5 Microbiology Monographs SeriesEditor:Alexander Steinbüchel MicrobiologyMonographs Volumespublishedintheseries InclusionsinProkaryotes JessupM.Shively(Editor) Volume1(2006) ComplexIntracellularStructuresinProkaryotes JessupM.Shively(Editor) Volume2(2006) MagnetoreceptionandMagnetosomesinBacteria DirkSchüler(Editor) Volume3(2007) PredatoryProkaryotes–Biology,EcologyandEvolution EdouardJurkevitch(Editor) Volume4(2007) Amino Acid Biosynthesis – Pathways, Regulation and Metabolic Engineering Volume Editor: Volker F. Wendisch With64Figures,6inColor 123 VolumeEditor: Prof.Dr.VolkerF.Wendisch InstituteofMolecularMicrobiologyandBiotechnology WestfalianWilhelmsUniversityMünster Corrensstr.3 48149Münster Germany e-mail:[email protected] SeriesEditor: ProfessorDr.AlexanderSteinbüchel InstitutfürMolekulareMikrobiologieundBiotechnologie WestfälischeWilhelms-Universität Corrensstraße3 48149Münster Germany e-mail:[email protected] LibraryofCongressControlNumber:2006940356 ISSN1862-5576 ISBN978-3-540-48595-7SpringerBerlinHeidelbergNewYork DOI10.1007/978-3-540-48596-4 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerial isconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broad- casting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationof thispublicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLaw ofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfrom Springer.ViolationsareliableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:1)c Springer-VerlagBerlinHeidelberg2007 Theuseofregisterednames,trademarks,etc.inthispublicationdoesnotimply,evenintheabsence ofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulations andthereforefreeforgeneraluse. Editor:Dr.ChristinaEckey,Heidelberg,Germany DeskEditor:Dr.JuttaLindenborn,Heidelberg,Germany CoverDesign:WMXDesignGmbH,Heidelberg,Germany TypesettingandProduction:LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig,Germany Printedonacid-freepaper SPIN11768746 149/3100YL–543210 Preface Amino acids are simple organic compounds containing at least one amino and one carboxylic function. The L-α-amino acids and glycine can be con- sideredbuilding blocksoflifesincetheyconstitutethebiopolymers proteins in all organisms, but also D-isomers, e.g. D-alanine in bacterial cell walls, and β- and γ-amino acids like β-alanine as component of vitamin B5 and γ-aminobutyrateasneurotransmitteroccurinnature.Whilematureproteins contain many different amino acids due to post-translational modifications, only 22 proteinogenic L-α-amino acids are genetically encoded, i.e. they are used for protein biosynthesis as amino acyl-tRNAs by the ribosome. Since the deciphering of the genetic code for 20 amino acids about 40 years ago, L-selenocysteine(Chambersetal.1986;Zinonietal.1986)andL-pyrrolysine (Haoetal.2002; Srinivasanetal.2002)werediscoveredasthe21stand22nd geneticallyencodedaminoacids.Theco-translationalinsertionofselenocys- teine and pyrrolysine into nascent proteins requires unique cis- and trans- actingfactorstorecodeUGAandUAGstopcodons,respectively,ascodonsfor selenocysteine and pyrrolysine, respectively. The existence of further widely distributed and genetically encoded amino acids is unlikely as suggested in arecentbioinformaticanalysisoftRNAsencodedinabout150bacterialandar- chaealgenomes(Lobanovetal.2006).TheessentialL-aminoacidsisoleucine, leucine,lysine,methionine,phenylalanine,threonine,tryptophan,andvaline cannotbesynthesizedbyhumans,buthavetosuppliedinthediet,andinfants requirearginineandhistidineinaddition.Microorganismsdifferconsiderably intheircapabilitiestosynthesizeaminoacidsdenovo,forexampleLeuconos- tocmesenteroidesonlygrows,when16aminoacidsaresupplied,whilebacteria likeEscherichiacoli,BacillussubtilisandCorynebacteriumglutamicumareable tosynthesizeallaminoacidsdenovofromammonium. This monograph deals with amino acid biosynthetic pathways and their geneticandbiochemicalregulationononehandandwiththeuseandmetabolic engineeringofmicroorganismsforbiotechnologicalproductionofaminoacids onthe other. The current knowledge of amino acid metabolic pathways and transportsystemsspecificforuptakeorexportofaminoacidsiscovered. Thecharacterizationofthecontrolmechanismsofaminoacidbiosynthesis haverevealed fundamental insights into genetic and biochemicalregulation. Feedbackinhibitionofbiosyntheticenzymesbymetabolicend-products(e.g. VI Preface ofaspartatetranscarbamoylaseinthebiosynthesisofarginineandpyrimidines by CTP), enzyme activity controlby covalent modification (e.g. adenylation of glutamine synthetase), co-repressor dependent transcriptional repression (e.g. by the tryptophan-activated repressor of the trp operon), and attenua- tioncontrol(e.g.translation-mediated attenuationofthetryptophanbiosyn- thetic operon)are integral partsof biochemistry, genetics and microbiology textbooks.Recently,globalgeneexpressionanalysesalloweddeterminingthe regulonsofanumberoftranscriptionalregulatorsofaminoacidbiosynthesis. Moreover,thediscoveryofalysine-specific riboswitch(Sudarsanetal.2003), anewclassofregulatoryelements, illustratesthatthecharacterizationofthe regulationofaminoacidmetabolismcontinuestospurnewdiscoveries. Aminoacidsareusedonthebasisoftheirchemicalcharacteristics,physi- ologicalactivities,nutritionalvalueandtasteaschemicalbuilding blocks,as pharmaceuticalsand,particularly,asfoodandfeedadditives.Thediscoveryof C.glutamicumassuitablecatalysttoproducetheflavorenhancermonosodium glutamate1957inJapanmarkedthebirthoftheaminoacidfermentationin- dustry.Reportsonthebeginningsofmicrobialaminoacidproduction(Yamada et al. 1972; Aida et al. 1986; Enei et al. 1989) and an up-to-date review of C. glutamicum (Eggeling & Bott 2005) are available. In this monograph, recent achievementstoenableortoimproveproductionofaminoacidsandofdipep- tidesbyfermentationandenzymecatalysisarecomprehensivelyreviewedwith aparticularfocusonmetabolicengineering, i.e.therationalimprovementof acell’smetabolicfunctionsusingrecombinant DNAtechnology.Genomese- quencing and post-genomics approaches to strain improvement for amino acidproductionwillbecoveredastheirimpact,althoughalreadyquitevisible, isexpectedtoincreaseconsiderablyinthefutureacceleratingthedevelopment ofnewandmoreefficientbiocatalystsforaminoacidproduction. We are grateful to the authors who contributed excellent chapters to the volume Amino Acids – Pathways,Regulation and Metabolic Engineering. We highly appreciate the expertise and enthusiasm devoted to their chapters. Despitetheirmanyotherobligationsanddutiestheircomprehensiveoverview chaptersweretimelycompleted.OurthanksalsogotoSpringerforpublishing this monograph and especially to Christina Eckey and Jutta Lindenborn for theirvaluablesuggestionsandsupport. Münster,January2007 VolkerF.Wendisch AlexanderSteinbüchel Preface VII References AidaK,ChibataI,NakayamaK,TakinamiK,YamadaH(1986) BiotechnologyofAmino AcidProduction.ProgressinIndustrialMicrobiology.KodanshaLtd,TokyoandElsevier, Amsterdam–Oxford–NewYork–Tokyo ChambersI,FramptonJ,GoldfarbP,AffaraN,McBainW,HarrisonPR(1986)Thestructure ofthemouseglutathioneperoxidasegene:theselenocysteineintheactivesiteisencoded bythe‘termination’codon,TGA.EMBOJ5:1221–1227 EggelingL,BottM(2005)HandbookofCorynebacteriumglutamicum.CRCPress(Taylor FrancisGroup),BocaRaton Enei H,Yokozeki K,AkashiK (1989) Recent progress inmicrobialproductionof amino acids.GordonandBreach,Amsterdam HaoB,GongW,FergusonTK,JamesCM,KrzyckiJA,ChanMK(2002)AnewUAG-encoded residueinthestructureofamethanogenmethyltransferase.Science296:1462–1466 LobanovAV,KryikovGV,HatfieldDF,GladyshevVN(2006)Isthereatwentythirdamino acidinthegeneticcode?TrendsGenet22:357–360 SrinivasanG,JamesCM,KrzyckiJA(2002)PyrrolysineencodedbyUAGinArchaea:charg- ingofaUAG-decodingspecializedtRNA.Science296:1459–1462 SudarsanN,WickiserJK,NakamuraS,EbertMS,BreakerRR(2003)AnmRNAstructurein bacteriathatcontrolsgeneexpressionbybindinglysine.GenesDev17:2688–2697 YamadaK,KinoshitaS,TsunodaT,AidaK(1972)Themicrobialproductionofaminoacid. KodanshaLtd,Tokyo Zinoni F, Birkmann A, Stadtman TC, Bock A (1986) Nucleotide sequence and expres- sionoftheselenocysteine-containingpolypeptideofformatedehydrogenase(formate- hydrogen-lyase-linked)fromEscherichiacoli.ProcNatlAcadSciUSA83:4650–4654 Contents ProductionofGlutamateandGlutamate-RelatedAminoAcids: MolecularMechanismAnalysisandMetabolicEngineering H.Shimizu·T.Hirasawa . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Thel-LysineStory: FromMetabolicPathwaystoIndustrialProduction C.Wittmann·J.Becker . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 L-Threonine M.Rieping·T.Hermann . . . . . . . . . . . . . . . . . . . . . . . . . . 71 AromaticAminoAcids G.A.Sprenger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Branched-ChainAminoAcids M.Pátek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 MethionineBiosynthesis inEscherichiacoliandCorynebacteriumglutamicum R.M.Figge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 CysteineMetabolismandItsRegulationinBacteria E.Guédon·I.Martin-Verstraete . . . . . . . . . . . . . . . . . . . . . . 195 MicrobialArginineBiosynthesis: Pathway,RegulationandIndustrialProduction N.Glansdorff·Y.Xu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 l-SerineandGlycine L.Eggeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 Alanine,Aspartate,andAsparagineMetabolisminMicroorganisms T.Oikawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 X Contents AminoAcidTransportSystems inBiotechnologicallyRelevantBacteria K.Marin·R.Krämer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Occurrence,Biosynthesis, andBiotechnologicalProductionofDipeptides S.Hashimoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 GenomesandGenome-LevelEngineering ofAminoAcid-ProducingBacteria H.Yukawa·M.Inui·A.A.Vertès . . . . . . . . . . . . . . . . . . . . . 349 SubjectIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Description: