AnEfficient Algorithm forDensity Functional Theory SimulationofLargeQuantum DotSystems Hong Jiang,1,2,3 Harold U. Baranger,2,∗ and Weitao Yang1,† 1Department of Chemistry, Duke University, Durham, North Carolina 27708-0354 2Department of Physics, Duke University, Durham, North Carolina 27708-0305 3College of Chemistryand Molecular Engineering, Peking University, Beijing, China 100871 3 (Dated:February2,2008) 0 0 Kohn-Shamspin-densityfunctionaltheoryprovidesanefficientandaccuratemodeltostudyelectron-electron 2 interactioneffectsinquantumdots,butitsapplicationtolargesystemsisachallenge.Anefficientalgorithmfor n thedensity-functionaltheorysimulationofquantumdotsisdeveloped, whichincludestheparticle-in-the-box a representationoftheKohn-Shamorbitals,anefficientconjugategradientmethodtodirectlyminimizethetotal J energy,aFourierconvolutionapproachforthecalculationoftheHartreepotential,andasimplifiedmulti-grid 3 techniquetoacceleratetheconvergence. Thenew algorithmistestedina2Dmodelsystem. Usingthisnew 1 algorithm, numerical studies of large quantum dots with several hundred electrons become computationally affordable. ] l PACSnumbers: l a h - I. INTRODUCTION form(FFT)methodcanbeusedtotakefulladvantageofthe s periodicityofcrystalstructures. Inprinciple,thePWmethod e m is validonlyfor periodicsystems, butaperiodicsystems can Quantumdots(QD)are onekindof nano-deviceinwhich betreatedbyintroducingthesuper-celltechnique.21Inrecent . the motion of electrons is quantized in all three dimen- t years, severalgroupshave been advocatingthe use of basis- a sions through the lateral confinement of a high-mobility m modulation-doped two-dimensional electron gas in a semi- freerealspacemethodsforelectronicstructurecalculationsof finitesystems,inwhichthewavefunctionsarerepresentedin - conductor hetero-structure.1,2,3 Both quantum interference d realspace,andthekineticenergyoperatorisdiscretizedbya and electron-electron interactions play important roles, and n high-orderfinitedifference(FD)method.23Withagivenrep- their interplay underlies many properties that are fascinat- o resentation, there are various methods to solve the resultant ingintermsofbothfundamentalmesoscopicphysicsandfu- c numericalKS equation. Roughlythey fallinto two different [ ture technical applications. Various theoretical models have types: methods that minimize the total energy directly, and been developed to explain experimental discoveries and to 1 those thatsolve the KS equationin a self-consistentway. In predict new properties. The Kohn-Sham (KS) density func- v addition, for DFT simulations of finite systems, another im- tionaltheory(DFT)method4,5,6 providesanaccuratenumeri- 6 portantissueisthecalculationoftheHartreepotential. 7 calmodeltostudyelectron-electroninteractioneffectsinQD 1 systems.7,8,9,10,11,12,13,14,15,16,17,18 In spite of its comparatively Aiming at modelling QD systems efficiently, we have de- 1 lowcomputationalcost,previousDFTcalculationsarelimited velopednewtechniquesinboththenumericalrepresentation 0 tosystemsinwhichtheelectronnumberisgenerallylessthan ofKS orbitalsand the solutionofthe KS equation. We note 3 a few tens. In many experimental cases, however, the elec- thatin QD systems, the wave functionsvanishat the bound- 0 tron numbers involved are more than several hundred. The aries, and in some cases eventhe hard-wallboundarycondi- / t main theoretical approaches in the regime of large number tion is used. For a function in a rectangular box with zero a m of electrons are statistical methods2,3,19,20 which are usually boundaryvalues,themostnaturalbasissetistheparticle-in- based on some generalassumptionswhose validity, in many the-box (PiB) basis set. The kinetic energy operator is di- - d cases,isyettobejustified. Itisthereforedesirabletoexplore agonalin the PiB space and the transformationbetween real n the large dot regime directly by using numerically more ac- and PiB space can be efficiently performedby the fast sine- o curatemodelssuchasDFT.Thisimposesademandingcom- transform (FST) method, which is a variant of the FFT. For c putationaltaskbecausetoobtainmeaningfulstatistics, many thesolutionoftheKSequation,wemodifiedTeter,Payneand : v calculationswith several hundredelectrons need to be done. Allan (TPA)’s band-by-bandconjugate gradientmethod24 to i It is therefore compelling to develop more efficient numeri- getamoreefficientdirectminimizationapproach. X caltechniquesforDFTsimulationofQDsystems;thisisthe The outline of the paper is as follows. In the next sec- r a mainobjectofthecurrentstudy. tion, after a simple description of the KS-DFT method, we Two key issues are involved in the numerical implemen- present the main components of our algorithm: (1) the PiB tation of the KS-DFT method:21,22 (1) the numerical repre- representation of the KS equation; (2) a modified band-by- sentationofwavefunctionsandtheKSHamiltonian,and(2) band conjugate gradient method for the direct minimization the solution of the numerical KS equation. While local ba- ofthe KS totalenergy;(3)a Fourierconvolutionmethodfor sis sets (mainlyGaussian-typeorbitals) dominate in conven- thecalculationoftheHartreepotentialthatwasdevelopedby tional quantum chemistry of molecular systems, the plane MartynaandTuckerman25inthePWpseudo-potentialcalcu- wave (PW) basis,21,22 combined with the pseudo-potential lations;and(4)asimplifiedmulti-gridtechniquetoaccelerate method,iswidelyusedintheabinitioelectroniccalculations theconvergence.InSectionIII,thenewalgorithmistestedin of various material systems, in which the fast-Fourier trans- a2DmodelQDsystemwithelectronnumberN =100. Sec- 2 tionIVsummarizesthemainresultsandconcludesthepaper. approximation(GGA)areavailable,ithasbeenshownthatthe GGAresultsareclosetothosefromLSDAcalculationsinQD systems.13 Intermsoftheimplementation,thecalculationof II. METHOD V istrivialwhenthespindensitiesareinrealspaceasisthe xc caseinouralgorithm,butthecalculationofV requiresmore H A. Kohn-Shamspin-density-functionaltheory effortsaswillbeshownlater. Considering the important role played by electron spin in QD systems, we take the effect of spin polarization explic- B. PiBRepresentation itlyintoaccountintheframeworkofKohn-Shamspin-density functional theory (KS-SDFT).4,6 In KS-SDFT, the ground To simplify the notation, we will take 1-D systems as an state energy of an interacting system with electron number example,thegeneralizationtohigherdimensionalcasesbeing N andthetotalspinS in thelocalexternalpotentialVext(r) straightforward.Anyregularfunctionf(x)thatislocalizedin iswritten asa functionalof spindensitiesnσ with σ = α,β thefiniteregion0<x<Lwithzeroboundaryvaluescanbe denotingspin-upandspin-down,respectively, expandedas E nα,nβ =T nα,nβ + n(r)V (r)dr 2 nπx (cid:2) (cid:3) s(cid:2) (cid:3) Z ext f(x)= CnrLsin L (7) 1 n(r)n(r′) Xn + drdr′+E nα,nβ . (1) 2Z |r−r′| xc(cid:2) (cid:3) andtheexpansioncoefficientsCnare (Effectiveatomicunitsareusedthroughthepaper:forGaAs- 2 L nπx AlGaAsQDs,thevaluesare10.08meVforenergyand10.95 C = f(x)sin dx. (8) nm for length.) Ts nα,nβ is the kinetic energy of the KS n rLZ0 L non-interactingrefe(cid:2)rencesy(cid:3)stem whichhasthe sameground state spin densityas the interactingone, andE nα,nβ is Integrating Eq. (8) numerically on a set of equally spaced xc discretepoints x j∆x j L usingtheextendedtrape- theexchange-correlationenergyfunctionalThesp(cid:2)indensi(cid:3)ties { j ≡ ≡ Nx} nσ satisfytheconstraint nσ(r)dr = Nσ withNα = (N + zoidalformula26leadsto 2S)/2andNβ =(N 2RS)/2. Assumingthattheg−roundstateofthenon-interactingrefer- 2 Nx−1 πjn √2L C = ∆x f sin =F (9) encesystemisnon-degenerate,thenon-interactingkineticen- n rL j N n N ergyis givenby T nα,nβ = ψσ 1 2 ψσ , and Xj=1 x x s i,σ i −2∇ i thegroundstatespin(cid:2)density(cid:3)isunPiquel(cid:10)yexp(cid:12)ressed(cid:12)as (cid:11) withf f(x )and (cid:12) (cid:12) j j ≡ Nσ nσ(r)= ψσ(r)2, σ =α,β. (2) Nx−1 πjn Xi | i | Fn ≡ Xj=1 fjsin Nx ≡FST{fj} (10) Hereψσ arethelowestsingle-particleorbitalswhichareob- tainedfirom where FST fj denotes the fast sine-transform of the data { } f . j Hσ ψσ(r)=εσψσ(r), (3) { O}neofthekeyingredientsinouralgorithmistheactionof KS i i i thesingle-particleHamiltonianoperatoronwavefunctions, withtheKSHamiltonianH definedas KS Hf(x)=Tf(x)+Vf(x), (11) 1 Hσ 2+V (r)+V [n;r]+Vσ[nα,nβ;r]. (4) KS ≡−2∇ ext H xc the efficiency of which is critical for the performanceof the V [n;r] and Vσ[nα,nβ;r] are the Hartree and exchange- wholealgorithm.Whereasthepotentialenergyoperatorisdi- H xc correlationpotentials,respectively, agonalinrealspace,thekineticenergyoperatorisdiagonalin PiB space. Wave functions can be transformed between the n(r′) twospacesefficientlybythefastsinetransform. Inouralgo- V [n;r] d3r′, (5) H ≡ Z r r′ rithm,wavefunctionsareindiscreterealspace fj ,andthe | − | application of the potential energyoperatoris t{here}foretriv- δE nα,nβ Vσ[nα,nβ;r] xc . (6) ial, V f = V f , whereV is the value ofthe potential xc ≡ δn(cid:2)σ(r) (cid:3) { j} { j j} j atthepointx . Thekineticenergyoperatorisappliedtowave j functionsinPiBspace, We have used the local spin-density approximation (LSDA)4,6 for E , which is widely used for the modelling xc ¯h2 2 ¯h2k2 nπx of material systems. Although more accurate exchange- Tf(x) 2f(x)= F n sin , (12) n correlationfunctionalformssuchasthegeneralized-gradient ≡−2m∇ Nx Xn 2m L 3 withk =nπ/L,whichinthediscreteformbecomes where n T{fj}= N2 FST{Fn¯h22mkn2}. (13) γim = ζmhζ−im1 |ζζimm−i1 (16) x i i (cid:10) (cid:12) (cid:11) ThePiBrepresentationformulatedaboveiscloselyrelated withγ1 = 0. Theconjugatevecto(cid:12)ris furtherorthogonalized to the PW method. In fact, for finite systems with soft-wall tothepiresentband ψm andnormalized(Nisdenotedasthe boundaries, the two representations are numerically equiva- | i i normalizationoperator), lent. Mathematically, however, they are different: The PiB basissetisrealandthezeroboundaryconditionisimposedby ϕ′m =N(1 ψm ψm ) ϕm (17) thebasissetitself,butinthePWcasethebasisfunctionsare | i i −| i ih i | | i i complex and the wave functionsare forced to be zero at the Thenewwavefunctionforthei-thorbital ψm+1 isformed i boundariesby the external potential of systems under study. fromthelinearcombination (cid:12) (cid:11) (cid:12) ThePWmethodwillfailinthecaseofthehard-wallbound- aryproblem,whichisquitecommoninthestudiesofquantum ψm+1 = ψm cosθ + ϕ′m sinθ (18) i | i i min | i i min dots,butthePiBmethodisstillvalid. (cid:12) (cid:11) which is g(cid:12)uaranteedto remain normalizedand orthogonalto all other orbitals. θ is obtained by minimizing the to- min C. Direct-minimizKaotihonn-cSohnajmugeaqtueagtriaodnientmethodforthe tϕal′menesrignyθ.aIsnaTfPuAn’cstaiolgnoorifthθmw,2i1t,2h4|θψi(θi)sid=eter|mψiminiedcobsyθth+e | i i min followingapproximatescheme:Thetotalenergyasafunction In direct minimization approaches, the KS total energy ofθisapproximatedbyE(θ) Eavg+A1cos2θ+B1sin2θ; ≈ functional is minimized directly over orbital wave functions thethreeunknowns,Eavg,A1andB1,aredeterminedaccord- underorthonormalconstraints. Wehavemadeseveralimpor- ingtothreepiecesofinformation: E(θ = 0), ∂E(θ) and ∂θ |θ=0 tantmodificationstoTPA’sband-by-bandconjugate-gradient E(θ =π/300). scheme to obtain higher efficiency. Here we give an outline Herewe proposea moreefficientapproximateschemefor of the algorithm, and emphasize the modifications we have thedeterminationofθ .ThederivativeofE(θ)withrespect min made. toθcanbeobtainedfrom The basic idea of a band-by-band scheme is to minimize ∂E(θ) the total energy over one band (or orbital) at a time, which, =2 ϕ′m H (θ) ψm cos2θ compared to other conjugate-gradient schemes,27,28 has the ∂θ h i | KS | i i following advantages: (1) much lower requirement for stor- −(hψim|HKS(θ)|ψimi−hϕ′im|HKS(θ)|ϕ′imi)sin2θ age space, (2) simpler implementation, and (3) particularly (19) in our algorithm, an efficient approximateline-minimization scheme,aswillbeshown. AssumingH (θ) H (0),from ∂E(θ) =0weget KS ≈ KS ∂θ Firstthesteepestdescent(SD)vectorforthei-thorbitalat them-thiterationiscalculatedfrom 1 B θ = tan−1 (20) min 2 A |ζimi=1− |ψjihψj|(λmi −HKS)|ψimi (14) with Xj6=i A= ψm H (0) ψm + ϕ′m H (0) ϕ′m (21) withλm = ψm H ψm (tosimplifythenotation,weuse −h i | KS | i i h i | KS | i i i h i | KS| i i Dirac’s state vector notation and drop the spin index in the and followingformulation). InTPA’salgorithm,theSDvectoris preconditioned before it is used to build the conjugate vec- B =2hϕ′im|HKS(0)|ψimi. (22) tor.Inourcalculations,however,itwasfoundthatalthoughin Theunderlyingapproximationinourschemeissimilartothat manycasespreconditioningdoesacceleratetheconvergence, of TPA’s, but our scheme is much more efficient in terms of itseffectisnotalwayspositive.Ontheotherhand,thecompu- computationaleffort: InTPA’sscheme,ateachbanditeration tationaloverheadinthepreconditioningstep,whichinvolves thetotalenergymustbecalculatedtwice, i.e. E(θ = 0)and anotherorthogonalizationprocessaswellastheactionofthe E(θ =π/300);inourscheme,themosttime-consumingstep preconditioningoperatoron the SD vector,can be expensive istheactionofH on ϕ′m ,whichismuchfasterthanthe forlargesystems. Asshownlater,byusingasimplifiedmulti- KS | i i calculation of the total energy. Considering further the fact gridtechnique,wecanachievefastconvergenceevenwithout thatthetotalnumberofbanditerationscanbeverylarge,we preconditioningoftheSDvectors. The conjugate vector ϕm is then constructed as a linear note that an efficient line-minimizationscheme such as ours combinationoftheSDve|ctoiriζm andthepreviousconjugate iscrucialtoreducethecomputationaleffort. | i i InTPA’s algorithm,after thewave-functionis updatedac- vector, cordingto Eq. (18), the Kohn-ShamHamiltonianis updated ϕm = ζm +γm ϕm−1 (15) immediately,whichinvolvesthereconstructionofV (r)and | i i | i i i i H (cid:12) (cid:11) (cid:12) 4 V (r)accordingtothenewdensity.Thisisactuallyquiteex- xc pensiveforlargesystems. Ontheotherhand,weexpectthat theKSHamiltonianwillnotexperiencelargechangesinside theiterationsofasingleorbital. Soinouralgorithm,weup- dateH aftereveryN banditerations,andtheoptimal KS update valueofN willbeexploredinthenextsection. update In each orbital, the proceduredescribed above is repeated N times; the iterations are then started on the next or- band bital. After the wave functionsof all orbitals are updated in thisway,thetotalenergyiscalculatedandiscomparedtothat ofthepreviouscycletodetermineif thefinalconvergenceis achieved. The main parameters in the algorithm are N band and N . Their effects on the performance of the algo- update rithmwillbetestedindetailinthenextsection. FIG.1: Illustrationof theFourierconvolution methodforthecal- culationoftheHartreepotentialinfinitesystems. Theoriginalgrid wherethedensityandpotentialaredefinedisextendedintodoubled D. CalculationofVH space. Thedensityintheextended regionissettozero. Imposing theperiodicboundaryconditionforthisextendedgrid,theunphysi- calinteractionbetweenneighboringsuper-cellscanbeavoided. For finite systems, the simplest and perhaps most ineffi- cientway to calculate V is by directnumericalintegration, H which is feasible only for small systems. Another widely- as used approachis to solve the Poisson equationequivalentto Eq. (5). Though the Poisson equation itself can be solved n(r) ifr Ω with great efficiency, the calculation of boundaryvalues can n2L(r)=(cid:26) 0 othe∈rwise (24) be quite expensive even by using efficient multipole expan- siontechniques. Additionally,thePoissonsolverapproachis Imposing periodic boundary conditions to both the density valid only for 3D systems; in the case of 2D systems, there andthe Coulombinteractionkernelin the extendedgrid, the isnoPoissonequationequivalenttoEq. (5). Inrecentyears, potentialcanbecalculatedaccordingtotheconvolutiontheo- several schemes have been proposed to extend the conven- rem, tional Fourier convolution method to finite systems.25,29,30,31 InparticularwehaveincorporatedMartynaandTuckerman’s V (r)= n (k)v (k)eik·r (25) H 2L c method25 into our algorithm. Considering that the Martyna- Xk Tuckermanmethod was developedmainly for the modelling where n (k) and v (k) are respectivelyfinite Fourier inte- of molecular and material systems within the plane-wave 2L c gralsofthedensityandtheCoulombinteractionkernelinthe pseudo-potentialframework,we willformulatethe approach extendedgrid, herewithsomedetail. The calculation of the Hartree potential is straightforward 1 for periodic systems, but this is not the case for finite aperi- n (k) = n (r)e−ik·rdr, (26) 2L 2L odicsystems. ThepotentialV (r)hastheformoftheconvo- Ω2L ZΩ2L H lution between the density and the Coulombinteraction ker- v (k) = v (r)e−ik·rdr (27) nel, v (r) = 1/r, whichhasthefollowingsimplerelationin c Z c c Ω2L theFourierspace,26 whereΩ isusedtodenoteboththeextendgridanditsvol- 2L V˜ (k)=n˜(k)v˜ (k), (23) ume(orareainthe2Dcase). H c While n (k) can be easily obtained from the discrete 2L wheref˜(k)referstotheFouriertransformoff(r). Eq.(23)is FouriertransformofitsrealspacevaluesbyFFT,thecalcula- usefulonlywhenwehavetheanalyticalformofn˜(k)andcan tionofvc(k)ismuchmoreinvolvedbecauseofthesingular- ityoftheCoulombinteractionkernelinrealspace.Thekeyto performthe inverseFouriertransformofV˜ (k) analytically, H Martyna-Tuckerman’sapproachistodecomposetheCoulomb whichisnottrueformostcases wherethedensityisusually interactionkernelintolong-andshort-rangeparts, representedindiscreterealspace. When applying the Fourier method to discrete finite sys- erf(αr) erfc(αr) tems, periodic boundary conditions are always assumed. It vc(r)= r + r ≡vc(long)(r)+vc(short)(r) (28) haslongbeenknownthattheunphysicalinteractionsbetween neighboringsuper-cellscanbeavoidedbycalculatingV ina whereerf(x) and erfc(x) arethe errorfunctionandits com- H doublyextendedgrid.32 Inparticularfor2Dsystemsasillus- plement,respectively,andαistheparameterthatcontrolsthe tratedinFig. 1,theoriginalL L grid(Ω)isextendedto effectivecut-offrange. ThefiniteFourierintegraloftheshort x y × 2L 2L (Ω ).Thedensityintheextendedgridisdefined range part can be well approximated by its infinite Fourier x y 2L × 5 transform, 100 HOFD, 5-Point y v(cshort)(k) ≡ Z vc(short)(r)e−ik·rdr Energ10-1 HPiOBFD, 13-Point Ω2L v(short)(r)e−ik·rdr v˜(short)(k). Total 10-2 ≈ Zwholespace c ≡ c ed 10-3 g (29) ver on10-4 C which is analytically known in both 2D and 3D cases. The n finiteFourierintegralofthelong-rangeinteractioncanbedi- or i10-5 rectlyobtainedfromthediscreteFouriertransformofitsreal Err 10-6 space values. In the practical implementation, v needs to c 32 48 64 80 be calculated onlyonce atthe beginning. The calculationof Number of Grid Points in Each Direction V (r) involves only two FFTs (one forward and one back- H ward), which makes this approach much more efficient than FIG.2: Convergenceofthetotalenergywithrespecttothenumber methodsbasedonaPoissonsolver. ofgridpointsusing5-PointFD,13-PointFDandPiBrepresentation. E. Asimplifiedmulti-gridtechnique pointsisNx = Ny = 64. Allthefollowingnumericalresults come from calculationswith electronnumberN = 100 and spin S = 0. For the exchange-correlationenergy, E , we The multi-grid method is an efficient technique to ac- xc useTanatarandCeperley’sparameterizedformoftheLSDA celerate the convergence in various real space relaxation functional.34 The convergence criterion is set as ǫ = 10−6, approaches.26Thebasicideaisthatlow-frequencyerrorsare whichcorrespondstoabout10−5meVinGaAs-AlGaASQD easiertoeliminateinacoarsegridthaninafinegrid. Leeet systems. al.33proposedasimpleone-waymulti-gridtechniqueinfinite- Considering that the FD method has been widely used in differencereal space KS calculations. Wave functionsbeing thenumericalmodellingofQDsystems,7,8,13,16wefirstmake representedinreal-spaceinouralgorithm,asimilarsimplified acomparisonbetweenFDandPiB.IntheFDrepresentation, multi-grid (SMG) method can be implementedin a straight- the second order derivative in the kinetic energy operator is forwardway: theKSenergyfunctionalisfirstminimizedina locallydiscretizedinrealspace coarsegrid;theconvergedwavefunctions,afterinterpolation andre-orthogonalization,aretakenastheinitialguessforthe ∂2 1 m minimizationonthefinegrid.Withthesewell-preconditioned f(x)= C f +O(h2m) (31) initialwavefunctions,theconvergenceinthefinegridcanbe ∂x2 h2 j=X−m j j easilyattained. wherehisthediscretizationstepandthecoefficientsC can j be obtained systematically for any m. Fig. 2 illustrates the III. NUMERICALTESTS convergence of the total energy with respect to the number of grid points using 5-point (m = 2), 13-point (m = 6) InmostexperimentalQDsystems,theexcitationinthever- FDandPiBrepresentations.Thelower-orderfinitedifference tical direction can be neglected, and a 2D model is a good scheme,m = 2, ispoorin termsofaccuracy,andconverges approximation.Inthispaperwewillreporttestresultsonlyin slowlyasthegridsizeincreases. Thehigh-orderFDscheme, a2Dsystem;theextensionto3Dsystemsisstraightforward, m = 6, doesimprovethe accuracyby two ordersof magni- andthe highefficiencyofouralgorithmmakesitpossible to tude, butis still less accuratethan PiB for Nx = 32, 48and explore large dots even in the 3D case. We test the perfor- 64. mance of the new algorithm in a coupled quartic oscillator We check the accuracy and efficiency of our line- potentialsystem, minimization scheme by comparing with TPA’s approach as wellasthenumericallyexactBrent’slinesearchalgorithm.26 x4 In thiscase, we use N = 5 and N = 1 as recom- V (r)=a +by4 2λx2y2+γ(x2y xy2)r , band update ext (cid:18) b − − (cid:19) mended in TPA’s original algorithm.21 Fig. 3 plots θmin in (30) thefirst25banditerationscalculatedfromthreeschemesre- witha = 10−4,b = π/4,λ = 0.6andγ = 0.1. Considering spectively.Thevaluesofθ calculatedfrombothTPA’sand min thattheconvergencebehaviorinKScalculationsisgenerally ourmethodagreeverywellwithexactvaluesandtherelative related to the effective interaction strength, which is charac- errorsarealwayssmallerthan1%. Butintermsofcomputa- terizedbyr (πn)−1/2/a in the2D case wherenis the tionaleffort,ournewschemeismuchmoreefficientasargued s B ≡ average density and a is the Bohr radius, we have chosen intheprevioussection. B the parameters in V so that the estimated r is about 1.5, To find the optimal N and N , we do the calcu- ext s band update which is close to experimental values. The calculations are lations with different values of N and N , and the band update doneinagridofsizeL = L = 50andthenumberofgrid results are shown in Fig. 4. With fixed N = 1, it is x y update 6 0.5 tationaleffortinoneKScalculationasafunctionoftheorder Ours oftheLagrangeinterpolationformulainbothtwo-andthree- 0.4 a TPA level SMG calculations. We see that a high-orderinterpola- Exact min tionschemeisusefultoimprovetheperformance. θ 1 0.3 Two-Level Three-Level 0.2 e m0.8 %) 0.4 b Ti or ( 0.2 PU e Err e C0.6 v 0 v Relati-0.2 Relati 0 5 10 15 20 25 0.4 FIG.3: Comparisonofθ calculatedbythreedifferentschemes. min 0 2 4 6 8 Order of Lagrange Interpolation (a) (b) N =5 N =1 102 band update FIG. 5: Relative computational efforts for one KS calculation as y Nband=10 Nupdate=5 afunctionoftheorderofinterpolationinbothtwo-andthree-level al Energ 100 NNNbbaanndd===234000 NNuuppddaattee==1200 StaMkeGnacsaltchuelautnioitn.s. TheCPUtimeinthesingle-level calculationis ot band n T10-2 r i IV. SUMMARY o r Er10-4 In this paper, we presented an efficient algorithm for the KS-SDFTsimulationoflargequantumdotsystems. Themain 10-6 elementsof the algorithmare: (1) Wave functionsare repre- 0 5000 10000 0 1000 2000 3000 CPU Time(s) CPU Time(s) sentedinrealspace,andthekineticenergyoperatorisapplied towavefunctionsbyfastsinetransform. (2)TheHartreepo- FIG.4: ErrorsinthetotalenergyasafunctionofCPUtimeduring tentialis calculatedbyMartyna-Tuckerman’sFourierconvo- the DMCG calculation for different Nband with Nupdate = 1 (a) lutionmethod.(3)ForthesolutionoftheKSequation,wein- andfordifferentNupdate withNband = 20(b)withrespecttothe troducedseveralimportantmodificationstoTeteretal.’sband- exacttotalenergythatiscalculatedusingafinergrid(Nx =80)and by-bandconjugate-gradientmethod.Amoreefficientapprox- tighterconvergencecriterion(ǫ=10−7), imateline-minimizationschemewasdeveloped;itwasfound thatlargebanditerationnumberanda delayedupdateof the KS Hamiltonian inside the band iterations increase the effi- seenthatarelativelylargerN ismoreefficientthansmall band ciencybyoneorderofmagnitude.(4)Asimplifiedmulti-grid N . FixingN =20,N =20givesthebestper- band band update techniquewasintroducedtoacceleratetheconvergence. The formance. The combinationof large N and N re- band update new algorithm has been used to study spin and conductance ducesthecomputationaleffortbyalmostoneorderofmagni- peak-spacing distributions in a 2D chaotic QD system with tude.ThoughtheactualvaluesofoptimalN andN band update electronnumberN upto200,fromwhichnewphysicalphe- mayvaryfordifferentsystems,thebasicideademonstratedin nomenawererevealed.18 thistestcalculationisbelievedtobeofgeneralsignificance. We have implemented both the two-level (h and 2h) and three-level(h,4h and 2h)SMG schemes. Insteadof usinga 3 sophisticated interpolation as in Ref. 33, we use a simpler Acknowledgments Lagrangepolynomialinterpolationmethod.Comparisonwith the single-level calculation shows a quite obvious improve- ment in computationalefficiency. To check the effect of the ThisworkwassupportedinpartbyNSFGrantNo. DMR- interpolationaccuracy,in Fig. 5 we plotthe relativecompu- 0103003. ∗ [email protected] 1 L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, † [email protected] R. M. Wetervelt, and N. S. Wingreen, in Mesoscopic electron 7 transport,editedbyL.L.Sohn,G.Scho¨n,andL.P.Kouwenhoven 18 H.Jiang, H.U.Baranger,andW.Yang, Phys.Rev.Lett.(2002), (Kluwer,Dordrecht,1997),pp.105–214. accepted. 2 Y.Alhassid,Rev.Mod.Phys.72,895(2000). 19 D.UllmoandH.U.Baranger,Phys.Rev.B64,245324(2001). 3 I.L.Aleiner,P.W.Brouwer,andL.I.Glazman,Phys.Rep.358, 20 G.UsajandH.U.Baranger,Phys.Rev.B66,155333(2002). 309(2002). 21 M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. 4 R.G.ParrandW.Yang,Density-FunctionalTheoryofAtomsand Joannopoulos,Rev.Mod.Phys.64,1045(1992). Molecules(OxfordUniversityPress,NewYork,1989). 22 G.KresseandJ.Furthmu¨ller,Phys.Rev.B54,11169(1996). 5 R.O.JonesandO.Gunnarsson,Rev.Mod.Phys.61,689(1989). 23 J.R.Chelikowsky,N.Troullier,K.Wu,andY.Saad,Phys.Rev.B 6 R. M. Dreizler and E. K. U. Gross, Density Functional Theory 50,11355(1994). : An Approach to the Quantum Many-Body Problem (Springer- 24 M.P.Teter,M.C.Payne,andD.C.Allan,Phys.Rev.B40,12255 Verlag,Berlin,1990). (1989). 7 A.Kumar,S.E.Laux,andF.Stern,Phys.Rev.B42,5166(1990), 25 G. J. Martyna and M. E.Tuckerman, J. Chem. Phys. 110, 2810 5166-5175. (1999). 8 M.Macucci, K.Hess, andG.J.Iafrate,Phys.Rev.B48, 17354 26 W.H.Press,B.P.Flannery,S.A.Teukolsky,andW.T.Vetterlin, (1993). NumericalRecipes: TheArtofScientificComputing(Cambridge 9 D.JovanovicandJ.P.Leburton,Phys.Rev.B49,7474(1994). University,Cambridge,England,1989). 10 M.Stopa,Phys.Rev.B54,13767(1996). 27 I. Stich, R. Car, M. Parrinello, and S. Baroni, Phys. Rev. B 39, 11 S.Nagaraja,P.Matagne,V.Y.Thean,J.P.Leburton,Y.H.Kim, 4997(1989). andR.M.Martin,Phys.Rev.B56,15752(1997). 28 M.J.Gillan,J.Phys.:Condens.Matter1,689(1989). 12 M.Koskinen,M.Manninen,andS.M.Reimann,Phys.Rev.Lett. 29 G.Onida,L.Reining,R.W.Godby,R.DelSole,andW.Andreoni, 79,1389(1997). Phys.Rev.Lett.75,818(1995). 13 I.-H.Lee,V.Rao,R.M.Martin,andJ.-P.Leburton,Phys.Rev.B 30 L.M.Fraser,W.M.C.Foulkes,G.Rajagopal,R.J.Needs,S.D. 57,9035(1998). Kenny,andA.J.Williamson,Phys.Rev.B53,1814(1996). 14 S. Bednarek, B. Szafran, and J. Adamowski, Phys. Rev. B 64, 31 M.R.Jarvis,I.D.White,R.W.Godby,andM.C.Payne,Phys. 195303(2001). Rev.B56,14972(1997). 15 I.Yakimenko,A.M.Bychkov,andK.-F.Berggren,Phys.Rev.B 32 R.W.Hockney,MethodsComput.Phys.9,135(1970). 63,165309(2001). 33 I.-H.Lee, Y.-H.Kim, and R.M.Martin, Phys.Rev. B61, 4397 16 M.Pi,A.Emperador,M.Barranco,andF.Garcias,Phys.Rev.B (2000). 63,115316(2001). 34 B.TanatarandD.M.Ceperley,Phys.Rev.B39,5005(1989). 17 K.HiroseandN.S.Wingreen,Phys.Rev.B65,193305(2002).