Astronomy&Astrophysicsmanuscriptno.synthe˙asaccepted February2,2008 (DOI:willbeinsertedbyhandlater) An extensive library of synthetic spectra covering the far red, RAVE and GAIA wavelength ranges Tomazˇ Zwitter1,FiorellaCastelli2,3,andUlisseMunari4,5 1 UniversityofLjubljana,DepartmentofPhysics,Jadranska19,1000Ljubljana,Slovenia 4 2 CNR-IstitutodiAstrofisicaSpazialeeFisicaCosmica,ViadelFossodelCavaliere,00133,Roma,Italy 0 3 INAF-OsservatorioAstronomicodiTrieste,ViaG.B.Tiepolo11,34131,Trieste,Italy 0 4 OsservatorioAstronomicodiPadova,SedediAsiago,36012Asiago(VI),Italy 2 5 CISAS,CentroInterdipartimentaleStudiedAttivita`Spazialidell’Universita`diPadova,Italy n a Receiveddate..............;accepteddate................ J 0 Abstract. A library of 183588 synthetic spectra based on Kurucz’s ATLAS9 models is presented for the far red spectral 2 interval (7653 – 8747 Å). It is characterized by 3500 K ≤ T ≤ 47500 K, 0.0 ≤ logg ≤ 5.0, −3.0 ≤ [M/H] ≤ +0.5, eff 2 0 ≤ Vrot ≤ 500kms−1,ξ = 2kms−1.Thewholegridofspectraiscalculatedforresolvingpowers8500,11500and20000. v Asectionofthegridisalsocomputedfor[α/Fe]=+0.4andformicroturbulentvelocities0and4kms−1.Thelibrarycovers 9 thewavelength rangesand resolutions ofthetwoambitious spectroscopic surveys bytheground experiment RAVEandthe 6 spacemissionGAIA.Cross-sectionsacrossthemulti-dimensionaldata-cubeareusedtoillustratethebehaviourofthestrongest 0 spectrallines.Interpretationofrealdatawillhavetoincludeinterpolationtogridsubsteps.Wepresentasimpleestimateofthe 1 accuracyofsuchaprocedure. 0 4 Keywords.Astronomicaldatabases:spectroscopic–Stars:fundamentalparameters–Surveys:GAIA–Surveys:RAVE 0 / h p 1. Introduction disentangle their age and metallicity. Composite systems in- - o cludenormalellipticalgalaxies(Molla&Garcia-Vargas2000; Observationsinthefarredinterval(7650–8750Å)arebecom- r Saglia et al. 2002; Cenarro et al. 2003), dwarf ellipticals t ingincreasinglyusedfordeterminationofbasicstellarparam- s (Michielsen, De Rijcke & Dejonghe 2003) and active galax- a eters. The advantagesof this intervalare its low sensitivity to ies (van Groningen 1993; Diaz, Terlevich & Terlevich 1989; : v reddening,highphotonbudgetforlate–typestars,goodsensi- Nelson & Whittle 1999; Schinnerer, Eckart & Tacconi 2001; i tivity of modern CCD detectors, and above all richness of its X Marquez et al. 2003). Cenarro et al. (2002) studied the be- spectralfeatures. haviourofCaIIline-strengthindicesintermsofeffectivetem- r a The far red interval includes several important spectral perature, surface gravity, and metallicity. Their analysis was lines (Munari 1999): (a) the K I infrared resonant doublet basedonasetof706realspectra.Amuchlargersyntheticspec- (7664.907 Å, 7698.979 Å), (b) the Na I non-resonant dou- trallibrarypresentedinthispapercanbeusedtocomplement blet (8183.256Å, 8194.821Å), (c) the O I triplet (8446.247, theseresultsonCaIIandotherlinesinthereddomain. 8446.359,8446.758Å),(d)theFeImultiplets60,401andoth- erswithexcitationpotentialsbetween2.17and5.00eV,(e)the Two of the largest forthcoming spectral surveys are cen- headofthePaschenseriesofhydrogen,and,mostimportantly, teredonthefarredspectralinterval.GAIAisthe cornerstone (f )theCaIInon-resonantinfraredtriplet(8498.018,8542,089, 6 mission of ESA, approved for a launch around 2010. It is 8662.140Å).Thelatterispresentinallspectraltypesbetween aimedatprovidingmicro-arsecastrometryand∼10-bandpho- B8 and M. A furtheradvantageis that the intervalof 8400to tometryfor∼ 109 starsbrighterthanV = 20.Brightertargets 8750Åisnearlyfreefromtelluricabsorptions(Munari1999). (V <17.5)willalsobeobservedbyanon-boardspectroscopic TheCaIItripletisapowerfuldiagnostictool:thestrength instrumentoperatinginthe8480–8747Åwavelengthrangeat of Ca II lines depends on metallicity, but it is essentially in- aresolvingpowerR ≡ λ/∆λ = 11500(Katz2003).Theother sensitiveto ageofstellar population(Garcia-Vargas,Molla& survey,RadialVelocityExperiment(RAVE),hasjuststartedin Bressan 1998; Schiavon, Barbuy & Bruzual 2000; Vazdekis April (Steinmetz 2003). This is an internationalcollaboration et al. 2003).These results have been used to study behaviour whichusestheUK-SchmidttelescopeattheAngloAustralian of Ca II in composite stellar populations and to attempt to Observatory(AAO)equippedwithafiber-opticspectrographto obtainspectrainasimilarwavelengthdomain(8410–8750Å) Sendoffprintrequeststo:T.Zwitter and at a resolving power R ∼ 8500. The goal is to observe 2 TomazˇZwitteretal.:Anextensivelibraryofsyntheticspectracoveringthefarred,RAVEandGAIAwavelengthranges Fig.1. Graph of calculated spectra without alpha enhancement and with a micro-turbulent velocity of 2 km s−1. Metallicity is coded with differentsymbolswhichareplottedwithsmallhorizontaloffsetsforclarity.Eachspectrumiscalculatedfor11(T < 7000K)or14(T ≥ eff eff 7000K)differentrotationalvelocitiesandatthreedifferentresolvingpowers(seetext). 35 million stars brighter than V = 16 at declinationssuitable withknownvaluesofphysicalparameterscanyieldmuchmore forAAO.Theprimarymotivationforbothsurveysistoobtain than radial velocity: in fact the effective temperature, gravity, stellar radialvelocities to be used in studies of Galactic kine- metallicity(withcertainelementabundances),rotationalveloc- matics.Butacross-correlationwithalibraryofstellarspectra ity,andthepresenceofdifferentkindsofpeculiaritiescanallbe TomazˇZwitteretal.:Anextensivelibraryofsyntheticspectracoveringthefarred,RAVEandGAIAwavelengthranges 3 determined.ThereforeanysoftwaredevelopmentfortheGAIA Table1.Propertiesofmodelsatdifferentmetallicities.Thefirstthree missionaswellasanalysisofthefirstRAVEdataneedstouse columns give values of metallicity, α-enhancement coefficient and anextensivelibraryofstellarspectrainthefarreddomain.The microturbulent velocity (ξ). The last two columns state if the ”no- same holds for individual spectroscopic studies in this wave- overshooting” approximation totheconvectiontreatmentandifnew opacitydistributionfunctionswereused. length range which are becomingever more numerousowing tothepreparationoftheGAIAmission(seee.g.Munarietal. [M/H] [α/Fe] ξ[kms−1] NOVER ODFNEW 2001,Zwitteretal.2003,Marreseetal.2004). +0.5 0.0 2 yes no +0.2 0.0 2 no no 0.0 0.0 0 yes no 0.0 0.0 2 yes no 0.0 0.0 4 yes no –0.2 0.0 2 no no –0.5 0.0 2 yes no –0.5 0.4 2 yes yes –1.0 0.0 2 yes no –1.0 0.4 2 yes yes –1.5 0.0 2 yes no –1.5 0.4 2 yes yes –2.0 0.0 2 yes no –2.0 0.4 2 yes no –2.5 0.0 2 yes no –3.0 0.0 2 no no –4.0 0.0 2 no no Fig.2. As Fig. 1, but for models with alpha-enhancement ([α/Fe]= in a uniformmanner.So a paralleleffortwaslaunchedtocal- +0.4).Allmodelswerecalculatedforthemetallicities[M/H]=–0.5, culatea gridofsyntheticspectrausingATLAS9modelsfrom –1.0,–1.5,and–2.0. Kurucz.Thefirsttwopapers(Munari&Castelli2000,Castelli & Munari2001)exploredthe gridin the temperature-gravity- metallicity space for non-rotating stars, assuming a micro- turbulent velocity of 2 km s−1. Altogether 952 spectra were presented. These early workswere aimed to coarsely butrapidly ex- ploreanessentiallyunknownwavelengthrangetoassist early planningand instrumentdesign for GAIA. This phase is now over,andthecommunityrequirementsarenowmovingtoward data and analysisreductionpipelines.A muchmoreextended and complete grid is now essential, and to provide one is the aim of this paper. The grid made available with this paper shouldmeetthecommunityrequirementsin testingalgorithm coding for some time to come. The one to be used to ana- lyzetheactualGAIAdatawhentheywillbefinallyassembled around 2015–2018will be computed only in the next decade takingfulladvantagesofthecontinuousadvacementsinthein- putphysics,codingand atomic constantsthat will be reached by that time. The present grid is also timely presented to as- sist with analysis of RAVE spectra that are already routinely obtainedatAAO. Fig.3.AsFig.1,butformodelswithmicro-turbulentvelocitiesof0 The present grid extends earlier calculations by adding and4kms−1.Allmodelshavesolarabundances. more spectra, inclusion of stellar rotation and presentation of results at different spectral resolving powers. Furthermore Systematic observationsof MKK standard stars in the far a limited number of spectra corresponding to enhanced α- red spectral domain were presented by Munari & Tomasella element abundances and different values of micro-turbulent (1999) and by Marrese, Boschi & Munari (2003). It is dif- velocity are presented. The database consists of more than ficult however to obtain high–signal–to–noise–ratio observa- 183500 spectra and is freely available in electronic form via tions to map all relevant combinations of stellar parameters CDSaswellasviatheESAwebserver. 4 TomazˇZwitteretal.:Anextensivelibraryofsyntheticspectracoveringthefarred,RAVEandGAIAwavelengthranges 2. Computationofsyntheticspectra gravity–temperature plane except for hot low-gravity mod- els which are notradiatively stable. Low–temperaturespectra We computed synthetic spectra for the 7650-8750 A inter- (T < 5000K) werecomputedfora sparser setof metallici- eff val for almost all ATLAS9 grids of model atmospheres with tiesduetolargerequirementsofcomputingtime.Thesespectra different metallicities and micro-turbulentvelocities available willbeaddedonlinewhencompleted.Fig.2correspondstoα– at the Kurucz web-site (http://kurucz.harvard.edu).We gener- enhanced cases and Fig. 3 to those with a different value of ally used the NOVER models which differ from the previous microturbulentvelocity.Notethateachofthesymbolsactually Kurucz (1993a) models for the convection in that they were correspondsto11(T < 7000K)or14(T ≥ 7000K)spec- eff eff recomputed by Castelli with the overshooting option for the trawithdifferentvaluesofrotationalvelocity(seeTable1)and convectionswitched off (Castelli et al. 1997). When NOVER tothreedifferentresolvingpowers. grids were not available, we used the Kurucz (1993a) mod- Allspectraareavailableasasciifilesgroupedintodifferent els. Because new ATLAS9 models based on updated Opacity directoriesaccordingtotheirresolvingpowerandtemperature. DistributionFunctions(ODFNEWmodels)havebeenrecently ThefilenamesareinastandardformatidentifiedinTable3.So computed (Castelli & Kurucz 2003), we used them for a few f765875v010r20000m05t05250g45k2nover.asccorrespondsto metallicities with T ≥ 5000 K and for all the spectra with eff a flux calibrated spectrum between 7650 and 8750 Å, with Teff ≤4750K.Infact,themaindifferencebetweentheNOVER V = 10 km s−1, λ/∆λ = 20000, [M/H] = −0.5, T = rot eff models and the ODFNEW models is the use of new Opacity 5250K,logg=4.5,ξ =2kms−1,andnoα–enhancement. DistributionFunctions(ODFs)computedwithTiO linesfrom The calculated grid is by far too large to present all of Schwenke(1998)insteadoffromKurucz,andincludingH O 2 its properties here, so we explore only sample cross-sections lines, not considered at all in the previous ODFs. Also the across the grid. Figure 4 is a greyscale presentation of the ODFNEW models computed up to now are available at the spectrawhichwerenormalizedtoenhancelinevisibility.Each Kurucz web-site (ODFNEW grids). Details of the adopted panelshowsvariationalongoneparameteraxis, startingfrom modelsaregiveninTable1. aspectrumofanon-rotatingK0Vtypestar.Notethatallspec- The synthetic spectra were computed with the SYNTHE trawerecalculatedinawiderwavelengthdomain,butonlythe code of Kurucz (1993b) at a resolving power of 500000. 8400–8750Årangeisplottedforclarity. The source of atomic data was Kurucz & Bell (1995), the The temperature panel of Fig. 4 clearly shows the impor- source of molecular data, except TiO, was Kurucz (1993c), tance of sharp Ca II lines for any radial velocity study. The while the source of TiO data was Kurucz (1999a), who sup- panel is a textbookexample of the expected behaviourof the plied Schwenke’s (1998) computations in SYNTHE format. Paschen lines and metallic lines. The metallicity panel illus- Di-atomicmoleculesusedinmodelcomputationarediscussed trates that the Ca II lines remain strong even at the lowest in Kurucz (1992) and Kurucz (1993d). The source for H O 2 metallicities and the gravity panelshows their presence in all dataisPartridge&Schwenke(1997),asdistributedbyKurucz luminosityclasses.Therotationalvelocityandresolvingpower (1999b). The solar abundances are from Anders & Grevesse panelsshowhowthelinesgetsmearedathighrotationalveloc- (1989), except for the spectra based on the ODFNEW mod- itiesorifobservingatlowresolvingpowers. els. In this case the solar abundances are from Grevesse & The steps in the calculated grid are relatively small, but Sauval(1998).Eachspectrumcomputedforagivenmodelat- the coverage is not continuous. As an example, the step in mospherewas then broadenedfor severalvalues of rotational temperature is 250 K (for T ≤ 10000 K). This is larger eff velocityV andforthreeresolvingpowers:R=8500,11500, rot than the baselined accuracy of temperature determination for and20000byassumingaGaussianinstrumentalprofile.These bothGAIAandRAVEsurveys.Sothegridwillhavetobein- resolutionswere chosenbecause they correspondto the base- terpolated to smaller steps. Figure 5 illustrates the errors in- lined values for the RAVE survey, the GAIA mission and a troduced by a simple linear interpolation. At a certain grid typicalCassegrain-fedEchellespectrograph,respectively.The point i with the parameter values p we compare the true i resultingfinalsyntheticspectrawereresampledto2pixelsper synthetic spectrum S(p) with the spectrum S′ obtained from i resolutionelement(R=8500,11500)or2.5pixelsperresolu- a linear combination of spectra at neighbouring grid points: tionelement(R=20000). S′ = fi−1S(pi−1)+ fi+1S(pi+1). The weights fi−1 and fi+1 are optimizedsothatR[S(pi)−S′]2dλisminimal.Thedifference between the interpolatedvalues of parameters p′ and the true 3. Gridofsyntheticspectra ones p canthenbeexpressedinunitsofagridstep: i Rofansgyensthaentidc sstpeepcstrfaoraraellgsiveevneninbaTsaicblepa2ra.mWeeterasdoopftthaecgormid- ∆≡ p′−pi = fi+1(pi+1−pi)+ fi−1(pi−1−pi) (1) monconventionofquotingmetallicityandenhancementofα– pi+1−pi−1 (fi+1+ fi−1)(pi+1−pi−1) elementsin logarithmicunits with respectto the solar values. Figure5showsthatlinearinterpolationisaccurateto ∼< 10% Thegravityisinlogarithmiccgsunits.Detailsofallcalculated ofthe gridstep.Note thatthisisthe worstcase scenario,cor- parametercombinationsare given in Figures1–3.Spectra are respondingtoareconstructionofthespectrumatthemiddleof placed in gravity–temperature planes, with metallicity coded thegridinterval.Linearinterpolationwouldbemoreaccurate byasymboltype.Figure1coversthemostnumerousspectra, for spectra lying closer to one of the grid points. The results i.e. the oneswith no α–enhancementand with microturbulent couldbeimprovedfurtherbyemployingnon-linearinterpola- velocity of 2 km s−1. The computed spectra cover the whole tionschemes.Onemayconcludethatlinearinterpolationitself TomazˇZwitteretal.:Anextensivelibraryofsyntheticspectracoveringthefarred,RAVEandGAIAwavelengthranges 5 Fig.4. Cross-sections through the multidimensional [Temperature, Metallicity, Gravity (cm s−2), Rotation, Resolving power] data-cube of computedspectra.Parametervaluescorrespondtoanon-rotatingK0Vtypestar(T = 5250K,[M/H] = 0.0,logg = 4.5,V = 0kms−1, eff rot ξ =2kms−1,λ/∆λ=20000),exceptfortheparameterwhichisallowedtovaryonaparticularplot.Allspectrawerenormalizedbyasingle cubicsplinefittotheirupperenvelope.Thenumberofgreyscalehues(identifiedatthetopofthefigure)isintentionallykeptsmall,soasto allowreadingthedepthofindividualspectrallinesfromthegraph.Ionsgivingrisetothemostprominentspectrallinesareidentifiedatthe top.Syntheticspectraspanawiderwavelengthrangeandincludevariationofadditionalparameters(α-enhancement,differentmicro-turbulent velocities)notshownhereforclarity. does not introduce errors exceeding 25 K in temperature (for ratio complicates their determination (Bailer-Jones 2003, see T < 10000K),0.05dexin [M/H]orlogg and1 kms−1 in also Fig. 1in Zwitter2002).Also,spectra ofrealstars donot eff V . Note thatothererrorsaremoreimportant:degeneracyof correspond exactly to the synthetic spectra due to their pecu- rot parameter values fitting spectra with a limited signal to noise liarities (e.g. emission lines, varied abundances of individual 6 TomazˇZwitteretal.:Anextensivelibraryofsyntheticspectracoveringthefarred,RAVEandGAIAwavelengthranges Table2.Generalrangesofparametersofthespectra.Notallcombinationswerecalculated(fordetailsseeFigs.1–3). Parameter Range SteporValues Temperature 3500...47500K step250K(T ≤10000K),500or1000K(T >10000K) eff eff Metallicity +0.5...–3.0 step0.5&valuesof+0.2and–0.2 Gravity 0.0...5.0 step0.5 α–enhancement 0.0...0.4 (0.0,0.4) Micro-turbulence 0...4kms−1 (0,2,4kms−1) Rotationvelocity 0...100kms−1(T <7000K) (0,2,5,10,15,20,30,40,50,75,100kms−1) eff 0...500kms−1(T ≥7000K) (0,10,20,30,40,50,75,100,150,200,250,300,400,500kms−1) eff Resolvingpower 8500...20000 (8500,11500,20000) Wavelength 7653...8747Å 2pixelsperresolutionelement(2.5pixelsatR=20000) elements, non-LTE effects, and non-static atmospheric struc- Table3.Filenamesofindividual spectra.Meaningofcorresponding ture). charactersisgiven. character meaning 1 f:fluxedspectrum(ergs−1cm−2Åsteradian−1) n:normalizedtothecontinuumflux 2–4 startingwavelength(nm) 5–7 endingwavelength(nm) 9–11 rotationalvelocityV (kms−1) rot 13–17 resolvingpowerR 18 p:[M/H]≥0.0 m:[M/H]<0.0 19–20 10×ABS([M/H]) 21 t:noα–enhancement a:[α/Fe]=0.4 22–26 effectivetemperatureT (K) eff 28–29 10×logg 31 micro-turbulentvelocityξ(kms−1) 4. DiscussionandConclusions Thegridof syntheticspectrain the 7653–8747Åintervalpre- sented here is the most extensive so far. Altogether the grid contains 183588 ascii files. They span three spectral resolu- tions correspondingto a typical Echelle spectrographand the spectrographs of the RAVE and GAIA surveys. This should facilitate comparisonof the results obtainedwith differentin- struments. Spectra with other resolving powers (R < 20000) canbeeasilycomputedfromthegrid. The synthetic spectra we have computed can be used as templatesforthe determinationofradialvelocity,theprimary goaloftheRAVEandGAIAsurveys.Theyalsopermittheuser to derive the primary parametersof stellar atmospheres: tem- perature, metallicity, gravity and rotational velocity. The grid includessubsetsofspectracomputedfor+0.4enhancedabun- dances of the α elements and for different values of the mi- Fig.5. Errors introduced by linear interpolation of the grid. Each graph explores variation of one parameter, with the values of other croturbulentvelocity.Itwas shownthatthegridcan beeasily parameters being fixed at: T = 5250 K, [M/H]=0.0, logg = 4.5, interpolatedtoapproximatespectrawithparametervaluesbe- eff V =0kms−1,R=20000.Theordinateisthedifferencebetweenthe tweenthestepsinthegrid.Theerrorsofparameterscomputed rot value obtained from linear grid interpolation of the given parameter with a simple linear interpolation do not exceed 10% of the andthetruevalue,expressedinunitsofthegridstep.Notethatlinear gridstep.Thecomputedspectradependontheadoptedvalues interpolationyieldsvaluesaccurateto ∼< 10%ofthegridstep. ofindividualelementabundances.Inparticularthesolarspec- trum computedwith Anders & Grevesse’s (1989)solar abun- dancesforalltheelements(Fig.6)featurestoostrongOIand TomazˇZwitteretal.:Anextensivelibraryofsyntheticspectracoveringthefarred,RAVEandGAIAwavelengthranges 7 Fig.6.Comparisonofcomputedandobservedspectra:(a)observedsolarfluxatlasresampledtoR=20000(Kuruczetal.1984);(b)computed spectrum(T =5750K,[M/H]=0.0,logg= 4.5,V =2kms−1,ξ =2kms−1,R=20000)(c)sameas(b)butfor[M/H]=-0.5.Allspectra eff rot areplottedinnormalizedflux.Thetopmosttwospectrahavebeenverticallyoffsetforclarity. Fe I lines. This is consistent with a recently suggested lower edges financial support from the Slovenian Ministry for Education, oxygensolarabundancelog(N(O)/N(H))=−3.31dex(Prieto, Science and Sports, CNRS and the Royal Society as well as warm Lambert & Asplund 2001) and with a lower Fe I abundance hospitality of GAIA groups at the Observatoire de Meudon and the log(N(Fe)/N(H)) = −4.5dex(BellotRubio& Borrero2002) MullardSpaceSciencesLaboratorywherepartofthisworkhasbeen completed. U.M. acknowledges financial support from the Italian as obtained from two and three dimensional hydrodynamical Space Agency contract ASI-I-R-117-01 and the Italian Ministry of modelatmospheres.Thiscomplementsclassicalmethodsofdi- EducationCOFIN2001grant. WethankR.Sordoforassistingwith agnosticlineratiosforthefarredspectralintervaldiscussedby partsofthegridcomputation. Munari(2002). Properties of Kurucz ATLAS model atmospheres in the contextoftheredspectralintervalandtheGAIAmissionhave alreadybeenreviewedbyNesvaciletal.(2003).Plez(2003)es- References timatedthepotentialoftheMARCSmodels.Hauschildtetal. AndersE.,GrevesseN.1989,Geochim.Cosmochim.Acta,53,197 (2003)presentedthecomputationsofnon-stationaryandnon- Bailer-Jones C.A.L. 2003, in GAIA Spectrsocopy, Science and sphericallysymmetricatmosphereswithsignificantamountsof Technology(U.Munari,ed.),ASPConf.Ser.,298,199 dust.FinallyThe´venin,Bijaoui&Katz(2003)reviewedthede- BellotRubioL.R.,BorreroJ.M.2002,A&A,391,331 termination of chemicalabundancesfrom GAIA spectra. The CastelliF.,GrattonR.G.,KuruczR.L.1997,A&A,318,841 commonconclusionis thatthe observationalpotentialsof the CastelliF.,MunariU.2001,A&A,366,1003 CastelliF.,KuruczR.L.2003, inModellingof StellarAtmospheres, GAIA mission ask for improvements in the computation of IAUSymp.210(N.E.Piskunovetal.,eds.),inpress synthetic stellar spectra. The RAVE collaboration is starting CenarroA.J.,GorgasJ.,CardielN.,VazdekisA.,PeletierR.F.2002, to obtain a very large number of high quality spectra in the MNRAS,329,863 far red spectral interval. They guarantee that this wavelength CenarroA.J.,GorgasJ.,VazdekisA.,CardielN.,PeletierR.F.2003, rangeisrapidlyrisinginimportance.Wearecurrentlyextend- MNRAS,339,L12 ing the grid presented here to a larger wavelength interval. A DiazA.I.,TerlevichE.,TerlevichR.1989,inActiveGalacticNuclei continuouscoveragefrom250nmto1050nmshouldfacilitate (D.E.Osterbrock&MillerJ.S.,eds.),560 acomparisonofspectraobtainedinotherwavelengthdomains Garcia-VargasM.L.,Molla´M.,BressanA.1998,A&AS,130,513 to hugeobservationalsets comingfromthe RAVE andGAIA GrevesseN.,SauvalA.J.1998,SpaceSci.Rev.,85,161 surveys. vanGroningenE.1993,A&A,272,25 Hauschildt P.H., Allard F., Baron E., Aufdenberg J., Schweitzer Acknowledgements. We thank the anonymous referee for very A. 2003, in GAIA Spectrsocopy, Science and Technology (U. relevant comments on the first version of the paper. T.Z. acknowl- Munari,ed.),ASPConf.Ser.,298,179 8 TomazˇZwitteretal.:Anextensivelibraryofsyntheticspectracoveringthefarred,RAVEandGAIAwavelengthranges Katz D. 2003, in GAIA Spectrsocopy, Science and Technology (U. Munari,ed.),ASPConf.Ser.,298,65 KuruczR.L.,FurenlidI.BraultJ.,TestermanL.,1984.NationalSolar Observatory,Sunspot,NewMexico,SolarFluxAtlasfrom296to 1300nm KuruczR.L.1992,RvMexAA,23,45 KuruczR.L.1993a,ATLAS9StellarAtmospheresProgramsand2km s−1grid,CD-ROMNo.13 KuruczR.L.1993b,SYNTHESpectrumSynthesisProgramsandLine Data,CD-ROMNo.18 KuruczR.L.1993c,Diatomicmoleculardataforopacitycalculations, CD-ROMNo.15 Kurucz R.L. 1993d, in Molecules in the Stellar Environment, IAU Coll.146(ed.U.G.Jorgensen),282 KuruczR.L.,BellB.1995,AtomicLineList,CD-ROM,No.23 KuruczR.L.1999a,TiOLineList,CD-ROMNo.24 Kurucz R.L. 1999b, H2O Linelist from Partridge and Schwenke (1997),noIDs,CD-ROMNo.26 MarreseP.M.,BoschiF.,MunariU.2003,A&A,406,995 MarreseP.M.,MunariU.,SivieroA.,MiloneE.F.,ZwitterT.,Tomov T.,BoschiF.,BoecheC.2004,A&A,413,635 Marquez I., Masegosa J., Durret F.,Gonzalez Delgado R.M.,Moles M.,MazaJ.,PerezE.,RothM.2003,A&A,409,459 MichielsenD.,DeRijckeS.,DejongheH.2003,ApJ,597,L21 Molla´M.,Garcia-VargasM.L.2000,A&A,359,18 MunariU.1999,Balt.A.8,73 MunariU.,TomasellaL.1999,137,521 MunariU.,CastelliF.2000,A&AS,141,141 Munari U., Tomov T., Zwitter T., Milone E.F., Kallrath J., Marrese P.M.,BoschiF.,PrsˇaA.,TomasellaL.,MoroD.2001,A&A,378, 477 MunariU.2002,inGAIA:AEuropeanSpaceProject(O.Bienayme andC.Turon,eds.),EASPubl.Ser.,2,39 NelsonC.,WhittleM.1999,Adv.SpaceRes.,23,891 Nesvacil N., Stu¨tz C., Weiss W.W. 2003, in GAIA Spectrsocopy, Science and Technology (U. Munari, ed.), ASPConf. Ser.,298, 173 PartridgeH.,SchwenkeD.W.1997,J.Chem.Phys.,106,4619 Plez B. 2003, in GAIA Spectrsocopy, Science and Technology (U. Munari,ed.),ASPConf.Ser.,298,189 PrietoC.A.,LambertD.L.,AsplundM.2001,ApJ,556,L63 Saglia R.P., Maraston C., Thomas D., Bender R., Colless M. 2002, ApJ,579,L13 SchiavonR.P.,BarbuyB.,BruzualG.2000,ApJ,532,453 SchinnererE.,EckartA.,TacconiL.J.2001,ApJ,549,254 Schwenke D.W. 1998, Chemistry and Physics of Molecules and Grains in Space. Faraday Discussions No. 109. The Faraday DivisionoftheRoyalSoc.ofChem.,London,.321 SteinmetzM.2003,inGAIASpectrsocopy,ScienceandTechnology (U.Munari,ed.),ASPConf.Ser.,298,381 The´veninF.,BijaouiA.,KatzD.2003,inGAIASpectrsocopy,Science andTechnology(U.Munari,ed.),ASPConf.Ser.,298,291 VazdekisA.,CenarroA.J.,GorgasJ.,CardielN.,PeletierR.F.2003, MNRAS340,1317 ZwitterT.,2002,A&A,386,748 ZwitterT.,MunariU.,MarreseP.M.,PrsˇaA.,MiloneE.F.,BoschiF., TomovT.,SivieroA.2003,A&A,404,333