IJMMS31:10(2002)577–601 PII.S016117120210603X http://ijmms.hindawi.com ©HindawiPublishingCorp. AMENABILITY AND COAMENABILITY OF ALGEBRAIC QUANTUM GROUPS ERIKBÉDOS,GERARDJ.MURPHY,andLARSTUSET Received5June2001andinrevisedform25January2002 Wedefineconceptsofamenabilityandcoamenabilityforalgebraicquantumgroupsinthe sense of Van Daele (1998). We show that coamenability of an algebraic quantum group alwaysimpliesamenabilityofitsdual.Variousnecessaryand/orsufficientconditionsfor amenability or coamenability are obtained. Coamenability is shown to have interesting consequencesforthemodulartheoryinthecasethatthealgebraicquantumgroupisof compacttype. 2000MathematicsSubjectClassification: 46L05,46L65,16W30,22D25,58B32. 1. Introduction. Theconceptofamenabilitywasfirstintroducedintotherealmof quantumgroupsbyVoiculescuin[25]forKacalgebras,andstudiedfurtherbyEnock and Schwartz in [7] and by Ruan in [20] (which also deals with Hopf von Neumann algebras).Ontheotherhand,amenabilityandcoamenabilityof(regular)multiplicative unitaries have been defined by Baaj and Skandalis in [1], and studied in [2, 3, 6]. AmenabilityandcoamenabilityforHopfC∗-algebrashavebeenconsideredbyNgin [17,18]. Thepresentpaperisacontinuationoftheearlierpaper[5]oftheauthors,inwhich westudiedtheconceptofcoamenabilityforcompactquantumgroupsasdefinedby Woronowicz[15,28].WeshowedtherethatthequantumgroupSU (2)iscoamenable q andthatacoamenablecompactquantumgrouphasafaithfulHaarintegral.Combin- ingtheseresultsgivesanewproofofNagy’stheoremthattheHaarintegralofSU (2) q isfaithful[16]. Inthispaper,weextendtheclassofquantumgroupsforwhichwestudytheconcept ofcoamenability,andwealsoinitiateastudyofthedual notionofamenability.The quantum groups we consider are the algebraic quantum groups introduced by Van Daelein[24].Thisclassissufficientlylargetoincludecompactquantumgroupsand discrete quantum groups (for a more precise statement of what is meant here, see Proposition3.2).Analgebraicquantumgroupadmitsadualthatisalsoanalgebraic quantumgroup;moreover,thereisaPontryagin-typedualitytheoremtotheeffectthat thedoubledualiscanonicallyisomorphictotheoriginalalgebraicquantumgroup(see Theorem3.1). If Γ is a discrete group, there are associated to it in a natural way two algebraic quantum groups, namely (A,∆) = (C(Γ),∆), and its dual (Aˆ,∆ˆ), where C(Γ) is the groupalgebraofΓ and∆isthecomultiplicationonC(Γ)givenby∆(x)=x⊗x,forall x∈Γ.Then(A,∆)iscoamenableifandonlyif(Aˆ,∆ˆ)isamenable;moreover,eachof theseconditionsisinturnequivalenttoamenabilityofΓ (seeExamples3.4and4.6). 578 ERIK BÉDOS ET AL. Wefirstrelatecoamenabilityofanalgebraicquantumgroup(A,∆)toapropertyof the multiplicative unitary W naturally associated to it. This provides a link between our theory and that of Baaj and Skandalis [1], although we make no use of their re- sults.Thenwealsoobtainseveralotherequivalentformulationsofcoamenability(in Theorem4.2)thatgeneralizewell-knownresultsinthegroupalgebracase. Onebasicquestioninthetheoryiswhethercoamenabilityofanalgebraicquantum group (A,∆) is always equivalent to amenability of its dual (Aˆ,∆ˆ). In fact, we show thatcoamenabilityof(A,∆)alwaysimpliesamenabilityof(Aˆ,∆ˆ),butitisconceivable thattheconverseisnotalwaystrue.When(A,∆)isofcompacttype(i.e.,thealgebra A is unital) and its Haar state is tracial, the converse is known to hold, as may be deducedfromadeepresultofRuan[20,Theorem4.5]. In another direction, we prove below that if M is the von Neumann algebra asso- ciated to an algebraic quantum group (A,∆), then coamenability of (A,∆) implies injectivity of M (Theorem4.8). It may also be deduced from [20, Theorem 4.5] that theconverseistrueinthecompacttracialcase.Relatedtothis,wegiveadirectproof in Theorem4.9, that if (A,∆) is of compact type and its Haar state is tracial, then injectivityofM impliesamenabilityofthedual(Aˆ,∆ˆ). In the final section of this paper, we investigate the modular properties of a coa- menablealgebraicquantumgroupofcompacttype.TheunitalHaarfunctionalϕ of suchanalgebraicquantumgroup(A,∆)isaKMS-statewhenextendedtotheanalytic extensionA ofA.Weshow,inthecasethat(A,∆)iscoamenable,themodulargroup r canbegivenadescriptionintermsofthemultiplicativeunitaryof(A,∆). Wewillcontinueourinvestigationsoftheconceptsstudiedinthispaperinasub- sequentpaper[4].Extensionsoftheseresultstothegeneralcaseoflocallycompact quantumgroupswillalsobeconsidered. Wenowgiveabriefsummaryofhowthepaperisorganized.Section2establishes some preliminaries on multiplier algebras, C∗-algebra and von Neumann algebras. We give a careful treatment of slice maps in connection with multiplier C∗-algebras (Theorem2.1). This is a material that is often assumed in the literature, but does not appear to have been anywhere explicitly formulated and established in terms of known results. Section3 sets out the background material on algebraic quantum groupsthatwillbeneededinthesequel.Themostimportantresultsofthepaperare tobefoundinSection4,wheremostoftheresultsmentionedintheearlierpartofthis introductionareproved.Thefinalsection,Section5,discussessomeconsequencesof coamenabilityforthemodularpropertiesofanalgebraicquantumgroupofcompact type. Weendthisintroductorysectionbynotingsomeconventionsofterminologythat willbeusedthroughoutthepaper. Everyalgebrawillbean(notnecessarilyunital)associativealgebraoverthecomplex fieldC.TheidentitymaponasetVwillbedenotedbyι ,orsimplybyι,ifnoambiguity V isinvolved. IfV andW arelinearspaces,V(cid:4)denotesthelinearspaceoflinearfunctionalsonV andV⊗W denotesthelinearspacetensorproductofV andW.Theflipmap χ from V⊗W toW⊗V isthelinearmapsendingv⊗w ontow⊗v,forallv∈V andw∈W. IfV andW areHilbertspaces,V⊗W denotestheirHilbertspacetensorproduct;we AMENABILITY AND COAMENABILITY OF ALGEBRAIC QUANTUM GROUPS 579 denotebyB(V)andB (V)theC∗-algebrasofboundedlinearoperatorsandcompact 0 operatorsonV,respectively.Ifv∈Vandw∈W,ω denotestheweaklycontinuous v,w bounded linear functional on B(V) that maps x onto (x(v),w). We set ω =ω . v v,v Wewilloftenalsousethenotationω todenotearestrictiontoaC∗-subalgebraof v B(V)(thedomainofω willbedeterminedbythecontext). v IfV andW arealgebras,V⊗W denotestheiralgebratensorproduct.IfV andW are C∗-algebras,thenV⊗W denotestheirC∗-tensorproductwithrespecttotheminimal (spatial)C∗-norm. 2. C∗-algebrapreliminaries. Inthissectionwereviewsomeresultsrelatedtomul- tiplieralgebras, especiallymultiplieralgebras ofC∗-algebras, andalsowereviewel- ementsofthetheoryof(multiplier)slicemaps.ThesetopicsarefundamentaltoC∗- algebraicquantumgrouptheorybutthosepartsoftheirtheorythataremostrelevant arescatteredthroughouttheliteratureandareoftenpresentedonlyinaverysketchy form.Therefore,fortheconvenienceofthereaderandinordertoestablishnotation andterminology,wepresentabrief,butsufficientlydetailed,backgroundaccount. First,weintroducethemultiplieralgebraofanondegenerate∗-algebra.Thisgen- eralizestheusualideaofthemultiplieralgebraofaC∗-algebra.Recallthatanonzero algebraAisnondegenerateif,foreverya∈A,a=0ifab=0,forallb∈Aorba=0, forallb∈A.Obviously,allunitalalgebrasarenondegenerate.IfAandB arenonde- generatealgebras,soisA⊗B. DenotebyEnd(A)theunitalalgebraoflinearmapsfromanondegenerate∗-algebra Atoitself.LetM(A)denotethesetofelementsx∈End(A)suchthatthereexistsan element y ∈End(A) satisfying x(a)∗b =a∗y(b), for all a,b ∈A. Then M(A) is a unital subalgebra of End(A). The linear map y associated to a given x ∈ M(A) is uniquely determined by nondegeneracy and we denote it by x∗. The unital algebra M(A)becomesa∗-algebrawhenendowedwiththeinvolutionx(cid:1)x∗. When A is a C∗-algebra, the closed graph theorem implies that M(A) consists of bounded operators. If we endow M(A) with the operator norm, it becomes a C∗- algebra.ItisthentheusualmultiplieralgebrainthesenseofC∗-algebratheory. SupposenowthatAissimplyanondegenerate∗-algebraandthatAisaselfadjoint idealina∗-algebraB.Forb∈B,defineL ∈M(A)byL (a)=ba,foralla∈A.Then b b the map L:B →M(A), b (cid:1)L , is a ∗-homomorphism. If A is an essential ideal in b B in the sense that an element b of B is necessarily equal to zero if ba=0, for all a∈A, or ab =0, for all a∈A, then L is injective. In particular, A is an essential selfadjoint ideal in itself (by nondegeneracy) and therefore we have an injective ∗- homomorphismL:A→M(A).WeidentifytheimageofAunderLwithA.ThenAis anessentialselfadjointidealofM(A).Obviously,M(A)=AifandonlyifAisunital. If T is an arbitrary nonempty set, denote by F(T) and K(T) the nondegenerate ∗-algebras of all complex-valued functions on T and of all finitely supported such functions,respectively,wheretheoperationsarethepointwise-definedones.Clearly, K(T) is an essential ideal in F(T), and therefore we have a canonical injective ∗- homomorphismfromF(T)toM(K(T));amoment’sreflectionshowsthatthishomo- morphismissurjectiveandwethereforecan,anddohenceforth,usethistoidentify M(K(T))withF(T). 580 ERIK BÉDOS ET AL. IfA and B arenondegenerate ∗-algebras, thenitiseasilyverifiedthatA⊗B isan essential selfadjoint ideal in M(A)⊗M(B). Hence, by the preceding remarks, there exists a canonical injective ∗-homomorphism from M(A)⊗M(B) into M(A⊗B). We use this to identify M(A)⊗M(B) as a unital ∗-subalgebra of M(A⊗B). In general, thesealgebrasarenotequal. If π :A→B is a homomorphism, it is said to be nondegenerate if the linear span of the set π(A)B={π(a)b|a∈A, b∈B} and the linear span of the set Bπ(A) are both equal to B. In this case, there exists a unique extension to a homomorphism π:M(A)→M(B)(see[23]),whichisdeterminedbyπ(x)(π(a)b)=π(xa)b,forevery x∈M(A), a∈A and b∈B. Note that π is a ∗-homomorphism whenever π is a ∗- homomorphism. We will henceforth use the same symbol π to denote the original mapanditsextensionπ. Ifπ:A→B isa∗-homomorphismbetweenC∗-algebras,wewillusethetermnon- degenerateonlyinitsusualsenseinC∗-theory.Thus,inthiscase,π isnondegenerate iftheclosedlinearspanofthesetπ(A)B={π(a)b|a∈A, b∈B}isequaltoB. IfωisalinearfunctionalonAandx∈M(A),wedefinethelinearfunctionalsxω andωx onAbysetting(xω)(a)=ω(ax)and(ωx)(a)=ω(xa),foralla∈A. Wesayωispositiveifω(a∗a)≥0,foralla∈A;ifωispositive,wesayitisfaithful if,foralla∈A,ω(a∗a)=0⇒a=0. SupposegivenC∗-algebrasAandB.Ifω∈A∗,thelinearmapdefinedbytheassign- menta⊗b(cid:1)ω(a)bextendstoanorm-boundedlinearmapω⊗ιfromA⊗BtoB.We callω⊗ιaslicemap.Obviously,ifτ∈B∗,wecandefinetheslicemapι⊗τ:A⊗B→A inasimilarmanner.ThenextresultshowshowwecanextendthesemapstoM(A⊗B). Thisresultisfrequentlyusedintheliterature,usuallywithoutexplicitexplanationof howω⊗ιistobeunderstoodorhowitisconstructed.Similarremarksapplytothe corollary. Theorem 2.1. Let A and B be C∗-algebras and let ω ∈ A∗. Then the slice map ω⊗ι:A⊗B→B admits a unique extension to a norm-bounded linear map ω⊗ι : M(A⊗ B)→M(B)thatisstrictlycontinuousontheunitballofM(A⊗B). Ifx∈M(A⊗B)andb∈B,then (cid:1) (cid:2) (cid:1) (cid:2) b(ω⊗ι)(x)=(ω⊗ι) (1⊗b)x , (ω⊗ι)(x)b=(ω⊗ι) x(1⊗b) . (2.1) Proof. To prove this, we may assume that ω is positive, since the set of posi- tiveelementsofA∗ linearlyspansA∗.Inthiscase,theslicemapω⊗ιiscompletely positive [26, page 4] and is easily seen to be strict in the sense defined by Lance in [14, page 49]. Hence, by [14, Corollary 5.7], ω⊗ι admits an extension to a norm- bounded linear map ω⊗ι:M(A⊗B)→M(B) that is strictly continuous on the unit ball of M(A⊗B). Uniqueness of ω⊗ι and the properties in the second paragraph of the statement of the theorem now follow immediately from the strict continuity condition. Of course, an analogous result holds in the preceding theorem for an element τ∈ B∗. Recall that a norm-bounded linear functional on a C∗-algebra A has a unique ex- tension to a norm-bounded strictly continuous functional on M(A). We will usually AMENABILITY AND COAMENABILITY OF ALGEBRAIC QUANTUM GROUPS 581 denotetheoriginalfunctionalanditsextensionbythesamesymbol.Thisresult,which ispointedoutintheappendixof[11],followseasilyfromaresultofTaylor[22]thatas- sertsthat,foreachω∈A∗,thereexistanelementa∈Aandafunctionalθ∈A∗such thatω(b)=θ(ab),forallb∈A.WethendefineωonM(A)bysettingω(x)=θ(ax), for all x ∈ M(A). If ω ∈ A∗ and τ ∈ B∗, it follows that the norm-bounded linear functionalω⊗τ:A⊗B→Cadmitsauniqueextensiontoastrictlycontinuousnorm- boundedlinearfunctionalonM(A⊗B).Inagreementwithourstandingconvention, wewilldenotetheextensionbythesamesymbolω⊗τ.Usingtheseobservations,we havethefollowingcorollary. Corollary 2.2. LetAandB beC∗-algebrasandletω∈A∗ andτ∈B∗.Letx∈ M(A⊗B).Then (cid:1) (cid:2) (cid:1) (cid:2) (ω⊗τ)(x)=ω (ι⊗τ)(x) =τ (ω⊗ι)(x) . (2.2) WewillalsoneedtoconsiderslicemapsinthecontextofvonNeumannalgebras. LetM,NbevonNeumannalgebrasonHilbertspacesHandK,respectively.Wedenote thevonNeumannalgebratensorproductbyM⊗¯N(thisistheweakclosureoftheC∗- tensorproductM⊗N inB(H⊗K)).WedenotebyM∗ thepredualofM consistingof thenormalelementsofM∗.Recallthatforanyω∈M∗ andτ∈N∗,wecandefinea uniquefunctionalω⊗¯τ∈(M⊗¯N)∗suchthat(cid:8)ω⊗¯τ(cid:8)=(cid:8)ω(cid:8)(cid:8)τ(cid:8)and(ω⊗¯τ)(x⊗y)= ω(x)τ(y), for all x∈M and y ∈N. If ω∈M∗, we show now how we can define a slice map ω⊗¯ι from M⊗¯N to N. For any x∈M⊗¯N, the assignment τ (cid:1)(ω⊗¯τ)(x) defines a bounded functional on N∗. Since N∗∗ = N, there exists a unique element z∈N such that (ω⊗¯τ)(x)=τ(z), for all τ ∈N∗. We define (ω⊗¯ι)(x) to be equal to z. Thus, (ω⊗¯τ)(x)=τ((ω⊗¯ι)(x)), as one would expect of a slice map. Clearly, (cid:8)(ω⊗¯ι)(x)(cid:8)≤(cid:8)ω(cid:8)(cid:8)x(cid:8). The map ω⊗¯ι which sends x ∈M⊗¯N to (ω⊗¯ι)(x)∈N is obviouslylinearandnorm-bounded.Finally,itisevidentthatω⊗¯ιisanextensionof theusualslicemapω⊗ι:M⊗N→N.Inasimilarfashion,foreachτ∈N∗,onecan defineaslicemapι⊗¯τ:M⊗¯N→M. WefinishthissectiononC∗-algebrapreliminariesbyrecallingbrieflyausefulfact concerningcompletelypositivemapsthatwillbeneededinthesequel.Supposethat π:A→BisacompletelypositiveunitallinearmapbetweenunitalC∗-algebrasAand B. If a∈A and π(a∗)π(a)=π(a∗a), then π(xa)=π(x)π(a), for all x ∈A [26, page5].Inparticular,ifuisaunitaryinAforwhichπ(u)=1,itfollowseasilythat π(u∗xu)=π(x),forallx∈A. 3. Algebraicquantumgroups. WebeginthissectionbydefiningamultiplierHopf ∗-algebra.Referencesforthissectionare[13,23,24]. Let A be a nondegenerate ∗-algebra and let ∆ be a nondegenerate ∗-homomor- phismfromAintoM(A⊗A).Supposethatthefollowingconditionshold: (1) (∆⊗ι)∆=(ι⊗∆)∆, (2) thelinearmappingsdefinedbytheassignmentsa⊗b(cid:1)∆(a)(b⊗1)anda⊗b(cid:1) ∆(a)(1⊗b)arebijectionsfromA⊗Aontoitself. Thenthepair(A,∆)iscalledamultiplierHopf∗-algebra. In condition (1), we are regarding both maps as maps into M(A⊗A⊗A), so that theirequalitymakessense.Itfollowsfromcondition(2),bytakingadjoints,thatthe 582 ERIK BÉDOS ET AL. mapsdefinedbytheassignmentsa⊗b(cid:1)(b⊗1)∆(a)anda⊗b(cid:1)(1⊗b)∆(a)arealso bijectionsfromA⊗Aontoitself. Let(A,∆)beamultiplierHopf∗-algebraandletωbealinearfunctionalonAand aanelementinA.Thereisauniqueelement(ω⊗ι)∆(a)inM(A)forwhich (cid:1) (cid:2) (cid:1) (cid:2) (ω⊗ι) ∆(a) b=(ω⊗ι) ∆(a)(1⊗b) , (cid:1) (cid:2) (cid:1) (cid:2) (3.1) b(ω⊗ι) ∆(a) =(ω⊗ι) (1⊗b)∆(a) , for all b ∈ A. The element (ι⊗ω)∆(a) in M(A) is determined similarly. Thus, ω induceslinearmaps(ω⊗ι)∆and(ι⊗ω)∆fromAtoM(A). There exists a unique nonzero ∗-homomorphism ε from A to C such that, for all a∈A, (ε⊗ι)∆(a)=(ι⊗ε)∆(a)=a. (3.2) Themapεiscalledthecounit of(A,∆).Also,thereexistsauniqueantimultiplicative linearisomorphismS onAthatsatisfiestheconditions (cid:1) (cid:2) m(S⊗ι) ∆(a)(1⊗b) =ε(a)b, (cid:1) (cid:2) (3.3) m(ι⊗S) (b⊗1)∆(a) =ε(a)b, foralla,b∈A.Herem:A⊗A→Adenotesthelinearizationofthemultiplicationmap A×A→A.ThemapSiscalledtheantipodeof(A,∆).NotethatS(S(a∗)∗)=a,forall a∈A. Let π and π be nondegenerate homomorphisms from A into some algebras B 1 2 and C, respectively. Clearly, the homomorphism π ⊗π :A⊗A→B⊗C is then non- 1 2 degenerate.Hence,wemayformtheproductπ π :A→M(B⊗C)definedbyπ π = 1 2 1 2 (π ⊗π )∆,whereπ ⊗π isextendedtoM(A⊗A)bynondegeneracy.Obviously,π π 1 2 1 2 1 2 isanondegeneratehomomorphismanditis∗-preservingwheneverbothπ andπ 1 2 are∗-preserving.Thisproductiseasilyseentobeassociative,withεasaunit. For later use, we remark that the set of nonzero multiplicative linear functionals ωonAisagroupunderthisproduct,withinverseoperationgivenbyω−1=ωS.To see this, note that multiplicativity implies ω⊗ω=ω◦m. Therefore, if a,b∈A, we haveω(b)(ω(ωS))(a)=(ω⊗ω)((b⊗1)(ι⊗S)(∆(a)))=ω◦m(ι⊗S)((b⊗1)∆(a))= ω(ε(a)b)=ω(b)ε(a).Hence,(ω(ωS)(a))=ε(a),foralla∈A,asrequired. If ω∈A(cid:4), we say ω is left invariant if (ι⊗ω)∆(a)=ω(a)1, for all a∈A. Right invarianceisdefinedsimilarly.Ifanonzeroleft-invariantlinearfunctionalonAexists, itisunique,uptomultiplicationbyanonzeroscalar.Similarly,foranonzeroright- invariantlinearfunctional.Ifϕisaleft-invariantfunctionalonA,thefunctionalψ= ϕS isrightinvariant. IfAadmitsanonzero,left-invariant,positivelinearfunctionalϕ,wecall(A,∆)an algebraicquantumgroupandwecallϕaleftHaarintegral on(A,∆).Faithfulnessof ϕisautomatic. Notethatalthoughψ=ϕS isrightinvariant,itmaynotbepositive.Ontheother hand,itisprovedin[13]thatanonzero,right-invariant,positivelinearfunctionalon A—arightHaarintegral—necessarilyexists.AsforaleftHaarintegral,arightHaar integralisnecessarilyfaithful. AMENABILITY AND COAMENABILITY OF ALGEBRAIC QUANTUM GROUPS 583 Thereisauniquebijectivehomomorphismρ:A→Asuchthatϕ(ab)=ϕ(bρ(a)), foralla,b∈A.Moreover,ρ(ρ(a∗)∗)=a. Wenowdiscussdualityofalgebraicquantumgroups.If(A,∆)isanalgebraicquan- tum group, denote by Aˆ the linear subspace of A(cid:4) consisting of all functionals ϕa, where a∈A. Since ϕa=ρ(a)ϕ, we have Aˆ={aϕ|a∈A}. If ω ,ω ∈Aˆ, one can 1 2 definealinearfunctional(ω ⊗ω )∆onAbysetting 1 2 (cid:1) (cid:2) (cid:1)(cid:1) (cid:2) (cid:2) ω ⊗ω ∆(a)=(ϕ⊗ϕ) a ⊗a ∆(a) , (3.4) 1 2 1 2 whereω =ϕa andω =ϕa .Usingthis,thespaceAˆcanbemadeintoanondegen- 1 1 2 2 erate∗-algebra.Themultiplicationisgivenbyω ω =(ω ⊗ω )∆andtheinvolution 1 2 1 2 is given by setting ω∗(a)=ω(S(a)∗)−, for all a∈A and ω ,ω ,ω∈Aˆ; it is clear 1 2 thatω ω ,ω∗∈A(cid:4) butwecanshowthat,infact,ω ω ,ω∗∈Aˆ. 1 2 1 2 OnecanrealizeM(Aˆ)asalinearspacebyidentifyingitasthelinearsubspaceofA(cid:4) consistingofallω∈A(cid:4)forwhich(ω⊗ι)∆(a)and(ι⊗ω)∆(a)belongtoA.(Itisclear thatAˆbelongstothissubspace.)InthisidentificationofM(Aˆ),themultiplicationand involutionaredeterminedby (cid:1) (cid:2) (cid:1)(cid:1) (cid:2) (cid:2) (cid:1)(cid:1) (cid:2) (cid:2) ω ω (a)=ω ι⊗ω ∆(a) =ω ω ⊗ι ∆(a) , 1 2 1 2 2 1 (cid:1) (cid:2) (3.5) ω∗(a)=ω S(a)∗ −, foralla∈Aandω ,ω ,ω∈M(Aˆ). 1 2 NotethatthecounitεofAistheunitofthe∗-algebraM(Aˆ). Thereisaunique∗-homomorphism∆ˆfromAˆtoM(Aˆ⊗Aˆ)suchthatforallω ,ω ∈ 1 2 Aˆanda,b∈A, (cid:1)(cid:1) (cid:2) (cid:1) (cid:2)(cid:2) (cid:1) (cid:2)(cid:1) (cid:2) ω ⊗1 ∆ˆ ω (a⊗b)= ω ⊗ω ∆(a)(1⊗b) , 1 2 1 2 (cid:1) (cid:1) (cid:2)(cid:1) (cid:2)(cid:2) (cid:1) (cid:2)(cid:1) (cid:2) (3.6) ∆ˆ ω 1⊗ω (a⊗b)= ω ⊗ω (a⊗1)∆(b) . 1 2 1 2 Ofcourse,wearehereidentifyingA(cid:4)⊗A(cid:4)asalinearsubspaceof(A⊗A)(cid:4)intheusual way,sothatelementsofAˆ⊗AˆcanberegardedaslinearfunctionalsonA⊗A. Thepair(Aˆ,∆ˆ)isanalgebraicquantumgroup,calledthedual of(A,∆).Itscounit εˆandantipodeSˆaregivenbyεˆ(aϕ)=ϕ(a)andSˆ(aϕ)=(aϕ)◦S,foralla∈A. There is an algebraic quantum group version of Pontryagin’s duality theorem for locally compact Abelian groups which asserts that (A,∆) is canonically isomorphic to the dual of (Aˆ,∆ˆ); that is, (A,∆) is isomorphic to its double dual (Aˆˆ,∆ˆˆ). This is statedmorepreciselyinthefollowingresult. Theorem3.1. Supposethat(A,∆)isanalgebraicquantumgroupwithdoubledual (Aˆˆ,∆ˆˆ).Letπ:A→Aˆˆbethecanonicalmapdefinedbyπ(a)(ω)=ω(a),foralla∈A and ω∈Aˆ. Then π is an isomorphism of the algebraic quantum groups (A,∆) and (Aˆˆ,∆ˆˆ);thatis,π isa∗-algebraisomorphismofAontoAˆˆforwhich(π⊗π)∆=∆ˆˆπ. Wewillneedtoconsideranobjectassociatedtoanalgebraicquantumgroupcalled its analytic extension. (See [13] for full details.) We need first to recall the concept of a GNS pair. Suppose given a positive linear functional ω on a ∗-algebra A. Let H be a Hilbert space, and let Λ:A→H be a linear map with dense range for which 584 ERIK BÉDOS ET AL. (Λ(a),Λ(b))=ω(b∗a),foralla,b∈A.Thenwecall(H,Λ)aGNSpair associatedto ω.Asiswellknown,suchapairalwaysexistsandisessentiallyunique.For,if(H(cid:4),Λ(cid:4)) isanotherGNS pairassociatedtoω,themapΛ(a)(cid:1)Λ(cid:4)(a)extendstoaunitary U : H→H(cid:4). Ifϕ isaleftHaarintegralonanalgebraicquantumgroup(A,∆),and(H,Λ)isan associated GNS pair, then it can be shown that there is a unique ∗-homomorphism π:A→B(H) such that π(a)Λ(b)=Λ(ab), for all a,b∈A. Moreover, π is faithful andnondegenerate.WeletA denotethenormclosureofπ(A)inB(H).Thus,A is r r a nondegenerate C∗-subalgebra of B(H). The representation π:A→B(H) is essen- tially unique, for if (H(cid:4),Λ(cid:4)) is another GNS pair associated to ϕ, and π(cid:4):A→B(H(cid:4)) is the corresponding representation, then, as we observed above, there exists a uni- tary U:H→H(cid:4) such that UΛ(a)=Λ(cid:4)(a), for all a∈A, and consequently, π(cid:4)(a)= Uπ(a)U∗. Nowobservethatthereexistsauniquenondegenerate∗-homomorphism∆ :A → r r M(A ⊗A )suchthat,foralla∈Aandallx∈A⊗A,wehave r r (cid:1) (cid:2) (cid:1) (cid:2) ∆ π(a) (π⊗π)(x)=(π⊗π) ∆(a)x , r (cid:1) (cid:2) (cid:1) (cid:2) (3.7) (π⊗π)(x)∆ π(a) =(π⊗π) x∆(a) . r We observe also that if ω∈A∗ and x ∈A , then the elements (ω⊗ι)(∆ (x)) and r r r (ι⊗ω)(∆ (x))bothbelongtoA . r r First,supposethatωisgivenasω=τ(π(a)·),forsomeelementa∈Aandfunc- tionalτ∈A∗.Forx=π(b),whereb∈A,wehave r (cid:1) (cid:2) (cid:1) (cid:1) (cid:2) (cid:2)(cid:2) (ω⊗ι) ∆ (x) =π (τπ⊗ι) (a⊗1 ∆(b) ∈π(A). (3.8) r By continuity, we get (ω⊗ι)(∆ (x)) ∈ A for all x ∈ A . It now follows that (ω⊗ r r r ι)(∆ (x))∈A ,forarbitraryω∈A∗andx∈A ,byTaylor’sresultonlinearfunction- r r r r alsmentionedearlierandacontinuityargument.That(ι⊗ω)(∆ (x))∈A isproved r r inasimilarway. WealsorecallthattheBanachspaceA∗becomesaBanachalgebraundertheproduct r inducedfrom∆ ,thatis,definedbyτω=(τ⊗ω)∆ ,forallτ,ω∈A∗. r r r Sincethesets∆(A)(1⊗A)and∆(A)(A⊗1)spanA⊗A,∆ (A )(1⊗A )and∆ (A ) r r r r r (A ⊗1)havedenselinearspaninA ⊗A .Wegetfromthisthefollowingcancellation r r r laws,foragivenfunctionalω∈A∗: r (1) ifτω=0,forallτ∈A∗,thenω=0; r (2) ifωτ=0,forallτ∈A∗,thenω=0. r Usingthesecancellationproperties,itfollowseasilythat (cid:3) (cid:1) (cid:2) (cid:4) (cid:3) (cid:1) (cid:2) (cid:4) A = (ω⊗ι) ∆ (x) |x∈A , ω∈A∗ = (ι⊗ω) ∆ (x) |x∈A , ω∈A∗ . (3.9) r r r r r r r Notethatweuse[·]todenotetheclosedlinearspan. WealsoneedtorecallthatthereisauniqueunitaryoperatorW onH⊗Hsuchthat (cid:1) (cid:1) (cid:2)(cid:2) W (Λ⊗Λ) ∆(b)(a⊗1) =Λ(a)⊗Λ(b), (3.10) AMENABILITY AND COAMENABILITY OF ALGEBRAIC QUANTUM GROUPS 585 foralla,b∈A.Thisunitarysatisfiestheequation W W W =W W ; (3.11) 12 13 23 23 12 thus,itisamultiplicativeunitary,saidtobeassociatedto (H,Λ).Herewehaveused thelegnumberingnotationof[1]. WecanshowthatW ∈M(A ⊗B (H)),soespeciallyW ∈(A ⊗B (H))(cid:4)(cid:4)=M⊗¯B(H), r 0 r 0 whereM denotesthevonNeumannalgebrageneratedbyA .Further,A isthenorm r r closureofthelinearspace{(ι⊗ω)(W)|ω∈B (H)∗}.Also,∆ (a)=W∗(1⊗a)W,for 0 r alla∈A . r Thepair(A ,∆ )isareducedlocallycompactquantumgroupinthesenseof[12, r r Definition4.1];wecallittheanalyticextensionof(A,∆)associatedtoϕ. Considernowthealgebraicdual(Aˆ,∆ˆ)of(A,∆).Aright-invariantlinearfunctional ψˆ is defined on Aˆ by setting ψˆ(aˆ)=ε(a), for all a∈A. Here aˆ=aϕ and ε is the counitof(A,∆).Sincethelinearmap,A→Aˆ,a(cid:1)aˆ,isabijection(byfaithfulnessof ϕ), the functional ψˆ is well defined. Now define a linear map Λˆ :Aˆ→H by setting Λˆ(aˆ)=Λ(a),foralla∈(cid:1).Sinceψˆ(bˆ∗aˆ)=ϕ(b∗a)=(Λ(a),Λ(b)),foralla,b∈A,it followsthat(H,Λˆ)isaGNSpairassociatedtoψˆ.Itcanbeshownthatitisunitarily equivalenttotheGNSpairforaleftHaarintegralϕˆ of(Aˆ,∆ˆ).Hence,wecanuse(H,Λˆ) todefinearepresentationoftheanalyticextension(Aˆ,∆ˆ)of(Aˆ,∆ˆ)onthespaceH. r r Thereisaunique∗-homomorphismπˆ :Aˆ→B(H)suchthatπˆ(a)Λˆ(b)=Λˆ(ab),for all a,b∈Aˆ. Moreover, πˆ is faithful and nondegenerate. Let Aˆ be the norm closure r ofπˆ(A)inB(H),soAˆ isanondegenerateC∗-subalgebraofB(H).ThevonNeumann r algebrageneratedbyAˆ willbedenotedbyMˆ.WecanshowthatW ∈M(B (H)⊗Aˆ) r 0 r andthatAˆ isthenormclosureofthelinearspace{(ω⊗ι)(W)|ω∈B (H)∗}.Define r 0 alinearmap∆ˆ :Aˆ →M(Aˆ ⊗Aˆ)bysetting∆ˆ (a)=W(a⊗1)W∗,foralla∈Aˆ.Then r r r r r r ∆ˆ is the unique ∗-homomorphism ∆ˆ :Aˆ →M(Aˆ ⊗Aˆ) such that, for all a∈Aˆand r r r r r x∈Aˆ⊗Aˆ, (cid:1) (cid:2) (cid:1) (cid:2) ∆ˆ πˆ(a) (πˆ⊗πˆ)(x)=(πˆ⊗πˆ) ∆ˆ(a)x , r (cid:1) (cid:2) (cid:1) (cid:2) (3.12) (πˆ⊗πˆ)(x)∆ˆ πˆ(a) =(πˆ⊗πˆ) x∆ˆ(a) . r NotethatwecanshowthatW ∈M(A ⊗Aˆ)and(∆ ⊗ι)(W)=W W . r r r 13 23 Analgebraicquantumgroup(A,∆)isofcompacttypeifAisunital,andofdiscrete typeifthereexistsanonzeroelementh∈Asatisfyingah=ha=ε(a)h,foralla∈A. Proposition3.2. Let(A,∆)beanalgebraicquantumgroup.Ifitisofcompacttype, itsanalyticalextension(A ,∆ )isacompactquantumgroupinthesenseofWoronowicz. r r Ifitisofdiscretetype,itsanalyticalextension(A ,∆ )isadiscretequantumgroupin r r thesenseofWoronowiczandVanDaele. The duality of discrete and compact quantum groups is stated precisely in the followingresult. Proposition3.3. Analgebraicquantumgroup(A,∆)isofcompacttype(resp.,of discretetype)ifandonlyifitsdual(Aˆ,∆ˆ)isofdiscretetype(resp.,ofcompacttype). 586 ERIK BÉDOS ET AL. Example3.4. Wefinishthissectionwithabriefdiscussionofthealgebraicquan- tumgroupsassociatedtoadiscretegroupΓ.Thisillustratestheideasoutlinedabove andprovidesthemotivationforconceptsweintroducelater. First,considerthe∗-algebraK(Γ).Thisisprovidedwithacomultiplication∆ˆmaking itanalgebraicquantumgroupbysetting∆ˆ(f)(x,y)=f(xy),forallf ∈K(Γ).Here weareidentifyingK(Γ)⊗K(Γ)withK(Γ×Γ)byidentifyingthetensorproductg⊗hof twoelementsg,h∈K(Γ)withthefunctioninK(Γ×Γ)definedby(x,y)(cid:1)g(x)h(y). We then identify M(K(Γ)⊗K(Γ)) with F(Γ×Γ). The reason for using the notation ∆ˆ willbeapparentshortly. Now, let A=C(Γ) be the group algebra of Γ. Recall that, as a linear space, A has canonical linear basis the elements of Γ and that the multiplication on A extends thatofΓ andtheadjointoperationisdeterminedbyx∗=x−1,forallx∈Γ.Wecan make A into an algebraic quantum group by providing it with the comultiplication ∆:A→A⊗A determined on the elements of Γ by setting ∆(x)=x⊗x. We will now sketchtheproofthatthedual(Aˆ,∆ˆ)isthealgebraicquantumgroup(K(Γ),∆ˆ). First,observethataleftHaarintegralfor(A,∆)isgivenbytheuniquelinearfunc- tional ϕ on A for which ϕ(x)=δ , for all x ∈Γ, where 1 is the unit of Γ and δ x1 is the usual Kronecker delta function. If x,y ∈Γ, then (xϕ)(y)=ϕ(yx)=δx−1,y. It follows that the functionals xϕ (x ∈Γ) provide a linear basis for Aˆ. Hence, if e x (x∈Γ) is the canonical linear basis for K(Γ) given by e (y)=δ , we have a linear x xy isomorphismfromAˆtoK(Γ)givenbymappingxϕontoex−1.Usingthisisomorphism asanidentification,itisstraightforwardtocheckthatthemultiplications,adjointop- erationsandcomultiplicationsonAˆandK(Γ)arethesame;thus,(Aˆ,∆ˆ)=(K(Γ),∆ˆ), asclaimed. AGNSpair(H,Λ)associatedtoϕisgivenbytakingH=(cid:12)2(Γ)andΛ(x)=ex−1,for allx∈Γ.Wechooseex−1 ratherthanexinthisformulasoastoensureΛˆ(ex)=ex.We needthistogetthecorrectformforπˆ:itfollowseasilynowthattherepresentation, πˆ:Aˆ→B(H),istheoneobtainedbyleftmultiplicationbyelementsofAˆ;ittherefore extendsfromAˆ=K(Γ)toa∗-isomorphismπˆ from(cid:12)∞(Γ)ontoavonNeumannsub- algebraofB(H).ItistriviallyverifiedthatthisvonNeumannistheonegeneratedby πˆ(Aˆ);hence,πˆ((cid:12)∞(Γ))=Mˆ. Of course, the representation π : A → B(H) is the one associated to the (right) regular representation of Γ on (cid:12)2(Γ). Hence, the analytic extension A associated to r (A,∆) is the reduced group C∗-algebra C∗(Γ) and the corresponding von Neumann r algebraM issimplythegroupvonNeumannalgebraofΓ. Wewillreturntothismotivatingsetupinthesequel. 4. Amenabilityandcoamenability. WewillretainallthenotationfromSection3. If (A,∆) is an algebraic quantum group, recall that we use the symbol M to denote thevonNeumannalgebrageneratedbyA .Ofcourse,A andπ(A)areweaklydense r r in M. Since the map ∆ is unitarily implemented, it has a unique weakly continuous r extension to a unital ∗-homomorphism ∆ :M→M⊗¯M, given explicitly by ∆ (a)= r r W∗(1⊗a)W,foralla∈M.TheBanachspaceM∗ maythenberegardedasaBanach algebra when equipped with the canonical multiplication induced by ∆ ; thus, the r productoftwoelementsωandσ isgivenbyωσ =(ω⊗¯σ)◦∆ . r
Description: