ebook img

AMRVAC and Relativistic Hydrodynamic simulations for GRB afterglow phases PDF

0.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview AMRVAC and Relativistic Hydrodynamic simulations for GRB afterglow phases

Mon.Not.R.Astron.Soc.000,??–??(2007) Printed3February2008 (MNLATEXstylefilev2.2) AMRVAC and Relativistic Hydrodynamic simulations for GRB afterglow phases Zakaria Meliani1,2⋆, Rony Keppens1,3,4, Fabien Casse5 and Dimitrios Giannios2 1FOM-InstituteforPlasmaPhysicsRijnhuizenP.O.Box12073430BENieuwegein,Netherlands 2MaxPlanckInstituteforAstrophysics,Box1317,D-85741GarchingGermany 3CentreforPlasmaAstrophysics,K.U.Leuven,Belgium 4SterrenkundigInstituut,Utrecht,Netherlands 5AstroParticule&Cosmologie(APC) 7 UMR7164CNRS-Universite´Paris7,10rueAliceDomonetLe´onieDuquet75025ParisCedex13,France 0 0 2 n Accepted;Received a J 5 ABSTRACT 1 We applya noveladaptivemesh refinementcode, AMRVAC, to numericallyinvestigatethe variousevolutionaryphasesintheinteractionofarelativisticshellwithitssurroundingcold 1 Interstellar Medium (ISM). We do this for both 1D isotropic as well as full 2D jetlike fire- v 4 ballmodels.ThisisrelevantforGammaRayBursts,andwedemonstratethat,thankstothe 3 AMRstrategy,weresolvetheinternalstructureoftheshockedshell-ISMmatter,whichwill 4 leaveitsimprintontheGRBafterglow.WedeterminethedecelerationfromaninitialLorentz 1 factorγ = 100uptothealmostNewtonianγ (2)phaseoftheflow.We presentaxisym- 0 metric2Dshellevolutions,withthe2Dextent∼chOaracterizedbytheirinitialopeningangle.In 7 suchjetlikeGRBmodels,wediscussthedifferenceswiththe1DisotropicGRBequivalents. 0 These are mainly due to thermally induced sideways expansions of both the shocked shell / h and shocked ISM regions.We found that the propagating2D ultrarelativistic shell does not p accreteallthesurroundingmediumlocatedwithinitsinitialopeningangle.PartofthisISM - matter gets pushed away laterally and forms a wide bow-shockconfigurationwith swirling o flow patterns trailing the thin shell. The resulting shell deceleration is quite different from r t thatfoundin isotropicGRB models.Aslongasthe lateralshellexpansionis merelydueto s ballisticspreadingoftheshell,isotropicand2Dmodelsagreeperfectly.Asthermallyinduced a : expansionseventuallylead to significantly higherlateral speeds, the 2D shell interacts with v comparablymoreISMmatteranddeceleratesearlierthanitsisotropiccounterpart. i X Key words: GammaRays: Afterglow,Hydrodynamics,Theory– ISM:jets and outflows– r Galaxies:jets,ISM–methods:numerical,relativity,AMR a 1 INTRODUCTION Marti&Mu˜ller2003).Theenormoustimeandlengthscaleranges associatedwithviolentastrophysicalphenomenainrelativistichy- Many high energy astrophysical phenomena involve relativistic drodynamics(RHD),makeAdaptiveMeshRefinement(AMR)an flows and shocks. For example, relativistic flows are invoked to important algorithmic ingredient for computationally affordable explain the observed properties of various compact astrophysical simulations. RHD numerical simulations, particularlywhen com- objects(Arons2004;Ferrari1998;Corbel2004).Astrophysicalrel- binedwithAMRcapabilities,caninvestigatemanydetailsofrela- ativisticflowscanreachaLorentzfactorof 2 10inassociation − tivisticflowregimesrelevantforastrophysics. withjetsfromSeyfertandradioloudgalaxies(Pineretal.2003), orevengouptoLorentzfactors102 103 forGammaRayBurst In this paper, we concentrate on relativistic dynamics in the − (GRB) scenarios (Sari&Piran 1999; Soderberg&Ramirez-Ruiz fireball model for the afterglow phases of GRBs, in one and two 2001;Me´sza´ros2006).Inthelastdecade,continueddevelopment dimensional simulations. Since the follow-up detection of GRBs ofnumericalalgorithmsandtheincreaseincomputerpowerhave in X-ray (Costaetal. 1997) and their afterglows at longer wave- allowedtosignificantlyprogressinhigh-resolution,hydrodynamic lengths (Sahuetal. 1997; VanParadijsetal. 1997; Galamaetal. numerical simulations in both special and general relativity (see 1997; Frailetal. 1997; Piroetal. 1998), the cosmological origin ofGRBshasbeenestablished(Metzger1997;Wijers1997).These detections confirmed the predictions from the fireball theoretical ⋆ E-mail:[email protected] model (Rhoads 1993; Katz 1994; Me´sza´ros&Rees 1997; Vietri c 2007RAS (cid:13) 2 Z. Meliani,R. Keppens,F. Casseand D. Giannios 1997). In this model, a compact source releases a large amount theevolutionofanequivalent1Dsphericalshellisenlighteningin of energy in a very short timescale, producing a fireball expand- thisrespect. ing with relativistic velocity. Its internal energy gets fully con- Thispaperisorganisedasfollows.Westartbyreviewingthe verted to kinetic energy, leading to a shell expanding with very relativistichydrodynamicequations.InSection3,weincludesev- high Lorentz factor. This cold shell continues to expand and in- eralteststodemonstratetheAMRVACcodepotentialforrealistic teractwiththecircumburstmedium,producingarelativisticshock- RHDcomputations.InSection4,wepresentourmainastrophysi- dominatedevolution. Astheshell sweepsupthematter,itbegins calapplicationtoGRBflowsin1Dand2Dmodels. todecelerate.Here,weinvestigatethedetailsofsuchpropagating relativisticshells withthe relativistichydrodynamics code AMR- VAC (Bergmansetal. 2004). TheAMRVAC code (Keppensetal. 2 RELATIVISTICHYDRODYNAMICEQUATIONS 2003)ishereforthefirsttimeappliedtothenumericallychalleng- ingregimeofhighLorentzfactor,andwethereforeincludeava- The special relativistichydrodynamic evolution of a perfect fluid rietyoftestproblems,demonstratingtherobustnessaswellasthe is governed by the conservation of the number of particles, and limitationsofourcomputationalstrategy. energy-momentumconservation.Thesetwoconservationlawscan bewrittenas Up till recently, analysis of GRB flows have largely been done analytically (Shemi&Piran 1990; Sari&Piran (ρuµ) =0, (Tµν) =0. (1) µ µ 1995; Me´sza´ros&Rees 1997; Chiang&Dermer 1999), whereρ,~u = γ,γ~v ,andTµν = ρhuµuν + pgµν define, respec- combined with numerical approaches usually employing a (cid:0) (cid:1) tively, the proper density, the four-velocity and the stress-energy Lagrangian code. These latter works mainly investigate spher- tensor of the perfect fluid. Their definition involves the Lorentz ically symmetric GRB scenarios for obvious computational factorγ,thefluidpressure p,andtherelativisticspecificenthalpy convenience (Panaitescuetal. 1997; Kobayashietal. 1999; h = 1+e+ p/ρ where e is the specific internal energy. For the Kobayashi&Sari 2000). Recently, some analytical works (inverse)metricgµν,wetaketheMinkowskimetric.Unitsaretaken started to investigate the multidimensional jet structure in GRBs wherethelightspeedequalsunity. (Rhoads 1997, 1999; Panaitescu&Me´sza´ros 1999; Sarietal. These equations can be writtenin conservative form involv- 1999; Kumar&Panaitescu 2000; Panaitescu&Kumar 2003; ingtheCartesiancoordinateaxesandthetimeaxisofafixed‘lab’ Chengetal. 2001; Orenetal. 2004; Kumar&Granot 2003), Lorentzianreferenceframeas and some numerical simulations emerged as well, but restricted to relatively low (order 25) Lorentz factor (Granotetal 2001; ∂U 3 ∂Fj Cannizzoetal.2004).Higherspeedswereobtainedinthenumer- ∂t +X ∂xj =0. (2) j=1 icalsimulationofthepropagationofanaxisymmetricjetthrough a collapsing rotating massive star, as investigated by Aloyetal. Theconservedvariablescanbetakenas (2000)toanalysethefirstphaseofGRBs.Inthesesimulations,the U = D=γρ,S~ =γ2ρh~v,τ=γ2ρh p γρ T , (3) jetisfurtherfollowedafterbreakouttoamaximumLorentzfactor h − − i ofγ 44,whichisstillrelativelysmalltothevaluesrequired andthefluxesarethengivenby max ∼ for GRBs by the fireball model. Therefore, an important area of currentinvestigationsinGRBcontextistomodelthedynamicsof F=hργ~v,γ2ρh~v~v+pI,γ2ρh~v γρ~viT , (4) − narrowjetsofultra-relativisticallyflowingejecta.Thisismotivated whereIisthe3 3identitymatrix.Toclosethissystemofequa- bytheneedtoreducethetotalamountofenergyreleasedinGRBs, × tions,weusetheequationofstate(EOS)foranidealgas,whichis byassumingthesejetstopointtowardstheobserver,ascompared thepolytropicequationwiththepolytropicindexΓ, to fully isotropic equivalents. This need is particularly clear for theexemplarycasesof GRB990123 (Kulkarnietal.1999),GRB p = (Γ 1) ρe. (5) − 050820A(Cenkoetal.2006),andGRB050904(Frailetal.2006). At each timestep inthenumerical integration, theprimitive Thedetectionofpolarization(Covinoetal.1999;Wijersetal. variables (ρ,~v,p) involved in flux expressions should be derived 1999; Greineretal. 2003; Lazzatietal. 2004) gave further sup- fromtheconservativevariablesUresultinginasystemofnonlinear porttothejetlikemodel.Evidencefornarrowcollimatedoutflows equations.Onecanbringthissystemintoasingleequationforthe in GRBs is sustained also by the achromatic breaks in the after- pressurep, glowlightcurveswhichwaspredictedanalytically(Rhoads(1997, p+Γp(γ(p)2 1) 1999); Sari et al. (1999)) and then observed in a large number τ+D γ(p)D − =0, (6) − − Γ 1 of GRBs (Staneketal. 1999; Sarietal. 1999; Bergeretal. 2000; − Panaitescu 2005; 2006; Barthelmyetal. 2005). In Bloometal. which, once solved for pyields~v = S~ . Thisnonlinear equa- τ+p+D (2003),variousGRBswereanalysedandin16ofthem,thecom- tion(6)issolvedusingaNewton-Raphsonalgorithm. bination of these breaks in the spectrum and the jet-like model was used to deduce their effective energy, which was about E ∼ 1051ergs.ThehalfopeningangleofsuchjetsinGRBsisinferred 3 TESTINGAMRVAC to be of order few degrees. As a result, the afterglow produc- ing shocked region is collimated too, with a similar initial open- In view of the challenges in the numerical investigation of rela- ing angle (Frailetal 2001; Bergeretal. 2003; Cenkoetal. 2006; tivistic fluids, we include here several substantial test results for Panaitescu 2005; Dar&DeRu´jula 2004). In our 2D simulations, codevalidation.Weperformedalargeseriesoftests,someofthem wewillconcentrateontheafterglowphasesintheGRBevolution showninthissection.Animportantsubclassoftestcasesisformed startingfromcollimatedejecta,anddiscussthosedynamicaleffects byRiemannproblems,whosenumericalsolutioncanbecompared causing opening angle changes in detail. Direct comparison with toanalyticalsolutions.Other,2Dtestsshownherehavenoknown c 2007RAS,MNRAS000,??–?? (cid:13) AMRVACand RelativisticHydrodynamicsimulationsforGRB afterglowphases 3 Table1.L1errorsofthedensityforthe1DRiemannproblem1withuni- formgridshownatt=0.36 Numberofgridpoints L1 200 1.15 10 1 400 6.4 ×10−2 800 3.2×10−2 1600 1.9×10−2 3200 1.06× 10−2 × − nonvanishing tangential velocities, for two ideal gases withpoly- tropic index Γ = 5/3. We separate two different constant states p = 103, ρ = 1.0 (left) and p = 10 2, ρ = 1.0 (right). For Figure1.One-dimensional relativistic shockprobleminplanargeometry L L R − R att=0.36.Thesolidlinesaretheanalyticalsolution. thetransversevelocityweformninecombinationsofthepairvy,L and v . Asin Ponsetal.(2000); Mignoneetal. (2005), we take y,R v =(0.0,0.9,0.99)cincombinationwithv =(0.0,0.9,0.99)c. y,L y,R Thespatialseparationbetweenthetwostatesisinitiallyatx=0.5. analyticalsolution.Therefore,wecomparetheresultsofoursim- Theresultsatt=0.4areshowninFig. 2,wherewealsooverplot ulationswithsimilarresultspreviouslyobtainedbyothercodesas theexactsolutionusingthecodeinMarti&Mu˜ller(2003). documentedintheastrophysicalliterature. Therelativisticeffectsinthesetestsaremainlythermodynam- TheAdaptiveMesh Refinement versionof theVersatileAd- icalinthefirstmildtest,andareduetocouplingbetweenthether- vection Code (AMRVAC) is specifically designed for simulating modynamics(throughspecificenthalpy)andkineticproperties(by dynamicsgovernedbyasystemof(near-)conservationlaws.Avail- theinitialtangentialvelocities).Forsmalltangentialvelocitycases, able equations are the Euler and magnetohydrodynamic systems, weuseonlyaresolutionof200cellsonthebaseleveland4levels. in both classical and special relativistic versions. The discretiza- However,forahightangentialvelocitycase,weusehighbaseres- tionisfinitevolumebased,andvariousshock-capturingalgorithms olution400with10levelstoresolvethecontactdiscontinuityand can be used. The automated AMR strategies implemented vary thetailoftherarefactionwave.Infact,forahightangentialveloc- from the original patch-based to a novel hybrid block-based ap- ityatleft(inthehighpressurestate),theeffectiveinertiaoftheleft proach(VanderHolst&Keppens2006).Theseproceduresgener- stateincreases. Thismakes theoccurring shock moveslowerand ateor destruct hierarchicallynested gridswithsubsequently finer decreasesthedistancebetweenthetailoftherarefactionwaveand meshspacing.TherefinementcriterionusedinAMRVACisbased the contact discontinuity. As also found in Zhang&MacFadyen onaRichardson typeerrorestimator(Keppensetal.2003).Inall (2006),itremainsanumericalchallengetocapturethecontactdis- followingtests,weusearefinementratioof2betweenconsecutive continuity properly, which we only managed here by allowing a levels,unlessstatedotherwise. veryhigheffectiveresolution. 3.1 One-dimensionaltestproblems 3.1.2 ShockHeatingTest 3.1.1 Riemannproblems Inanother 1Dtestcase,acoldfluidhitsawallandashockfront propagates back into the fluid, compressing and heating it as the In1DRiemannproblems,wefollowtheevolutionofaninitialdis- kineticenergyisconvertedintointernalenergy.Behindtheshock, continuity between two constant thermodynamical states. In 1D the fluid becomes at rest. This test has an analytical solution in RHD, we then typically find the appearance of up to three non- planarsymmetryasconsideredbyBlandford&McKee(1976),and linear waves. Generally, one findsashock wavepropagating into thejumpconditionsare the lower density/pressure medium, a rarefaction wave propagat- p = ρ (γ 1)(γ Γ+1) , ingatsoundspeedintothedensermedium,andbetweenthesetwo 2 1 1− 1 states,therecanbeacontactdiscontinuity.Intheteststhatfollow, ρ = ρ γ1Γ+1, calculations are done in Cartesian geometry on a spatial domain 2 1 Γ 1 − γ v 06x61.TheexactsolutionsforRiemannproblemsinrelativistic v = (Γ 1) 1 1 . (7) hydrodynamicsarediscussedforvanishingtangentialspeed(i.e.y sh − γ1+1 or/andzcomponentsforvelocities)inMarti&Mu˜ller(1994)and Thesegivethepostshockpressurep anddensityρ valuesinterms 2 2 forarbitrarytangentialflowvelocityinPonsetal.(2000). oftheincomingdensityandLorentzfactor,togetherwiththeshock In a first, mild test, we assume an ideal gas with polytropic propagationvelocityv . sh index 5/3 and initial constant states characterized by p = 13.3, Inourtestwetakethesameinitialconditionsasintherecent L ρ = 10.0(left)and p = 0.66 10 6,ρ = 1.0(right),separated paperbyZhang&MacFadyen(2006),whereacoldfluidp=10 4 L R × − R − atthelocationx=0.5.Theresultsatt =0.36areshowninFig.1 withadensityρ=1.0hasanimpactvelocityofv = 1.0 10 10 . 1 (cid:16) − − (cid:17) witharesolutionof100cellsonthebaseleveland4levels,where This corresponds to a Lorentz factor γ = 70710.675. The tem- wealsooverplot theexact solution.Inthetable1,wepresentthe perature after the shock becomes relativistic, and therefore we L =Σ ∆x ρ ρ(x) normerrorsofthedensityρ,whereρ(x)is take the polytropic index Γ = 4/3. Hence the shock velocity is 1 (cid:16) j(cid:17)| j− j | j theexactsolution.Theaccuracyofourresultiscomparabletothat v = 0.33332862. TheAMRsimulationisdonewith20cellson sh ofLucas-Serranoetal.(2004);Zhang&MacFadyen(2006). the base level and 4 levels on the spatial range 0 < x < 1. The In a second test, we look particularly into effects due to resultatt=2,withthereflectivewallatx=1,isshowninFig.3. c 2007RAS,MNRAS000,??–?? (cid:13) 4 Z. Meliani,R. Keppens,F. Casseand D. Giannios Figure2.One-dimensionalrelativisticshockproblemsinplanargeometrywithtangentialvelocitiesvy.Theresultspresentedcorrespondtot=0.4.Thesolid linesaretheanalyticalsolution(Ponsetal.2000);fromlefttorightvy,R=(0,0.9,0.99)c,andfromtoptobottomvy,L=(0,0.9,0.99)c. The exact solution is overplotted as well. In this test, because of v/c theconstantstatebehindtheshock,themaximumimpactLorentz factorthatcanbeachievednumericallyislimitedonlybythepre- P/8e9 cisionoftheNewton-Raphsonsubroutine.Thistestisimportantto demonstrateitsaccuratetreatment,inviewoftheintendedsimula- ρ/5e5 tionsaimedatafterglowsinGRBs.Indeed,intheshell-frame,the circumburstmediumhitsthedenseshellwithahighLorentzfactor. Inaprocesssimilartowhatisfoundintheabovetest,thekinetic energyoftheimpactingmediumisconvertedtothermalenergyof theexternalmedium.Viewedinthelabframe,thesweptupcircum- burstmediumwillhavesimilarlyhighLorentzfactorandwillform ahot shocked layer ahead of thecontact interface. Notealsothat Fig.3indicatesthatourdiscretizationandwalltreatmentdoesnot sufferfromthevisibledensityerrorsseeninZhang&MacFadyen Figure 3. One-dimensional shock heating problem in planar geometry, (2006). whereacoldfluidhitsawalllocatedatx=1.Theresultspresentedcorre- spondtot=2.Thecomputationalgridconsistsof20zoneswith4levelsof refinement.Thesolidlinesaretheanalyticalsolution. 3.2 Two-dimensionaltests 3.2.1 Arelativistic2DRiemannproblem SW ρ,v /c,v /c,p = (0.5,0.0,0.0,1.0), (cid:16) x y (cid:17) A twodimensional square region isdivided intofour equal areas with a constant state each. We fix the polytropic index Γ = 5/3 ρ,v /c,v /c,p SE = (0.1,0.0,0.99,1.0). (8) (cid:16) x y (cid:17) andassumefreeoutflowboundaryconditions.Therelativisticver- Thesimulation isdone with48 48cellsat thelowest grid sionofthistestwasproposedbyDelZanna&Bucciantini(2002) × level,andweallowfor4levels.TheresultisshowninFig.4.Our and subsequently reproduced by Lucas-Serranoetal. (2004); resultisinqualitativeagreementwiththoseresultspublished,and Zhang&MacFadyen (2006) and under slightly improved initial shows the stationary contact discontinuities between SW-SE and conditions by Mignoneetal. (2005). We repeat this simulation SW-NWwith a jump in the transverse velocity. These are some- withthesameinitialconfigurationfromDelZanna&Bucciantini whatdiffusedbytheemployed TotalVariationDiminishingLax- (2002),namely Friedrichs(TVDLF)discretization(To´th&Odstrcˇil2006).Asim- ρ,v /c,v /c,p NE = (0.1,0.0,0.0,0.01), ple and easily affordable remedy for improvement is to activate (cid:16) x y (cid:17) many more grid levels. Shocks feature across the interfaces NW- NW ρ,v /c,v /c,p = (0.1,0.99,0.0,1.0), NEand SE-NE,propagating diagonally totheNEregion, and an (cid:16) x y (cid:17) c 2007RAS,MNRAS000,??–?? (cid:13) AMRVACand RelativisticHydrodynamicsimulationsforGRB afterglowphases 5 Figure4.Densitydistributionforthetwodimensionalshocktubeproblem att=0.4.WithapolytropicindexΓ=5/3,abaseresolutionof48 48and × 4AMRlevels. elongateddiagonalshockstructureformsastheNEsectorrecedes intotheRHStopcorner.IntheSWcorner,anobliquejet-likestruc- tureformswithabowshock. 3.2.2 Relativisticjetin2Dcylindricalgeometry Sinceit is relevant for our 2D GRB simulations, we also present a two-dimensional simulation of an axisymmetric relativistic jet propagating ina uniformmedium. Wesimulate theC2jet model fromMartietal.(1997),butwithanenlargeddomainandathigher effective resolution. Our computational domain covers the region 0 < r < 15 and 0 < z < 50 jet radii. Initially, the relativis- tic jet beam occupies the region r 6 1,z 6 1, with v = 0.99, Figure5.Densitydistribution fortheaxisymmetric relativistic jetatt = jet 130.Atleft,weshowthelabframedensity,atright,weshowtheproper ρ = 0.01anditsclassicalMachnumber M =6.Inthiscase,the jet densityinalogarithmicscale.Thecomputationalbasegridconsistsof90 jetissuper-sonicbutitstemperatureisstillclassical,sowecantake × 300zoneswith5levelsofrefinementandthedomainsizeis15 50. thepolytropicindexΓ = 5/3.Thedensityoftheexternalmedium × isρ = 1.0.Wefollowtheevolutionuntilt = 130,andthisend ext resultisshowninFig.5.Weperformedthesimulationwithareso- lutionatthelowestlevelofthegridsetto90 300,andallowedfor × atotal of 5 levelsof refinement eventually achieving an effective resolutionof1440 4800. × In this simulation, the relativistic motion of the flow domi- nates,thethermalenergyisweakcomparedtothekineticenergy. Asaresulttheexternalmediuminfluencesonlyweaklythejetand the Lorentz factor γ 7 flow produces a cocoon structure from ∼ thetipofthejet.Onealsofindsaweaktransverseexpansionofthe outflowinaccordwithwhatisreportedbyMartietal.(1997).This transverseexpansionofthejetisinducedbythepressurebuild-up insidethecocoonBegelman&Cioffi(1989).Inoursimulation,the averagetransverseexpansionobtainedisoccurringatanestimated speed of v = 0.11c. Moreover, at the contact interface between T shockedexternalmediumandjetmaterial,complexvorticalstruc- tures form. These originate from Kelvin-Helmoltz type instabili- Figure6.Densitydistribution,inlogarithmicscale,fortheforwardfacing ties,asaconsequenceofcoldfastjetoutflowmeetingamorestatic stepproblem,att=4.26. medium.Theaveragepropagationspeedofthejetheadisfoundto be0.414c,whichisinagreementwiththeone-dimensionalanalyt- icalestimateof0.42casgivenbyMartietal.(1997). c 2007RAS,MNRAS000,??–?? (cid:13) 6 Z. Meliani,R. Keppens,F. Casseand D. Giannios 3.2.3 Windtunnelwithstep 4.1 1Disotropicshellevolution We reproduce here a standard test in the hydrodynamic litera- Inthissimulation,weconsideranISMwithuniformnumberden- ture, namely the forward facing step test from Emery (1968); sityn = 1cm 3.ManyGRBafterglows(morethan25%)seem ISM − Woodward&Colella (1984), but adjusted to the relativistic hy- to be produced in such constant density medium (Chevalier&Li droregimeasinLucas-Serranoetal.(2004);Zhang&MacFadyen 2000;Panaitescu&Kumar2002;Chevalieretal.2004).Thiscon- (2006). A horizontal relativistic supersonic flow enters a tunnel stant density medium can be the resultant of a Wolf-Rayet star withaflatforwardfacingstep.Thetestwasdonewitharesolution progenitor, with its surroundings shaped by a weak stellar wind 50 100zoneswith4levels.Thesizeofthetunnelis06x63and (VanMarleetal.2006).Initiallywesetauniformrelativisticshell × 06y61.Thestepis0.2inheightanditspositionisatx=0.6.It at R = 1016cm from the central engine, since according to 0 istreatedasareflectingboundary.Theupperboundaryandlower Woods&Loeb(1995)theinteractionoftheshellwiththeISMbe- boundary for x < 0.6 are also both reflecting. However, the left comesappreciableatthisdistance.TheshellhasaninitialLorentz boundaryisfixedatthegiveninflowandtherightonehasfreeout- factor of γ = 100 (a γ > 100 is in accord with a shell which is flow.Initially,thewholecomputationaldomainisfilledwithideal optically thin to gamma-rays (Woods&Loeb 1995; Sari&Piran gaswith Γ = 7/5 withadensity ρ = 1.4moving at v = 0.999, 1995)),andenergy x i.e.,withaLorentzfactorγ = 22.37.TheNewtonianMachnum- ber isset to 3. Theresult of our simulation isshown inFig. 6 at E=1054ergs=4πγ2R20δρshellc2, (9) time t = 4.26. In this test, the relativistic flow collides with the where δ stands for the lab-frame thickness of the shell set to step, asaresult areverse shock propagates back against theflow 5 1012cm is of the order of the expected value for a fireball directionandthisshockreflectsfromtheupperboundary.AMach × δ max(c∆t,R /γ2), where ∆t is the duration of the GRB. The stemformsandremainsstationary.Theresultofoursimulationis ∼ 0 ISMandtheshellarecold,andtheinitialpressureissetto p = comparabletowhatisreportedinLucas-Serranoetal.(2004). ISM 10 3n m c2 and p = 10 3n m c2 respectively. Notethat − ISM p shell − shell p thisimpliesahuge initialcontrast inthedensity measured inthe lab-frame between the shell and the ISM D /D 109, and shell ISM ∼ thispresents anextremechallenge fromacomputational point of view.Initially,theenergyoftheshellisthenmainlykinetic.Weuse 4 GRBSANDMODELSFORTHEIRAFTERGLOW aconstant polytropicindexΓ = 4/3,astheinteractionshell-ISM PHASE willbedominatedbytheforwardshock,wherethetemperatureof ApopularmodelforGRBflowsisknownasthefireballmodel.In theshockedISMbecomesrelativistic. thismodel,GRBsareproducedbyarelativisticoutflowfollowing Inthissimulation weuseaneffective resolution of 1536000 a violent event near a compact object. A large amount of energy cells corresponding to the highest grid level 10 allowed. We use ispromptlyreleasedbythecompactsourceinaregionwithsmall thefullAMRcapabilitiesinthissimulation,sincewesimulateon baryonloading(forareviewseePiran(2005)).Initially,mostofthe adomainofsize[0.3,300] 1016cm,with30000gridpointsonthe × energyoftheflowisintheformofinternal(thermal)energy.The lowest level. At t = 0, the shell itself isthen only resolved from shellexpandsrapidlyconvertingitsinternalenergytokinetic.After gridlevel6onwards,whenweusearefinementratioof2between theaccelerationphaseiscomplete,theshelliscoldandmoveswith consecutivelevels.Theinitialshellisresolvedbyabout25cellsin relativisticspeeds. gridlevel10(laterinthedynamicalevolutionthismeansthatthere This cold shell interacts with the circumburst medium, pro- aremanymoregridpointsthroughoutthewideningstructure).We ducingstrongshocks.Oursimulationswillconsiderthedynamics usethisveryhigheffectiveresolutiontoavoidanynumericaldiffu- from this phase onwards. As the shell sweeps up mass from the sionwhichmaycauseanartificialspreadingoftheshell.Weensure externalmedium,thekineticenergyintherelativisticshellisgrad- thatthroughouttheentiresimulation,gridlevel10isactivatedand uallytransferredtokineticandinternalenergyintheshockedam- concentratesfinegridsonboththeforwardshockandreverseshock bientmedium.Moreover,theshellitselfgetstraversedbyareverse regions.Bothareveryimportanttodeterminetheprecisetimingof shock,whichinturnconvertsthekineticenergyoftheshelltoin- thedeceleration. ternalenergy. In Fig. 7, we show snapshots taken at lab-frame time t ≃ TheobservedafterglowemissionthatfollowsthepromptGRB 2.2 106scorrespondingtoanearlytimeintheentiresimulation, × emissionisbelieved tocomefromsynchrotron (withpossiblein- andinFig.9,weshowsnapshotstakenattimet 1.5 107scor- ≃ × verseComptoncontribution)emittingelectronsthatareaccelerated responding to a time when the shock is fully developed, we will in the forward and reverse shocks (Sarietal. 1998; Galamaetal. concentrate our discussion mainly on this figure 9. These figures 1998).Intheinitialphases oftheshell-ISMinteraction,theelec- demonstrate that we resolve all four regions that characterise the tronscanbeinthefastcoolingregime(i.e.theircoolingtimescale interaction between an outward moving relativistic shell and the isshorterthantheexpansiontimescale)and,therefore,radiateeffi- cold ISM. From right to left, we recognize (Fig. 9) (1) the ISM cientlymostoftheenergyinjectedtothem.Furthermore,ifmostof at rest, (2) the shocked ISM that has passed through the forward theenergydissipatedintheshocksacceleratestheelectrons,then shock, with its Lorentz factor raised to γ(2) ∼ 30. This swept-up onehastoconsiderradiativeshocks.Ifeitherofthepreviouscon- ISM gets compressed at the front shock and its number density ditionsdoesnothold,theradiativelossesintheshocksaresmall. reaches n 75cm 3 Γγ(2)+1 (Sari&Piran 1995). These two (2) ∼ − ∼ Γ 1 Here, we assume that the radiative losses are dynamically unim- valuescorrespondtotheanaly−ticalestimategivenbyeq.(7)forthe portant,i,e.,theshocksareadiabaticthroughoutthesesimulations. front shock propagation. Region (3) represents part of the initial Accordingtothemagnetizationoftheshell,theinteractionshell- shellmaterialwhichisshockedbythereverseshock.Thereverse ISMandthe spectrum couldchange asisshown inMimicaetal. shockpropagatesbackintothecoldshell,reducingitsLorentzfac- (2006). Here, we assume that the magnetic field is dynamically torandconvertingitskinetictothermalenergy.Transferofenergy unimportant. fromtheinitialcoldshellthusoccursbothattheforwardandthere- c 2007RAS,MNRAS000,??–?? (cid:13) AMRVACand RelativisticHydrodynamicsimulationsforGRB afterglowphases 7 Figure7.ThefiveregionscharacterizingtheinteractionoftherelativisticshellwiththeISMatt=2.2 106s.Panel(a):Lorentzfactor,(b):logarithmofthe × pressure,(c):logarithmofdensity. Figure8. Ratio ofthermal energy tomassenergy, when theshell reaches distance: R 6.5 1016cm (t 2.2 106s)(left), andR 4.3 1017cm (t 1.5 107s)(right). ≃ × ≃ × ≃ × ≃ × verseshock.Regions(2)and(3)areseparatedbyacontactdiscon- decreasesenoughduetosphericalexpansion,theLorentzfactorof tinuity(Me´sza´ros&Rees1992).Atthissphericalcontactsurface, the reverse shock increases and the last part of the shocked shell thelongitudinalvelocity(Lorentzfactorin1Dcase)andpressure becomeshote ρ . (3)∼ (3) remain constant, but there is a jump in density. Furthermore, re- Thereisanotherregion(5)indicatedinthefiguresbehindthe gion(4)istheunshocked coldmaterialof theshell,moving with shell.Thedensityandthepressureintheregion(5)areverysmall aLorentzfactorγ(4) = 100.Theweakthermalenergyoftheshell with n(5),min < 10−6cm−3 and p(5),min < 10−6mpc2. Therefore, the interioritselfdidinduceaslightexpansioninthethicknessofthis region(5)isinthenumericalpointofviewavacuum.Thisregion partoftheshell. (5) is not of strong interest for the physics of the afterglow, but The reverse shock separating region (3) and (4) prop- itiscomputationally challenging toresolvetheinterfacebetween agates into the cold shell with a Lorentz factor γ = the regions (4) and (5) where the ratio of the lab frame density RS γin(3e)ffiγ(c4i)e(cid:16)n1t−inv(r3a)vis(4in)/gc2t(cid:17)he∼th2er.5m.aTlheinserregvyercsoenstehnotckasisisNsehwotwonniainn pbreotwpaegeantitohneotwfothreeashchelels(DR(4)/1D0(156)c∼m1),0w14hiilnetthheefiexrsptapnhsiaosneoofftthhee ∼ Fig. 8 (left panel), where we draw the specific thermal energy shellremainsweak.BythetimeshowninFig.7,thiscontrasthas in the shocked ISM and shell when the shell reaches a distance droppedtoavalueofatmost1012. R 6.5 1016cm. Thereverseshock remainsNewtonianuntil it Thenear-totaldecelerationoftheshellonlytakesplacewhen ≃ × reachesadistancefromtheGRBsourceofR 3.8 1017cm.Then thetwoshocksintheshell-ISMinteractionmanagetoconvert an ∼ × it becomes mildly relativistic until R 4.3 1017cm where the important fraction of the kinetic energy of the shell to thermal ∼ × reverseshockbecomesveryefficienttoconvertthekineticenergy energy (andtheefficiency of thisconversion depends on whether tothermalenergy(seeFig.8atright).Beyondthislatterdistance, thereverseshockisrelativisticorNewtonian,asdiscussedabove), thedensityoftheunshockedshellpartρ hasdecreasedinaccord whiletherestistransferredtotheswept-upISMintheformofki- (4) withthesphericalexpansionoftheshell,toρ γ2 ρ .Asa neticandthermalenergy.Inthefirstphaseofthedeceleration,the (4) ≪ (4) ISM result,thereverseshockbecomesrelativistic.Thisbehaviorischar- maximumLorentzfactoroftheshelldecreasesgentlyfrom100ata acteristicforaninitialthincoldrelativisticshelldeceleratingina distanceofR 2.5 1017cmto80atadistanceofR 4.3 1017cm. ∼ × ∼ × constantdensityexternalmedium.Infact,untiltheoutwardprop- However,onlyatthelatterdistanceof4.3 1017cm,asuddende- × agatingshell reachesR 3.8 1017cm,theshocked ISMmatter creaseof themaximumLorentzfactor of theentireconfiguration ∼ × ishote 30.0ρ (whereγ = 30correspondstotheanalyti- from γ = 80 to γ = 30 takes place. This fast drop of the maxi- (2) ∼ (2) (2) calsolutionfortherelativisticforwardshocke = γ 1 ρ ), mumLorentzfactorasseeninFig.10coincideswiththemoment (2) (cid:0) (2)− (cid:1) (2) whiletheshockedshellmaterialwhichhase =e iscold,since atwhichthereverseshockreachesthebackendofthecoldshell, (3) (2) e 0.01ρ .Whenthedensityinthenon-shockedshell(i.e.ρ ) thereby converting its kinetic to thermal energy (Fig. 9). In fact, (3)∼ (3) (4) c 2007RAS,MNRAS000,??–?? (cid:13) 8 Z. Meliani,R. Keppens,F. Casseand D. Giannios Figure9.ThefivezonespresentwhentherelativisticshellinteractswiththeISMatt 1.5 107s.(a)Lorentzfactor,(b)logofpressure,(c)logofdensity. ≃ × 110 Afterthisphase,theshellstructurecontinuestodecelerateby γ max transferringitskineticenergytoshockedISMmatterattheforward 100 shock.However,asseeninFig.10,itstilltakesacertaintimebe- 90 forethevariation ofmaximum Lorentzfactor now characterizing 80 theshockedISMmatterfollowstheself-similaranalyticalsolution 70 forblast-wavedecelerationasputforwardbyBlandford&McKee (1976).Fromaboutadistanceof1.2 1018cm,ournumericalsolu- x 60 a × m tion starts to follow the analytical solution precisely. In fact, af- γ 50 ter the reverse shock traversed the entire initial shell, a forward 40 travelingrarefactionwavepropagates through theentirestructure 30 thereby slowing it down while transferring most of the energy to shocked ISM regions. This structure does not follow the self- 20 similarprescriptionandcausestheinitialdifference.Intheend,the 10 distancebetweentheforwardshockandthecontact discontinuity 0 0 50 100 150 200 250 300 increasedsufficientlyandtheresultingradialthermodynamicpro- R [1016 cm] filesinbetweenbecomefullydescribedbytheBlandford-McKee analyticalsolution.TheLorentzfactorpredictedbytheBlandford- McKeesolutionbehindtheforwardshock(foranadiabaticshock) 16 Numerical simγu αlaRtio-3n/2 γ -1 α1 R6-2 isγBM=(E/ρISMc2R3)1/2 ∝R−3/2.ThepredictionoftheBlandford- McKeesolutionfortheLorentzfactoroftheflowisalsoplottedin BM phase near Sedov phase Fig.10andtheagreementwiththeresultsofthesimulationatthese 8 8 laterstagesofthedecelationisgood. x Eventually,weenterintothemildlyrelativisticregimeforthe a m blastwaveevolution.ThetransitiontotheSedov-Taylorphaseoc- γ 4 4 cursbeyondthesimulateddistanceR>300 1016cm,sincewestill × haveaLorentzfactorofabout3attheendofthesimulation.The Sedov-Taylor distance we find is close to the analytical estimate 2 2 givenbyl (3E/4πρ c2)1/3 5 1018cm. ∼ ISM ∼ × 1 1 140 160 180 200 220 240 260 280 290 300 R [1016 cm] 4.2 2Dmodelingofdirectedejecta Figure 10. The variation of the maximal Lorentz factor in the propa- Preciseanalysisoftheafterglowphasesrequirestoevolvenumer- gating shell-ISM structure with time a) when the shell propagates from ically confined ejecta in more than 1D, propagating in a jet-like R0 = 1016cm toR = 300×R0 b)when the shell decelerates following fashion into the ISM. Wenow present axisymmetric, 2D simula- theBlandford-McKeeprofile. tionsof arelativisticcoldshell propagating inuniform ISMwith anumber densityn = 1cm 3.Inthiswork,weinvestigatethe ISM − uniformmodeljet(Rhoads1999).Theshelldensityandenergyis set constant throughout theshell, and wetake ittocorrespond to whenplottingthemaximalLorentzfactorasafunctionofdistance, anisotropic spherical shell containing anequivalent isotropic en- initially we always observe the Lorentz factor of the unshocked ergy E = 1051ergsand a Lorentzfactor γ = 100. Tomake the iso shell matter. As soon as the reverse shock has crossed the entire 2Dcomputationfeasible,wenowstartthesimulationwithashell initialshell,westarttofollowtheevolutionoftheLorentzfactor thickness δ = 1014cm at a distance R = 1016cm from the cen- 0 of the shocked ISM (at the forward shock) where the maximum tralengine.Intheinitialsetuptheshelloccupiesanannularregion, Lorentzfactoris30atthatparticularmoment. withhalfopeningangleoftheshellequaltoθ = 1 .Thisangleis ◦ c 2007RAS,MNRAS000,??–?? (cid:13) AMRVACand RelativisticHydrodynamicsimulationsforGRB afterglowphases 9 rather small withrespect to those typically deduced from model- tothephasewhereE isrelevantinthedynamicstakesplacewhen jet ingoftheopticallight-curvebreaksbutstillinagreementwiththe theshockedISMandshellstarttospreadlaterallymuchfasterthan mostcollimatedGRBflows(Bloometal.2003;Panaitescu2005). whatcorrespondstopureradial(ballistic)flow. Withthechoiceofarathernarrowjet,weexpectthe2Deffectsto Inthelastpartoftheshell-ISMdecelerationphase,whenthe appearearlierandtobemorepronouncedwithrespecttoaspher- reverseshock hascrossed theentireinitial shell material,the lat- icalshellwiththesameisotropicequivalentenergy.Notethatasa eral velocityof shocked shell material reaches acomoving speed result,thisjetlikeoutflowhasadecreasedeffectiveenergyinthe of v 0.7c. This means that we do find that the lateral ve- shellE =(θ2/2)E . locitTy,coca∼n be bigger than the sound speed in the medium which jet iso TheAMRrunuses4gridlevels,taking400 6000atlevel1, isinaccordwiththeanalyticalresultofSarietal.(1999).Thisis × butwithrefinementratiosof2,4and2betweenconsecutivelevels at odds withnumerical findings asthose found inCannizzoetal. eventuallyachievinganeffectiveresolutionof6400 96000.The (2004),whichemploy amuch reducedresolution ascompared to × domain is [0,4] [0.3,30] in R units, as we specifically intend our AMR results (at low resolution, we do obtain a reduced lat- × 0 to model in detail the most dramatic phase of deceleration prior eral spreading velocity). As a result of this fast lateral spread of totheBlanford-McKeeevolution.Notethatweinitiallyhaveγ > theshockedmaterial,distinctdifferencesoccurinthedeceleration 1/θ,whichappearstobethecaseforaGRBjet.Beamingeffects stagesascomparedtotheisotropiccase.Thisresultisveryimpor- areinvoked toexplain theobserved steepening inthedecay light tant,asitshowsthatthelateralspreadingoftheshellisnotrelated curveresultantfromthetransitionγ>1/θ(indistinguishablefrom onlytotheLorentzfactoroftheshellbuttothetypeofthereverse anisotropicexplosion) toγ < 1/θ (Panaitescu&Me´sza´ros1999; shock. Inour computation, inanearlyphase thereverse shockis Panaitescu&Kumar2002;Panaitescu2005).Withthesesetupwe Newtonianandtheexpansionoftheshockedshellpartismodest. canverifyfromourhighresolutionsimulationwhetheruptotimes However,inalaterphasethereverseshockbecomesrelativisticand correspondingtothetransitionγ 1/θ,onlytheisotropicenergy thisleadstofasterlateralspreads.However,astheforwardshock ∼ E isrelevantforthedynamicsandtheresultingemission(Piran is always relativistic, already in an early stage the shocked ISM iso 2000;Granot2005). spreads with high velocity. The overall spreading of the shocked Theinitialvelocityoftheshellispurelyradial.Notethat,com- ISMand shocked shell configuration can, thus, bequite complex paredtothe1Disotropiccasepresentedintheprevioussection,the andrathermoreevolvedthantheonethatsemi-analyticalmodels 2D simulation starts with an initial condition containing less en- (Rhoads1999;Panaitescu&Me´sza´ros1999;Sarietal.1999;Piran ergy.Thisisdoneformerepracticalreasons:wewishtokeepthe 2000)predict. computationfeasiblewithintwoweek’sexecutiontimeonasingle OnlythatpartoftheISMfoundwithinthesolidangleofthe processor. Duetothislower energy content, thedeceleration dis- expanding shell is swept up, and this opening angle changes due tance willbe smaller by about one order of magnitude sinceless to the spreading effects just discussed. In our 2D simulation, we swept-up ISM mass is sufficient to decelerate the shell. This re- foundinanalogywiththe1D(higherenergy)casefromabove,that ducestheneedforresolvingmanydecadesofpropagationdistance thereverseshockisinitiallyNewtonian, sothethermalenergyin as measured in units of the initial shell thickness. In fact the 1D theshockedpartoftheshelldoesnotincreasealotanditslateral equivalentisotropiccasewiththesameenergyshowsasuddende- expansionremainsweakforawhile.Lateron,itslateralexpansion creaseofthemaximumLorentzfactorofthedeceleratingconfigu- speed goes up to the 0.7c mentioned above, as the reverse shock rationthatcorrespondstothereverseshockcrossingoftheshellat becomes relativistic and the material through which the shocked R 9 1017cm.Thishappenswellbeforethesimulated3 1017cm. shellexpandslaterallyhasalreadybeenbroughttolowerdensities ∼ × × Fig. 11shows at the(top),thesound speed contour, and the bytheshockedISMinteraction. density distribution in a logarithmic scale in the (left), and the The variation of the maximum Lorentz factor is less sud- Lorentzfactor inthe(right).Atthebottom,azoomintheregion denthanintheequivalent1Dsphericalexplosion,asquantifiedin around the shell is shown in the (left), the sound speed and the Fig.12.Thepartoftheshellmostdistantfromthesymmetryaxis lateral velocity, in the (right) the Lorentz factor, and in the (cen- deceleratesbeforethemoreinternalpart.Theshellsweepsupmore ter) a zoom only on the shell, the density and Lorentz factor. As matterthaninthecorrespondingisotropiccaseintheexternalparts inthe1Dcase,atfirsttheshellpropagates withaconstant maxi- duetothelateralspreadingeffectsdiscussed.Infact,inthissimu- mumLorentzfactor,andthisisaccompaniedbyaweakspreadof lationwemaydrawtheanalogybetweentheshellinteractionwith the shell. Part of this radial shell widening in the bottom part of the ISM and simulations of relativistic AGN jet propagation into theshellisaffectedbythecreationofaverylowpressureandden- an external medium. As in those cases, the energy is transferred sityregionbelowtheshell(alsooccurringinthe1Dscenario).This totheISMthroughabowshockstructure. However,ourmodeled near-vacuumstateremainsattherearpartastheshellmovesaway ejected shell representative of a burst in GRBsis not continually atthespecifiedLorentzfactor.Inthis2Dsimulation,theunshocked supportedbyinjectionofenergyatthebottom.Asaresult,inthe shellalsospreadslaterallywithaninitialtransverse(horizontal)ve- (smallopening angle) shell thereisnotreallyevidence of aclear locity,sincetheshellislaunched withapureradialvelocity.The jet beam as inan AGN jet. In thiscase theinteraction shell-ISM corresponding maximum initial lateral velocity of the unshocked isdominatedprimarilybyforward,reverseshockpair,andcontact shellisv =0.0175c.However,theshocked,sweptupISMmatter discontinuityinbetween.Thechanging2Dstructureofthisshock T spreadslaterallymuchfaster,due toitshigh thermalenergy con- leadstodifferencesintheshockedISMmassloadedontotheshell. tent.Initially,thatshockedISMpartspreadswithacomovingve- Asstatedearlier,onlyafractionoftheISMwithintheopeningan- locityofv 0.4c,whichislessthanthemaximumsoundspeed gleof theshellisswept up,and animportant partof ISMmatter T,co ∼ allowedbythepolytropicequationofstatec/√3.Duetothisfast gets pushed away laterally as the thin radially confined shell ad- sidewaysexpansionofshockedshellandISM,themassoftheISM vances. The resulting behavior is clearly influenced by these 2D hitbytheshellgrowsfasterthanr2.Therefore,thedecelerationof effects,andisthereasonwhythemaximumLorentzfactorofthe theshellstartsearlierthanintheisotropiccase,seeFig12.Thisre- configurationstartstodecreaseearlierthaninthe1Dscenario.In sultimpliesthatthetransitionfromthephasewhereE isrelevant, anisotropicscenarioallsweptupmassoftheISMremainsinfront iso c 2007RAS,MNRAS000,??–?? (cid:13) 10 Z. Meliani,R. Keppens,F.Casseand D.Giannios Figure11.Onthe(top),thesoundspeed,logarithmofdensity(right),andLorentzfactorcontoursforthe2Dsimulation(left).Onthe(bottom),azoom aroundontherelativisticshell,thesoundspeedandthelateralvelocity(left),theLorentzfactor(right),andthezoomontheshell,thedensityandLorentz factor(center)att=5 106s. × c 2007RAS,MNRAS000,??–?? (cid:13)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.