490,368. 8 O.M. Umurhan 0.5 (a) Θ Temperature, s =18.9 togethertheseequationsyieldthesolution 20 y2 1 10 Ψ0=R0P0fX, P0= 2 − 8, (A13) Y 0 0 whereP0isdesignedsothatthereisnonormalflowoffluidatthevertical −10 boundaries,orinotherwords,Ψ0=0aty= 1/2.Wenotethatbecause ± oftherelationshipsbetweenthelowestordervorticity,streamfunctionand −20 −0.5−3 −2 −1 χ0 1 2 3 thetemperaturein(A12)and(A13),thevorticityisproportionaltothegra- dientofthetemperaturestructurefunction,orinotherwords,Ω0∼FX. (b) Ψ Stream Function, s =18.9 Inorderforasolutiontoexistforthetemperatureatthenextorder, 0.5 1000 asolvability conditionmustbeenforcedupontheequations atthisorder. 800 600 Thismeansthatstartingwith, 400 Y 0 Lvoorwti c i t y 02 0 0 D2Θ2=−∂XΨ0−∂X2Θ0+b1y∂XΘ0+∂X(Ψ0)DΘ0−D(Ψ0)∂XΘ0,(A14) −200 thesolvabilitycondition,inwhichthethermalfluxattheverticalboundaries −400 −600 isfixed,amountstorequiring, −0.5−3 −2 −1 χ0 1 2 3 1/2 Figure 7. Representative contours for Model c in the quasi-steady state Z−1/2D2Θ2dy=DΘ2|yy==1−/12/2=0. (A15) regime,s 18.9.Forthesecontourcalculations,ǫ =1.(a)Temperature fluctuation∼contours,Θ.(b)Streamfunctioncontours,Ψ. SinceΘ0isconstantwithrespecttoyandsinceΨ0isanevenfunctionof y,wefindthatthecondition(A15)appliedto(A14)resultsinachoicefor R0, Cuzzi,J.N.Dobrovolskis,A.R.&Champney,J.M.,1993,106,102. 1/2 Depassier,M.C.&Spiegel,E.A.,1982,Geophys.Astrophys.FluidDynam- 1+R0 P0dy=0. (A16) Z ics,21,167. −1/2 Gertsberg,V.L.&Sivashinsky,G.I.,1981,Prog.Mod.Phys.,66,1219. From(A13),itfollowsthatR0=12.ThesolutionofΘ2becomes Hayashi,C.,1981,Prog.Theor.Phys.Suppl.,70,35. Horton,C.W.&RogersF.T.,1945,J.Appl.Phys.,16,367. Θ2=T2fXX+M2(fX)2+b1N2fX, (A17) Klahr,H.HandBodenheimer,P.,2003,ApJ,582,869. Pedlosky,J.,1987,GeophysicalFluidDynamics:SecondEdition,Springer- wheretheindividualfunctions,T2,M2,N2aregivenby Verlag,NewYork. y2 y4 Squires,K.D.&EatonJ.K.,1991,Phys.FluidsA,3,1169. D2T2=−1−R0P0, T2= 4 − 2 , (A18) Tanga,P.,Babiano, A,B.Dubrulle &Provenzale, A.,1996,Icarus, 121, 3y 158. D2M2=−R0DP0, M2= 2 −2y3, (A19) Umurhan,O.M.&RegevO.,2004,A&A,427,855. y y3 Youdin,A.&Goodman,J.,2005,ApJ,620,459. D2N2=z, N2= + . (A20) −8 6 these are also designed so their y-derivatives are zero at the boundaries y = 1/2.Becauseu(x)andu(y)areorderǫ7andǫ6respectively,and APPENDIXA: ASYMPTOTICEXPANSIONS furthe±rmore, because odf the relatdionship between the particle divergence andthegasvorticityin(A4),thelowestorderexpressionof(A6)is AtinfinitePrandtlnumbers,thefullgoverningequations(43-48)arerepro- ducedhereinslightlydifferentformandwithalittlebitmoredetail, ∂Tδ2+φΩ0=0. (A21) R0(cid:16)1+ǫ2RR02(cid:17)∂XΘ−(1+ǫ2δ)Ω = ǫ2β∂XΨ (A1) Butbecauseofthesolutions(A12)and(A13)wemaywrite ǫ4∂TΘ+ǫ2J(Θ,Ψ)+ǫb1z∂XΘ = ǫ2∂XΨ+ǫ2∂X2Θ+D(A22Θ) δ2=δ2(X,T), (A22) Ω = D2+ǫ2∂2 Ψ (A3) inotherwords,thestructurefunctionδfortheparticleconcentrationisin- ǫ6C6 = ǫ(cid:0)6φΩ+···X(cid:1) (A4) rdeewperinttdeennttoorfeflyeactttthheissoolrudteior.nTΩhe0,governing evolution equation for δ2 is 1 Ωd = ǫ11φΩ (A5) ∂Tδ2=−φR0fX. (A23) ǫ6∂Tδ+ǫ6(1+ǫ2δ)C6 = −ǫ3ud(x)∂Xδ−ǫ2u(dy)(AD6δ) functiWoneΨm2a.yTnhoewgopvroercneiendgteoqouradteiornǫ2beacnodmseosl,veforthenextorderstream Thefollowingexpansionsarepresumed Θ=Θ0+ǫ2Θ2+ǫ4Θ4+ (A7) D2Ψ2=R0∂XΘ2+R2∂XΘ0−∂X2Ψ0−δ2Ω0−β∂XΨ0 (A24) Ψ=Ψ0+ǫ2Ψ2+······ (A8) wUrtiiltitzeinngasthesolutionsfromthepreviousorderswefindthattheΨ2maybe Ω=Ω0+δǫ=2Ωδ22++··· (A(A190)) Ψ2 = S2fXXX+(R2−δ2R0)P0fX+Q2∂X(fX)2 andsimilarlyfortheotherquan·t·it·ies.Atthelowestorder(A2)is, + b1L(2odd)−βL(2even) fXX (A25) (cid:16) (cid:17) D2Θ0=0 (A11) wherethestructurefunctionsappearingabovearegivenby y6 y4 3y2 27 whichadmitsthesolutionΘ0 = f(X,T).Nextsolvethenextordermo- D2S2=R0T2 R0P0, S2= + ,(A26) mentumequation(A1)andstreamfunctionrelationship(A3) − − 5 − 4 4 − 160 6y5 27y R0∂XΘ0−Ω0=0, Ω0=D2Ψ0, (A12) D2Q2=R0M2, Q2=− 5 +3y3− 40 , (A27) An idealizedmodelfordust-gasinteractionin a rotatingchannel 9 D2L(2odd)=R0N2, L(2odd)= y105 − y43 + 196y0, (A28) δeqsuaastiothnesatirme,eincrement betweentimestepnandn+1thediscretized D2L(2even)=R0P0, L(2even)= y24 − y42 + 352. (A29) Fkn+1−Fkn−1 = LkFkn+1+LkFkn−1 + n, (B7) 2δs 2 Nk Tyh=estr1uc/t2u.reNfeuxntcwtieontusranretodtehseigonreddersǫo4thhaetattheeqyuaartieoznewrohaicththies,boundaries ∆nk+1−∆nk−1 = n. (B8) ± δs Mk ∂TΘ0+J(Ψ2,Θ0)+J(Ψ0,Θ2)+b1y∂XΘ2= Rearrangingthetermsandisolatingthen+1timestepreveals, ∂XΨ2+∂X2Θ2+D2Θ4. (A30) Fn+1 = 1+δsLkFn−1+ 2δs n, (B9) Likeatthepreviousorderthesolvabilityconditionis, k 1−δsLk k 1−δsLkNk 1/2 ∆n+1 = ∆n−1+2δs n. (B10) Z−1/2D2Θ4dy=DΘ4|yy==1−/12/2=0. (A31) InkthefirstdiscretkizationabovMe,kthecoefficienttermsinfrontofFkn−1and n looklikePa´deapproximants toexponentials of .Thisisthenas- Thesolvabilityconditionproducesanevolutionequationforf,namely, Nk Lk sumedandthefollowingreplacements, f+T[(+r2κ−fXδ2X)XfXX]X−+µ(bf1X3S)(XfX2)X+βBfXXX =0, (A32) 11+−δδssLLkk →exp[2δsLk], 1−1δsLk →exp[δsLk], (B11) wheretheconstantsandparametersaredefinedby, aremadein(B9).Theresulting discretized equations that aresimultane- ouslysolvedateachtimestepare(B10)alongwith, 1/2 κ = −Z (S2+T2)dy= 221, (A33) Fkn+1=exp[2δsLk]Fkn−1+2δsexp[δsLk]Nkn. (B12) −1/2 Timecentereddifferencedschemeslikethesimpleoneusedhereareknown 1/2 6 tosometimesincuraperiod2δslong-timenumericalinstability.Inorderto µ = R0 (P0DM2)dy= , (A34) − Z 5 washthiseffectout,atevery50thtimestep(B12)and(B10)areadvanced −1/2 throughforonetimestepusinganEulertypeevolverasinthefollowing, r2 = −R2Z−11//22Pdy+b21Z−11//22zN2dy= RR02 − 1b2210, (A35) Fkn+1 = exp[δsLk]Fkn+δsexp[δsLk]Nkn, (B13) ∆n+1 = ∆n+δs n. (B14) 1/2 1 k k Mk S = R0 P0DN2dy= , (A36) ThisEuleradvancerisalsousedastheveryfirsttimestepofallsimulations. Z 10 −1/2 1/2 B = R0Z L(2even)dy= 110. (A37) −1/2 APPENDIXB: NUMERICALMETHOD Thegeneralformoftheequationsweseektosolveare, ∂F = F+ (F,∆) (B1) ∂s L N ∂∆ = (F), (B2) ∂s M where issomelinearoperatorandwhere isanonlinearoperatorin- L N volvingsomecombinationoftheargumentsand islinearinF. M Theseonedimensionalequations willbesolvedintermsofFourier expansionsofF and∆asin, F = Fk(s)expikχ+c.c. (B3) X ∆ = ∆k(s)expikχ+c.c., (B4) X suchthateachFouriercomponentevolvesaccordingto ∂∂Fsk = LkFk+Nk(F,∆) (B5) ∂∂∆sk = Mk(F). (B6) Thescalars arethelinearoperator actingontheappropriateFourier Lk L wavekandwhereNkandMkarethekthcomponentsofeachrespective operator and . TheNsymboMlFnrepresentsthenthtimeiterateofF.Thissamecon- vention carries over to ∆, and . The evolution is carried out us- M N ingasecondordertimecentereddifferenceschemetogetherwithaCrank- Nicholsonschemeforthespatialwavenumbersofthelinearoperatorterms. All and expressionsareevaluatedatthecenteredtimepoint.With Nk Mk

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.