ebook img

Amenable actions and applications - International Congress of PDF

18 Pages·2006·0.14 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Amenable actions and applications - International Congress of

Amenable actions and applications NarutakaOzawa Abstract. We will give a brief account of (topological) amenable actions and exactness for countable discrete groups. The class of exact groups contains most of the familiar groups and yet is manageable enough to provide interesting applications in geometric topology, von Neumannalgebrasandergodictheory. MathematicsSubjectClassification(2000). Primary46L35;Secondary20F65,37A20,43A07. Keywords.Amenableactions,exactgroups,groupvonNeumannalgebras. 1. Introduction The notion of amenable groups was introduced by J. von Neumann in 1929 in his investigationoftheBanach–Tarskiparadox. Heobservedthatnon-abelianfreegroups arenotamenableandthatthisfactisthesourceoftheBanach–Tarskiparadox. Since thenithasbeenshownthattheamenabilityofalocallycompactgroupisequivalentto manyfundamentalpropertiesinharmonicanalysisofthegroup: theFølnerproperty, thefixedpointpropertyandtheweakcontainmentofthetrivialrepresentationinthe regularrepresentation,tonameafew. Foradiscretegroup,amenabilityofthegroupis ∗ alsocharacterizedbynuclearityofitsgroupC -algebra,andbyinjectivityofitsgroup von Neumann algebra. In this note, we are mainly interested in countable discrete groups. Theclassofamenablegroupscontainsallsolvablegroupsandisclosedunder subgroups, quotients, extensions and directed unions. As we mentioned before, a non-abelianfreegroup, oranygroupwhichcontainsit, isnotamenable. Amenable groupsplayapivotalroleinthetheoryofoperatoralgebras. Manysignificantoperator algebra-relatedproblemsongroupshavebeensolvedforamenablegroups. Wejust citetwoofthem;theclassificationofgroupvonNeumannalgebras[14]andmeasure equivalences[16],[58]ontheonehand,andtheBaum–Connesconjecture[46]onthe otherhand. Inrecentyears,therehavebeenexcitingbreakthroughsinbothsubjects beyondtheamenablecases. Wereferto[68]and[84]foraccountsofthisprogress. We will also treat the classification of group von Neumann algebras and measure equivalences in Section 4. Since many significant problems, if not all, are already solvedforamenablegroups,wewouldliketosetoutfortheworldofnon-amenable groups. Still,asGromov’sprinciplegoes,nostatementaboutallgroupsisbothnon- trivialandtrue. Sowewantagoodclassofgroupstoplaywith. Weconsideraclass ProceedingsoftheInternationalCongress ofMathematicians,Madrid,Spain,2006 ©2006EuropeanMathematicalSociety 1564 NarutakaOzawa asgoodifitcontainsmanyofthefamiliarexamples,ismanageableenoughsothatit maintainsnon-trivialtheorems,andcanbecharacterizedinvariouswayssothatitis versatile. Webelievethattheclassofexactgroups, whichwillbeintroducedinthe ∗ followingsection,standsthesetests. ThestudyofexactnessoriginatesinC -algebra theory [50], [51], [52] and was propagated to groups. The class of exact groups is fairly large and it contains all amenable groups, linear groups [39] and hyperbolic groups[2],tonameafew. Itisclosedundersubgroups,extensions,directedunions and amalgamated free products. (Since every free group is exact and there exists a non-exactgroup[37],aquotientofexactgroupneedsnotbeexactunlessthenormal subgroupisamenable.) Moreover,thereisaremarkabletheoremthattheinjectivity part of the Baum–Connes conjecture holds for exact groups [45], [76], [83], [84]. SincethispartoftheBaum–Connesconjecturehasalotofapplicationsingeometry andtopology,includingthestrongNovikovconjecture,itisaninterestingchallenge to prove exactness of a given group. We will encounter some other applications in vonNeumannalgebratheoryandergodictheoryinSection4. 2. Amenableactionsandexactness We first review the definition of and basic facts on amenable actions. We refer to [65] for the theory of amenable groups and to [5], [11] for the theory of amenable actions. The notion of amenability for a group action was first introduced in the measure space setting in the seminal paper [85], which has had a great influence in both ergodic theory and von Neumann algebra theory. In this spirit the study of its topologicalcounterpartwasinitiatedin[3]. Inthisnote, werestrictourattentionto continuousactionsofcountablediscretegroupson(notnecessarilysecondcountable) compactspaces. AlltopologicalspacesareassumedtobeHausdorffandallgroups, writtenas(cid:2),(cid:3),...,areassumedtobecountableanddiscrete. Let(cid:2) beagroup. A (topological)(cid:2)-spaceisatopologicalspaceXtogetherwithacontinuousactionof(cid:2) onit;(cid:2)×X (cid:3)(s,x)(cid:4)→s.x ∈X. Foragroup(oranycountableset)(cid:2),welet (cid:2) (cid:3) (cid:4) prob((cid:2))= μ∈(cid:4) ((cid:2)):μ≥0, μ(t)=1 ⊂(cid:4) ((cid:2)) 1 t∈(cid:2) 1 andequipprob((cid:2))withthepointwiseconvergencetopology. Wenotethatthistopol- ogy coincides with the norm topology. The space prob((cid:2)) is a (cid:2)-space with the (cid:2)-actiongivenbythelefttranslation: (s.μ)(t)=μ(s−1t). Definition2.1. Wesaythatacompact(cid:2)-spaceX isamenable(or(cid:2) actsamenably onX)ifthereexistsasequenceofcontinuousmaps μ : X (cid:3)x (cid:4)→μx ∈prob((cid:2)) n n suchthatforeverys ∈(cid:2) wehave lim sup(cid:10)s.μx −μs.x(cid:10)=0. n→∞x∈X n n Amenableactionsandapplications 1565 When X is a point, the above definition degenerates to one of the equivalent definitions of amenability for the group (cid:2). Moreover, if (cid:2) is amenable, then every (cid:2)-spaceisamenable. Conversely,ifthereexistsanamenable(cid:2)-spacewhichcarries aninvariantRadonprobabilitymeasure,then(cid:2)itselfisamenable. IfXisanamenable (cid:2)-space, thenX isamenableasa(cid:3)-spaceforeverysubgroup(cid:3). Itfollowsthatall isotropysubgroupsofanamenable(cid:2)-spacehavetobeamenable. Werecallthatthe isotropy subgroup of x in a (cid:2)-space X is {s ∈ (cid:2) : s.x = x}. It is also easy to see that if there exists a (cid:2)-equivariant continuous map from a (cid:2)-space Y into another (cid:2)-space X and if X is amenable, then so is Y. Finally, we only note that there are severalequivalentcharacterizationsofanamenableactionwhichgeneralizethosefor anamenablegroup. Manyamenableactionsnaturallyarisefromthegeometryofgroups. Thefollow- ingarethemostbasicexamplesofamenableactions. Example 2.2. Let F = (cid:11)g ,...,g (cid:12) be the free group of rank r < ∞. Then its r 1 r (Gromov)boundary∂F isamenable. WenotethattheCayleygraphofF w.r.t.the r r standardsetofgeneratorsisasimplicialtreeanditsboundary ∂F ⊂{g ,g−1,...,g ,g−1}N r 1 1 r r isdefinedasthecompacttopologicalspaceofallinfinitereducedwords,equippedwith therelativeproducttopology(seeFigure1). Similarly,withanappropriatetopology, F ∪ ∂F becomes a compactification of F . The free group F acts continuously r r r r on∂F byleftmultiplication(andrectifyingpossibleredundancy). Forx ∈∂F with r r itsreducedformx = a a ...,wesetx = e andx = a ...a . Foreveryn ∈ N, 1 2 0 k 1 k welet (cid:5)n−1 1 μ : ∂F (cid:3)x (cid:4)→μx = δ ∈prob(F ). n r n n xk r k=0 Thusμx isthenormalizedcharacteristicfunctionofthefirstnsegmentsofthepathin n theCayleygraphofF ,connectingetox (seeFigure1). Itisnothardtoseethatμ r n isacontinuousmapsuchthat 2|s| sup (cid:10)s.μx −μs.x(cid:10)≤ x∈∂Fr n n n for every s ∈ F , where |s| is the word length of s. Indeed, s.μx is the normalized r n characteristicfunctionofthefirstnsegmentsofthepathconnectings tos.x,which hasalargeintersectionwiththepathconnectingetos.x (seeFigure2). There are generalizations of this construction to groups acting on more general buildings[72]andonhyperbolicspaces[2]. Example2.3. Let(cid:2)beadiscretesubgroupofthespeciallineargroupSL(n,R)(e.g., (cid:2) =SL(n,Z))andP ⊂SL(n,R)betheclosedsubgroupofuppertriangularmatrices. 1566 NarutakaOzawa (cid:3)s.x (cid:2) (cid:3)x ∈∂F (cid:6) (cid:2) (cid:2) (cid:2) (cid:2) 2 (cid:3) (cid:5) x (cid:3) (cid:2) 2(cid:2) (cid:5) (cid:2) (cid:2) (cid:2)e x1(cid:2) (cid:2) s.μx (cid:5) μsn.x (cid:2) (cid:2) n (cid:5) (cid:3)(cid:3) (cid:3)(cid:3)(cid:4) s (cid:4)(cid:3) (cid:2) (cid:2) (cid:2) e (cid:2) F 2 Figure 1. The Cayley graph of F2 and the Figure2.Amenabilityof∂F2. boundary∂F . 2 Thentheleftmultiplicationactionof(cid:2) ontheFurstenbergboundarySL(n,R)/P is amenable. More generally, if G is a locally compact group with a closed amenable locallycompactsubgroupP (suchthatG/P compact),theneverydiscretesubgroup(cid:2) ofGactsamenablyonG/P. Afar-reachinggeneralizationofthisexampleisgivenin[39], whereitisshown thatanylineargroupadmitsanamenableactiononsomecompactspace. Thusmany non-amenablegroupsadmitamenableactions. Definition2.4. Wesayagroup(cid:2)isexactifthereexistsacompact(cid:2)-spaceXwhich isamenable. Exact groups are also said to be boundary amenable, amenable at infinity or to have the property A. By definition, all amenable groups are exact. Let X be a compact(cid:2)-space. Then,bytheuniversalityoftheStone–Cˇechcompactificationβ(cid:2), thereexistsa(cid:2)-equivariantcontinuousmapfromβ(cid:2)intoX. Itfollowsthat(cid:2)isexact iffβ(cid:2) (ortheboundary∂β(cid:2) = β(cid:2)\(cid:2))isamenable. Moreover,whether(cid:2) isexact or not, β(cid:2) is amenable as a (cid:3)-space for every exact subgroup (cid:3) of (cid:2) since there exists a (cid:3)-equivariant continuous map from β(cid:2) into β(cid:3). This observation implies thatexactnessispreservedunderadirectedunion,i.e.,agroup(cid:2)isexactiffallofits finitelygeneratedsubgroupsareexact. AmenabilityoftheStone–Cˇechcompactificationβ(cid:2) leadstoanintrinsiccharac- terization of an exact group (cid:2). Before stating it, we introduce the notion of coarse metricspaces[36]. Letd bealefttranslationinvariantmetricon(cid:2) whichisproper in the sense that every subset of finite diameter is finite. Then l(s) = d(s,e) is a lengthfunctionon(cid:2), i.e., l(s−1) = l(s), l(st) ≤ l(s)+l(t)foreverys,t ∈ (cid:2), and l(s)=0iffs =e. Thelengthfunctionlisproperinthesensethatl−1([0,R])isfinite for every R > 0. Conversely, every proper length function l gives rise to a proper left translation invariant metric d on (cid:2) such that d(s,t) = l(s−1t). If S is a finite Amenableactionsandapplications 1567 generatingsubsetof(cid:2),thenthecorrespondingwordmetricisdefinedby dS(s,t)=min{n:s−1t =s1...sn, si ∈S∪S−1}. Wenotethatevenwhen(cid:2)isnotfinitelygenerated,thereexistsaproperlefttranslation invariant metric d on (cid:2) (as we assume that (cid:2) is countable). Two proper length functionslandl(cid:15)areequivalentinthesensethatl(s )→∞iffl(cid:15)(s )→∞. Thuswe n n areleadtothenotionofcoarseequivalence,whichisaveryloosenotion. Twometric (cid:15) (cid:15) spaces (X,d) and (X,d ) are coarsely isomorphic if there exists a (not necessarily continuous)mapf: X →X(cid:15) suchthatd(z,f(X))<∞foreveryz ∈X(cid:15) and ρ−(d(x,y))≤d(cid:15)(f(x),f(y))≤ρ+(d(x,y)) for some fixed function ρ± on [0,∞) with limr→∞ρ−(r) = ∞. Such f is called a coarse isomorphism. We observe that any two proper left translation invariant (cid:15) metrics d and d on (cid:2) are coarsely equivalent in the sense that the formal identity (cid:15) map from ((cid:2),d) onto ((cid:2),d ) is a coarse isomorphism. A coarse metric space is a spacetogetherwithacoarseequivalenceclassofmetrics. Hence,(cid:2)isprovidedwith (cid:15) auniquecoarsemetricspacestructure. Twogroups(cid:2) and(cid:2) aresaidtobecoarsely isomorphic iftheyarecoarselyisomorphicascoarsemetricspaces. Itfollowsfrom thefollowingtheoremthatexactnessisacoarseisomorphisminvariant. Inparticular, agroupisexactifithasafiniteindexsubgroupwhichisexact. Theorem2.5([47],[83]). Foragroup(cid:2),thefollowingareequivalent. 1. Thegroup(cid:2) isexact. 2. Themetricspace((cid:2),d)hasthepropertyA: Foreveryε >0andR >0,there exist a map ν: (cid:2) → prob((cid:2)) and S > 0 such that (cid:10)ν −ν (cid:10) ≤ ε for every s t s,t ∈(cid:2) withd(s,t)<R andsuppν ⊂{t :d(s,t)<S}foreverys ∈(cid:2). s 3. Foreveryε > 0andR > 0,thereexistaHilbertspaceH,amapξ: (cid:2) → H andS >0suchthat|1−(cid:11)ξ ,ξ (cid:12)|<εforeverys,t ∈(cid:2) withd(s,t)<R and t s (cid:11)ξ ,ξ (cid:12)=0foreverys,t ∈(cid:2) withd(s,t)≥S. t s Moreover,if (cid:2)isexact,then(cid:2)iscoarselyisomorphictoasubsetofaHilbertspace. Themainresultof[83]istheinjectivitypartoftheBaum–Connesconjecturefor a group which is coarsely embeddable into a Hilbert space. (See also [45], [76], [84].) This justifies the study of exactness for groups. It is not known whether or not coarse embeddability into a Hilbert space implies exactness (even in the case of groups with the Haagerup property). We recall that a metric space (X,d) has asymptotic dimension ≤ d [36] if for every R > 0, there exists a covering U of X such that supU∈Udiam(U) < ∞ and |{U ∈ U : U ∩B (cid:17)= ∅}| ≤ d +1 for any subset B ⊂ X with diam(B) < R. Asymptotic dimension is a coarse equivalence invariantandhenceaninvariantforagroup. WenotethatthegroupsZd andFd have r asymptoticdimensiond. 1568 NarutakaOzawa Corollary2.6([47]). Acoarsemetricspacewithfiniteasymptoticdimensionhasthe propertyA. Inparticular,agroupwithfiniteasymptoticdimensionisexact. Itwasshownin[22]thateveryCoxetergrouphasfiniteasymptoticdimensionand henceisexact. Wereferto[8]formoreinformationonasymptoticdimension. Wedescribearelativeversionofanamenableaction,whichisusefulinproving variouskindsofpermanencepropertiesofexactness. Thereareotherapproaches[6], [7],[20]whichareaswelluseful. Thefollowingisinthespiritof[3]. Proposition2.7([63]). LetXbeacompact(cid:2)-spaceandK beacountable(cid:2)-space. AssumethatthereexistsanetofBorelmaps μ : X →prob(K) n (i.e.,thefunctionX (cid:3)x (cid:4)→μx(a)∈RisBorelforeverya ∈K)suchthat n (cid:6) lim (cid:10)s.μx −μs.x(cid:10)dm(x)=0 n n n X for every s ∈ (cid:2) and every Radon probability measure m on X. Then (cid:2) is exact provided that all isotropy subgroups of K are exact. Indeed, if Y is a compact (cid:2)-spacewhichisamenableasa(cid:3)-spaceforeveryisotropysubgroup(cid:3),thenX×Y (withthediagonal(cid:2)-action)isanamenable(cid:2)-space. Corollary2.8([52]). Anextensionofexactgroupsisagainexact. Proof. If(cid:3)(cid:2)(cid:2)isanormalsubgroupsuchthat(cid:2)/(cid:3)isexact,thenProposition2.7is applicabletoanamenablecompact((cid:2)/(cid:3))-spaceXandK =(cid:2)/(cid:3) (cid:3) We turn our attention to a group acting on a countable simplicial tree T, which may not be locally finite. We will define a compactification T = T ∪∂T of T, to which Proposition 2.7 is applicable. We recall that a simplicial tree is a connected graphwithoutnon-trivialcircuits,andidentifyT withitsvertexset. Theboundary∂T of T is defined as in Example 2.2. Thus ∂T is the set of all equivalence classes of (one-sided)infinitesimplepathsinT,wheretwoinfinitesimplepathsareequivalentif theirintersectionisinfinite. Foreverya ∈T andx ∈∂T,thereexistsauniqueinfinite simple path γ in the equivalence class x which starts at a. We say that the path γ connectsatox. ItfollowsthateverytwodistinctpointsinT =T ∪∂T areconnected byauniquesimplepath(whichisabiinfinitepath,withtheobviousdefinition,when bothpointsareboundarypoints). EveryedgeseparatesT intotwocomponents,and every finite subset of edges separates X into finitely many components. Now we equip T with a topology by declaring that all such components are open. It turns out that T is compact with this topology. We note that T is dense but not open in T (unless T is locally finite) and that every automorphism s of T extends to a Amenableactionsandapplications 1569 homeomorphism on T. Fixing a base point e ∈ T, we define μ : ∂T → prob(T) n exactlyasinExample2.2. Itisnothardtoseethatμ isaBorelmapsuchthat n 2d(s.e,e) sup (cid:10)s.μx −μs.x(cid:10)≤ x∈∂T n n n foreveryautomorphisms ofT (cf.Figure2). Weextendμ toT bysimplyletting n μa =δ ∈prob(T)fora ∈T. ThenthesequenceofBorelmapsμ : T →prob(T) n a n satisfiestheassumptionofProposition2.7forX =T,K =T andanygroup(cid:2)acting onT. We recall that associated with the fundamental group of a graph of groups there exists a tree, called the Bass–Serre tree, on which the group acts. We describe it in the case of an amalgamated free product. Let (cid:2) = (cid:2) ∗ (cid:2) be the amalgamated 1 (cid:3) 2 freeproductofgroups(cid:2) and(cid:2) withacommonsubgroup(cid:3). Thentheassociated 1 2 Bass–Serre tree T is the disjoint union (cid:2)/(cid:2) (cid:19)(cid:2)/(cid:2) of left cosets, where s(cid:2) and 1 2 1 t(cid:2) areadjacentifs(cid:2) ∩t(cid:2) (cid:17)= ∅. ThustheedgesetofT coincideswith(cid:2)/(cid:3),and 2 1 2 anedges(cid:3)connectss(cid:2) ands(cid:2) . ItturnsoutthatT isatree. Thegroup(cid:2)actsonT 1 2 fromtheleftinsuchawaythateachvertexstabilizerisconjugatetoeither(cid:2) or(cid:2) 1 2 andeachedgestabilizerisconjugateto(cid:3). WenotethatthetreeT isnotlocallyfinite unless(cid:3)hasfiniteindexinboth(cid:2) and(cid:2) . 1 2 Corollary2.9([25],[78]). Let(cid:2)beagroupactingonacountablesimplicialtreeT. Then (cid:2) is exact provided that all isotropy subgroups are exact. In particular, an amalgamatedfreeproductandanHNN-extensionofexactgroupsareagainexact. It follows that one-relator groups are exact [38] because they are made up by using HNN-extensions following the McCool–Schupp algorithm. A similar remark applies to a fundamental group of a Haken 3-manifold thanks to the Waldhausen decomposition. Example2.2canbegeneralizedtoahyperbolicspace,too. Thenotionofhyper- bolicity was introduced in the very influential paper [35] and has been extensively studied since. A metric space is said to be hyperbolic if it is “tree-like” in certain sense, and a finitely generated group (cid:2) is said to be hyperbolic if its Cayley graph ishyperbolic. Hyperbolicityisarobustnotionandtherearemanynaturalexamples of hyperbolic groups including the free groups. Every hyperbolic group has a nice compactification, called the Gromov compactification, which is a generalization of that given in Example 2.2. It is shown in [2] that the action of a hyperbolic group onitsGromovcompactificationisamenable. (Seealso[9]andtheappendixof[5].) Theresultisgeneralizedin[48],[63]toagroupactingonhyperbolicspaces,which arenotnecessarilylocallyfinite. Compactificationofanon-locally-finitehyperbolic graphwasconsideredin[10], whereitsBowditchcompactificationK isintroduced forafinehyperbolicgraphK. AsimplicialtreeT anditscompactificationT arethe simplestnon-trivialexamplesofauniformlyfinehyperbolicgraphanditsBowditch 1570 NarutakaOzawa compactification. See [10] for details. As in the case for a simplicial tree, the as- sumptionofProposition2.7issatisfiedforauniformlyfinehyperbolicgraphK,its BowditchcompactificationK andanygroupactingonK [63]. Byacharacterization ofarelativelyhyperbolicgroup[10],weobtainthefollowingcorollary. Corollary2.10([20],[59],[63]). Arelativelyhyperbolicgroupisexactprovidedthat allperipheralsubgroupsareexact. Inparticular,everyhyperbolicgroupisexact. Examplesofrelativelyhyperbolicgroupsincludethefundamentalgroupsofcom- plete non-compact finite-volume Riemannian manifolds with pinched negative sec- tionalcurvature(whicharehyperbolicrelativetonilpotentcuspsubgroups)[26]and limitgroups(whicharehyperbolicrelativetomaximalnon-cyclicabeliansubgroups) [1],[21]. Exactnessoflimitgroupsalsofollowsfromtheirlinearity. Anotherinterestingcaseofgroupactionswhichimpliesexactnessisaproperand co-compactactiononafinitedimensionalCAT(0)cubicalcomplex[12]. Themappingclassgroup(cid:2)(S)ofacompactorientablesurfaceS isalsoanatural example of an exact group [42], [49]. Indeed, the action of (cid:2)(S) on the space of complete geodesic laminations is amenable [42]. In contrast, the more well-known actionof(cid:2)(S)ontheThurstonboundaryPMF ofTeichmüllerspaceisnotamenable because of non-amenable isotropy subgroups. However, if we denote by K the set ofallnon-trivialisotopyclassesofnon-peripheralsimpleclosedcurvesonS (i.e.,K is the vertex set of the curve complex of S), then the assumption of Proposition 2.7 is satisfied for X = PMF [49]. Since every isotropy subgroup of a point in K is a mapping class group of lower complexity, induction applies and the exactness of (cid:2)(S)follows. Sofarwehaveenumeratedexamplesofexactgroupsasmanyaswecan(theauthor is sorry for any possible omission). Unfortunately, there does exist a (finitely pre- sented)groupwhichisneitherexactnorcoarselyembeddableintoaHilbertspace[37]. Currently,itisnotknownwhetherthefollowinggroupsareexactornot: Thompson’s groupF,Out(F ),automaticgroups,3-manifoldgroups,groupsofhomeomorphisms r (resp.diffeomorphisms)on(say)thecircleS1,(free)Burnsidegroupsandothermon- strousgroups. The rest of this section is devoted to the relationship of exactness to operator ∗ ∗ algebras. Associated with a group, there are the reduced group C -algebra C ((cid:2)) λ andthegroupvonNeumannalgebraL((cid:2)). When(cid:2)isabelian,C∗((cid:2))isisomorphic toC((cid:7)(cid:2)), whileL((cid:2))isisomorphictoL∞((cid:7)(cid:2)), where(cid:7)(cid:2) isthePoλntrjagindualof(cid:2). ∗ Hence the study of C ((cid:2)) corresponds to “noncommutative topology” and that of λ L((cid:2))to“noncommutativemeasuretheory”[15]. Amenabilityof(cid:2)canbereadfrom itsoperatoralgebras. Theorem2.11([41],[54],[74]). Foragroup(cid:2),thefollowingareequivalent. 1. Thegroup(cid:2) isamenable. ∗ ∗ 2. ThereducedgroupC -algebraC ((cid:2))isnuclear. λ Amenableactionsandapplications 1571 3. ThegroupvonNeumannalgebraL((cid:2))isinjective. Ageneralizationofthistheoremtoagroupactiongoesasfollows. Theorem2.12([3]). Fora(compact)(cid:2)-spaceX,thefollowingareequivalent. 1. The(cid:2)-spaceXisamenable. 2. ThereducedcrossedproductC∗-algebraC∗(X(cid:2)(cid:2))isnuclear. λ 3. Thegroup-measure-spacevonNeumannalgebraL(X(cid:2)(cid:2),m)isinjectivefor any(cid:2)-quasi-invariantRadonprobabilitymeasuremonX. ∗ ∗ ThenuclearC -algebrasareaccessibleamongtheC -algebrasandtheclassifica- ∗ ∗ tion program of nuclear C -algebras is a very active area of research in C -algebra theory [73]. Many C∗-algebras C∗(X(cid:2)(cid:2)) arising from various kinds of boundary λ actions are classifiable via their K-theory [4], [53], [77]. Unlike the group case, a ∗ ∗ C -subalgebraofanuclearC -algebraneedsnotbenuclear. Thenotionofexactness was introduced to give an abstract characterization of subnuclearity and has met a greatsuccess[50],[51]. Exactnesshasadeepconnectionwithoperatorspacetheory ∗ [51],[69]. AC -algebraAiscalledexact iftakingtheminimaltensorproductwith ∗ A preserves short exact sequences of C -algebras. The following theorem explains thenomenclatureofexactgroups. Theorem2.13([11],[40],[51],[60]). Foragroup(cid:2) thefollowingareequivalent. 1. Thegroup(cid:2) isexact. ∗ ∗ 2. ThereducedgroupC -algebraC ((cid:2))isexact. λ 3. ThegroupvonNeumannalgebraL((cid:2))isweaklyexact. ∗ ∗ We note that a C -subalgebra of an exact C -algebra is always exact and that a von Neumann subalgebra of a weakly exact von Neumann algebra is weakly exact provided that there exists a normal conditional expectation. Since a von Neumann ∗ algebrawithaweaklydenseexactC -algebraisweaklyexact,weobtainthefollowing corollary. Corollary2.14. Exactnessisclosedundermeasureequivalence. We recall that two groups (cid:2) and (cid:3) are measure equivalent [36] if there exist commutingmeasurepreservingfreeactionsof(cid:2) and(cid:3)onsomeLebesguemeasure space((cid:14),m)suchthattheactionofeachofthegroupsadmitsafinitemeasurefunda- mentaldomain. Forexample,latticesinthesame(secondcountable)locallycompact groupGaremeasureequivalent. Itisknownthatmeasureequivalencecoincideswith thestableorbitequivalence[29]andhencegivesrisetoastableisomorphismofthe correspondinggroup-measure-spacevonNeumannalgebras. 1572 NarutakaOzawa 3. Amenablecompactificationswhicharesmall We study the “size” of an amenable compactification with its application to von Neumannalgebratheoryinmind. Acompactificationofagroup(cid:2)isacompactspace (cid:15)(cid:2)containing(cid:2)asanopendensesubset. Weonlyconsiderthosecompactifications whichareequivariant;theleftmultiplicationactionof(cid:2)on(cid:2)extendstoacontinuous action of (cid:2) on (cid:15)(cid:2). A group (cid:2) is amenable iff the one-point compactification is amenable,andagroup(cid:2)isexactifftheStone–Cˇechcompactificationβ(cid:2)isamenable. Thus we think that the “size” of an amenable compactification of a given group measures the “degree of amenability” of the group. We say that a compactification (cid:15)(cid:2) of (cid:2) is small at infinity if for every net (s ) in (cid:2) with s → x ∈ ∂(cid:2), we have n n s t → x for every t ∈ (cid:2) [13]. In other words, (cid:15)(cid:2) is small at infinity if every flow n in (cid:2) drives (cid:2) to a single point. We note that (cid:15)(cid:2) is small at infinity iff the right multiplicationactionof(cid:2)extendscontinuouslyon(cid:15)(cid:2)insuchawaythatitistrivial on (cid:15)(cid:2) \(cid:2). For instance, the Gromov compactification F ∪∂F of the free group r r F (cf.Example2.2)issmallatinfinitysincethefirstksegmentofst issameasthat r ofs aslongas|s|≥k+|t|. Thesameappliestogeneralhyperbolicgroups. Wesaythatagroup(cid:2)belongstotheclassSifthecompact((cid:2)×(cid:2))-space∂β(cid:2) = β(cid:2)\(cid:2)(withthebilateralaction)isamenable. If(cid:2)hasanamenablecompactification (cid:15)(cid:2) which is small at infinity, then we have (cid:2) ∈ S. It follows that the class S containsamenablegroupsandhyperbolicgroups(ormoregenerally,anygroupwhich is hyperbolic relative to a family of amenable subgroups). The class S is closed undersubgroupsandfreeproducts(withfiniteamalgamations). Moreover,thewreath product(cid:3)(cid:20)(cid:2)ofanamenablegroup(cid:3)byagroup(cid:2) ∈SagainbelongstoS[62]. We observethataninneramenablegroupinShastobeamenablebecause,bydefinition, agroup(cid:2)isinneramenableif∂β(cid:2)carriesaninvariantRadonprobabilitymeasurefor theconjugationactionof(cid:2)(cf.[44]). Ingeneral,foragivengroup(cid:2)andacountable (cid:2)-spaceK,itisaninterestingproblemtodecidewhetherornotthecompact(cid:2)-space ∂βK = βK \K is amenable (cf. [62]). We note the trivial case where the isotropy subgroupsareallamenable. Thefollowingisarelativeversionofsmallness. Definition3.1. LetGbeanon-emptyfamilyofsubgroupsof(cid:2). Foranet(s )in(cid:2) n we say that s → ∞ relative to G if s ∈/ s(cid:3)t for any s,t ∈ (cid:2) and (cid:3) ∈ G. We n n say that a compactification (cid:15)(cid:2) is small relative to G if for every net (s ) in (cid:2) with n s →x ∈(cid:15)(cid:2) andwiths →∞relativetoG,wehaves t →x foreveryt ∈(cid:2). n n n Supposethatagroup(cid:2)actsonasimplicialtreeT andletT bethecompactification definedintheprevioussection. Werecallthattheopenbasisofthetopologyisgiven bycuttingfinitelymanyedges. Wefixabasepointe ∈ T andconsiderthesmallest compactification (cid:15)T(cid:2) of (cid:2) for which the map (cid:2) (cid:3) s (cid:4)→ s.e ∈ T is continuous on (cid:15)T(cid:2). Then(cid:15)T(cid:2) issmallrelativetothefamilyofedgestabilizers. Indeed,suppose thats →∞relativetoedgestabilizersandthata,b ∈T aregiven. Letγ beapath n connecting a to b. Since the net (s .γ) of paths leaves every edge, two end points n

Description:
product of an amenable group by a group ∈ S again belongs to S [62]. We observe that an inner amenable group in S has to be amenable because, by definition,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.