ebook img

Alkalizing Drugs Induce Accumulation of Amyloid Precursor Protein By-products in Luminal ... PDF

12 Pages·2007·1.5 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Alkalizing Drugs Induce Accumulation of Amyloid Precursor Protein By-products in Luminal ...

THEJOURNALOFBIOLOGICALCHEMISTRY VOL.282,NO.25,pp.18197–18205,June22,2007 ©2007byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedintheU.S.A. Alkalizing Drugs Induce Accumulation of Amyloid Precursor Protein By-products in Luminal Vesicles of Multivesicular Bodies*□S Receivedforpublication,October6,2006,andinrevisedform,April23,2007 Published,JBCPapersinPress,April27,2007,DOI10.1074/jbc.M609475200 Vale´rieVingtdeux‡§1,MalikaHamdane‡§,AnneLoyens‡§,PatrickGele´‡§,Herve´ Drobeck¶,Se´verineBe´gard‡§, Marie-ChristineGalas‡§,Andre´ Delacourte‡§,Jean-ClaudeBeauvillain‡§,LucBue´e‡§,andNicolasSergeant‡§2 From‡INSERM,U837,NeurodegenerativeDisordersandNeuronalDeath,andthe§Faculte´deMe´decine,InstitutdeMe´decine Pre´dictiveetdeRechercheThe´rapeutique,CentredeRecherchesJean-PierreAubert,Universite´Lille2,PlacedeVerdun, F-59045Lille,Franceand¶CNRS,UMR8161,“LilleInstituteofBiology,”UniversityofLille1,PasteurInstituteofLille, 1,rueduProfesseurCalmette,F-59021LilleCedex,France Amyloidprecursorprotein(APP)metabolismiscentraltothe processed by an (cid:2)- or a (cid:1)-secretase to produce C-terminal pathogenesisofAlzheimerdisease.Weshowedrecentlythatthe fragments(CTFs)(forreview,seeRef.1).(cid:3)-Secretasefurther amyloid intracellular domain (AICD), which is released by processes APP-CTFs (2, 3), releasing A(cid:1)from (cid:1)-CTF and (cid:1)-secretase cleavage of APP C-terminal fragments (CTFs), is theamyloidintracellulardomain(AICDor(cid:4)-CTF)fromall stronglyincreasedincellstreatedwithalkalizingdrugs(Vingt- APP-CTFs (2, 4–8). Several lines of evidence suggest that deux,V.,Hamdane,M.,Be´gard,S.,Loyens,A.,Delacourte,A., AICDisatrans-regulatingfactorofgeneexpression(nepri- Beauvillain, J.-C., Bue´e, L., Marambaud, P., and Sergeant, N. lysin,KAI1,APP,andglycogensynthasekinase-3(cid:1))(9–12). (2007)Neurobiol.Dis.25,686–696).Herein,weaimedtodeter- However, AICD is rapidly degraded and thus seldom mine the cell compartment in which AICD accumulates. We detected (13). We showed recently that AICD is strongly show that APP-CTFs and AICD are present in multivesicular increased upon treatment with alkalizing drugs, suggesting structures.Multivesicularbodiescontainintraluminalvesicles thattheendosomal/lysosomalpathwayregulatesAICDdeg- (knownasexosomes)whenreleasedintheextracellularspace. radation(14). WedemonstratethatAPP,APP-CTFs,andAICDareintegrated Theendosomal/lysosomalpathwayisessentialforA(cid:1)pro- andsecretedwithinexosomesindifferentiatedneuroblastoma ductionandAPPcatabolism.Forinstance,BACE-1(beta-site andprimaryneuronalculturecells.Togetherwithrecentdata showing that amyloid-(cid:2)is also found in exosomes, our data APP-cleavingenzyme1)resideswithinendosomes,andendo- cytosisofBACE-1andAPPisaprerequisiteforgeneratingA(cid:1) showthatmultivesicularbodiesareessentialorganellesforAPP (15–17).AnacidicpHisnecessaryforoptimalBACE-1prote- metabolismandthatallAPPmetabolitescanbesecretedinthe extracellularspace. ase activity (18), and BACE-1 is degraded in lysosomes (19). The(cid:3)-secretaseactivityhasbeenlocalizedattheendosomal/ lysosomalmembrane(20–23).Treatmentwithdrugsthatpre- Amyloidprecursorprotein(APP)3metabolismiscentralto ventendosomal/lysosomalacidification(24–26)ordeletionof Alzheimer disease etiopathogenesis. Extracellular amyloid theAPPinternalizationmotif(27,28)dramaticallyreducesA(cid:1) deposits,aneuropathologicalhallmarkofAlzheimerdisease, secretion. are composed of amyloid-(cid:1)(A(cid:1)) peptides that derive from The endosomal/lysosomal system is likely to be altered in APPcatabolism.APPisatypeItransmembraneglycoprotein Alzheimerdisease(forreview,seeRef.29).SeveralAPPderiv- atives accumulate in multivesicular bodies (MVBs), in trans- genicanimalmodelsofamyloidosis(30,31),inAlzheimerdis- *ThisworkwassupportedinpartbyINSERM,CNRS,theInstitutdeMe´decine ease(30),andincellmodels(32).MVBsbelongtotheendocytic Pre´dictiveetdeRechercheThe´rapeutiqueofUniversityofLille2,andAPO- pathway (33); are at the crossroad of several cellular mecha- PISContractLSHM-CT-2003-503330.Thecostsofpublicationofthisarticle weredefrayedinpartbythepaymentofpagecharges.Thisarticlemust nismssuchasmembranereceptorrecyclingandproteindegra- thereforebeherebymarked“advertisement”inaccordancewith18U.S.C. dation; and can release their intraluminal vesicles, known as Section1734solelytoindicatethisfact. □S Theon-lineversionofthisarticle(availableathttp://www.jbc.org)contains exosomes (for review, see Refs. 34–36). More recently, exo- supplementalFig.1. somesweredemonstratedtocontainA(cid:1)peptides(37).Taken 1RecipientofafellowshipfromAssociationFranceAlzheimer. together,agrowingbodyofevidencesuggeststhatAPPproc- 2To whom correspondence and reprint requests should be addressed: INSERM,U837,NeurodegenerativeDisordersandNeuronalDeath,Jean- essingtakesplacemainlybetweentheplasmamembraneand PierreAubertResearchCentre,1,PlacedeVerdun,F-59045Lille,France. late endosomal compartments such as multivesicular endo- Tel.:33-320-622-071;Fax:33-320-622-079;E-mail:[email protected]. somes.Herein,westudiedthelocalizationofAPPanditsderiv- 3Theabbreviationsusedare:APP,amyloidprecursorprotein;A(cid:1),amyloid-(cid:1); CTFs, C-terminal fragments; AICD, amyloid intracellular domain; MVBs, atives in SY5Y neuroblastoma cells stably overexpressing multivesicular bodies; BafA1, bafilomycin A1; PBS, phosphate-buffered humanAPPanddemonstratethatAPP,APP-CTFs,andAICD saline; Tricine, N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine; MES, accumulateintheluminalvesiclesofmultivesicularendosomes 4-morpholineethanesulfonic acid; APPWT, wild-type amyloid precursor protein. andarealsofoundinexosomes. This is an Open Access article under the CC BY license. JUNE22,2007•VOLUME282•NUMBER25 JOURNALOFBIOLOGICALCHEMISTRY 18197 APP-CTFsAreSecretedinExosomeVesicles EXPERIMENTALPROCEDURES Science,Meylan,France).Thecellhomogenatewassonicated andheat-treatedfor5minat100°C.Theproteinconcentration Antibodies—APPCter-C17 is a well characterized rabbit wasdeterminedusingaPlusOneTM2DQuantkit(Amersham antibody raised against the last 17 amino acids of the human Biosciences,Orsay,France),andsampleswerekeptat(cid:1)80°C APPsequence(7,38–40).Anti-HSP70(heatshockproteinof untilused. 70 kDa) antibody was purchased from Euromedex (Mundol- WesternBlottingandMassSpectrometry—Anequalquantity sheim, France), Anti-flotillin antibody was from Translab of total proteins (20 (cid:5)g/lane) was loaded onto a 16.5% Tris/ (Erembodegem,Belgium);anti-LAMP-2andanti-Tsg101anti- Tricine- or 8–16% Tris/glycine-polyacrylamide gel. Tris/ bodies were from Santa Cruz Biotechnology, Inc.); and anti- Tricine/SDS-PAGEwasperformedfollowingtheprocedureof EEA1 antibody (early endosome antigen 1) was from Upstate Scha¨ggerandvonJagow(41)withaPROTEANIIxicell(Bio- (LakePlacid,NY).Themousemonoclonalantibody8E5(raised Rad,Marnes-la-Coquette,France).Followingthefinalsucrose against residues 444–592 of human APP770) was a generous giftfromDr.PeterSeubert(ElanPharmaceuticals).Anti-(cid:1)-tu- densitygradient(seebelow),proteinswereloadedontoCrite- rionXT/MESgels(Bio-Rad)asdescribedpreviously(14).Pro- bulinantibodyandhorseradishperoxidase-coupledsecondary teins were transferred to nitrocellulose membrane (Hybond, antibodywerepurchasedfromSigma(Saint-Quentin-Fallavier, Amersham Biosciences) at 2.5 mA/cm2/gel using a semidry France). NovaBlot transfer system (Amersham Biosciences) according Cell Culture of SKNSH-SY5Y Neuroblastoma Cells and to the manufacturer’s instructions. Proteins were reversibly Differentiation—ThehumanneuroblastomacelllineSKNSH- stainedwithPonceauredtocheckthequalityofproteintrans- SY5Y(referredtoasSY5Y)wasmaintainedinDulbecco’smod- fer.Membraneswereblockedin25mMTris-HCl(pH8.0),150 ifiedEagle’smedium(Invitrogen,Cergy-Pontoise,France)sup- mMNaCl,0.1%(v/v)Tween20,and5%(w/v)skimmilkfor30 plementedwith10%fetalcalfserum,2mML-glutamine,1mM min. Membranes were then incubated overnight at 4°C with nonessential amino acids, and 50 units/ml penicillin/strepto- the appropriate dilutions of the primary antibody and incu- mycin(Invitrogen)ina5%CO humidifiedincubatorat37°C. 2 batedfor1hatroomtemperaturewiththesecondaryantibody. APP695 cDNA was subcloned into the eukaryotic expression TheimmunoreactivecomplexeswererevealedusinganECLTM vector pcDNA3 (Invitrogen), allowing for G418 (Invitrogen) WesternblottingkitandHyperfilm(AmershamBiosciences). selectionofclones.ThisAPPcDNAwastransfectedintoSY5Y For mass spectrometry analyses, proteins were resolved with cellsusingtheethyleneiminepolymerExGen500(Euromedex) CriterionXTgels(Bio-Rad)andstainedwithCoomassieBril- accordingtothemanufacturer’sinstructions.Cellsexpressing liant Blue G-250 (Sigma). In-gel trypsin digestion and mass APPwereselectedbytheadditionof200(cid:5)g/mlG418tothecell spectrometryanalyseswereperformedasdescribedpreviously medium.Fordifferentiation,SY5Ycellsweremaintainedfor15 (42). daysinDulbecco’smodifiedEagle’smedium/nutrientmixture ExosomeIsolationandSucroseDensityGradients—Thepro- F-12supplementedwith2mML-glutamine,50units/mlpeni- tocolusedwasderivedfromthatofTheryetal.(43).Thecell cillin/streptomycin, 7 mg/ml progesterone, 1% insulin/trans- culturemediawerecentrifugedfor10minat1200(cid:2)g,andthe ferrin/selenium (Invitrogen), and 1 mM retinoic acid (Sigma). supernatant was filtered on a 0.22-(cid:5)m filter (Millex(cid:2) GP, Themediumwasreplenishedevery3days. hydrophilic membrane of polyethersulfone; Millipore, Mol- PrimaryEmbryonicNeuronalCulture—Ratprimarycortical sheim,France)andcentrifugedfor30minat12,000(cid:2)gbefore neuronswerepreparedfrom17–18-dayWistarratembryosas ultracentrifugationat100,000(cid:2)gfor1hat4°C.Thepelletwas follows.Briefly,thebrainandmeningeswereremoved,andthe addedoncewithalargevolumeofPBSandfurthercentrifuged cortexwascarefullydissectedoutandmechanicallydissociated at100,000(cid:2)gfor1h.Forpurificationofexosomesonasucrose in culture medium by triturating with a polished Pasteur densitygradient,the100,000(cid:2)gpelletwasresuspendedin0.25 pipette.Oncedissociatedandafterbluetrypancounting,cells MsucroseinHEPES/NaOHbuffer(pH7.4).Astepgradientof were plated in 25-cm2 flasks at a density of 900 cells/mm2 in sucroseat2.25,2.00,1.75,1.5,1.25,1.00,0.75,0.5,and0.25M poly-D-lysine-andlaminin-coatedplates.Fordissociation,plat- waslayeredwith0.25Mexosome-containingsolution.Thegra- ing, and maintenance, we used Neurobasal medium supple- dientwasspunat200,000(cid:2)gfor18husinganSW41Tirotor mentedwith2%B27containing200mMglutamineand1%anti- (BeckmanCoulter).Fractionsof1mlweredilutedwith3mlof biotic/antimycotic agent (Invitrogen). The medium was HEPES/NaOHbuffer(pH7.4)andspunat200,000(cid:2)gfor1h replenishedevery3daysand24hbeforecelltreatment. usinganSW60Tirotor.PelletswereusedforWesternblotting Drug Treatments—N-[N-(3,5-Difluorophenacetyl)-L-ala- orelectronmicroscopy. nyl)]-3-(S)-amino-1-methyl-5-phenyl-1,3-dihydrobenzo[e]- Immunofluorescence—SY5Y cells expressing wild-type APP (1,4)-diazepin-2-one (compound E, (cid:3)-secretase inhibitor (APPWT;referredtoasSY5Y-APPWTcells)weredifferentiated XVIII;usedatafinalconcentrationof30nM)andbafilomycin onpoly-L-lysine-coatedglasscoverslips.Afterdrugtreatment, A1(BafA1;usedatafinalconcentrationof100nM)werepur- cellswerefixedin0.1MPBScontaining4%paraformaldehyde chasedfromCalbiochem(Fontenay-sous-Bois,France).Chlo- for30minatroomtemperatureandfurtherpermeabilizedwith roquine(10(cid:5)M)waspurchasedfromSigma.Cellswereplated 0.25% (v/v) Triton X-100 in PBS. After blocking in 1% (w/v) in6-wellplates24hbeforedrugexposure.Cellswerewashed bovineserumalbumin,thefixedmaterialswereincubatedfor with warmed phosphate-buffered saline (PBS) and scraped 2 h at room temperature with the primary antibody in PBS with a policeman rubber in 70 (cid:5)l of Laemmli sample buffer containing1%(w/v)bovineserumalbuminand0.25%Triton containingproteaseinhibitors(Completemini,RocheApplied X-100. After washing, the secondary antibody (Alexa Fluor 18198 JOURNALOFBIOLOGICALCHEMISTRY VOLUME282•NUMBER25•JUNE22,2007 APP-CTFsAreSecretedinExosomeVesicles 488-conjugatedanti-rabbitIgGorAlexaFluor568-conjugated anti-mouseIgG;MolecularProbes)wasused.Coverslipswere mountedonslideswithVECTASHIELD(VectorLaboratories). ImageswereacquiredwithaLeicaTCSNTlaserscanningcon- focalmicroscope. For APP internalization analysis, cells were incubated with the8E5antibodyfor1hat4°Cinice-coldDulbecco’smodified Eagle’s medium supplemented with 1% (w/v) bovine serum albuminandthenwashedandincubatedat37°Cforthetimes indicated.Cellswerefixedasdescribedabove,permeabilizedby incubation in 0.3% (v/v) Triton X-100 in PBS, and incubated withAlexaFluor568-conjugatedanti-mouseIgGantibody. Electron Microscopy and Gold Immunolabeling—For con- ventionalobservations,differentiatedSY5Ycellspretreatedor notwith10%fetalcalfserumfor2minwerefixedin2%glutar- aldehydein0.1MPBS(pH7.2)for10min.Afterwashing,they werepost-fixedwith1%osmicacidinthesamebuffer.Thecells werethenembeddedinAralditeafterdehydrationinethanol. FIGURE1.APPlocalizesinlargevesicularstructuresinSY5Y-APPWTcells Sections were collected on Parlodion-coated nickel grids and treatedwithchloroquineandBafA1.Shownaretheresultsfromtheanaly- sisofAPPlocalizationinSY5Y-APPWTcellstreatedornot(control(Ctrl))with counterstained with uranyl acetate and lead citrate before chloroquine(Chloro)orBafA .Cellswereprocessedforimmunofluorescence 1 observationonaZeiss9025electronmicroscope. andlabeledwiththeAPPCter-C17and8E5antibodies.Notetheintensestain- For immunoelectron microscopy observations, the same ingofAPPinlargevesicularstructuresinchloroquine-andBafA1-treated cells. cells(treatedornot)werefixedin0.2%glutaraldehydeand4% paraformaldehydeinPBSfor15minanddirectlyembeddedin kineticsofendocytosisof8E5-APPcomplexeswasfollowedby LR White after dehydration. Polymerization occurred under indirect immunofluorescence (Fig. 2A). Following incubation UVlightfor48h.Sectionswerecollectedoncoatednickelgrids ofthe8E5antibodyat4°CinbothcontrolandBafA -treated 1 andtreatedforgoldimmunolabeling.Briefly,thesectionswere cells,weobservedthatthemembranewasdelineatedbyimmu- successivelyincubatedfor30mininbufferA(0.1MTris,0.15M nocomplexes,demonstratingthatendocytosiswasrepressedat NaCl,1%bovineserumalbumin,and4%goatserum),antibody lowtemperatures.After5minat37°C,APPwasrapidlyinter- dilutedinbufferA(for24h),andcolloidalgold(18nm)-labeled nalizedinsmallvesiclesunderbothconditions.Noteworthy,in goatanti-rabbitIginbufferA(1.5h).Afterwashing,thesec- controlcells,theplasmamembranewasnotvisualized,whereas tions were counterstained in 4% uranyl acetate in H O. For in BafA -treated cells, the plasma membrane was detected. 2 1 observationofisolatedexosomes,400meshcarbongridswere Althoughindirectimmunofluorescenceisnotquantitative,we putfor5minonadropofexosomepelletdiluted1:50inPBS. observedthatAPPstainingstronglydisappearedundercontrol Afterblotting,thegridsweresuccessivelyputinfixativesolu- conditions after 60 min at 37°C. In contrast, APP staining tion (0.2% glutaraldehyde and 2% paraformaldehyde in PBS), remainedintenseinvesicularstructuresinBafA -treatedcells, 1 glycinesolution(0.2MinPBS),APPCter-C17antiserum(12h), andthesignalattheplasmamembranewasdiminished.BafA 1 andcolloidalgold-labeledgoatanti-rabbitIg(1.5h).Counter- induced the accumulation of the 8E5 antibody in vesicles stainingwasperformedinuranylacetate. resemblingthoseobservedinFig.1,suggestingthatthesevesi- cles belong to the endosomal/lysosomal pathway. To further RESULTS characterizethesevesicles,weusedantibodiesagainstmarkers Accumulation of APP in Late Endosomes after Alkalizing oftheearlyandlateendosomalcompartments(Fig.2B).Incon- DrugTreatments—Alkalizingdrugsinduceanaccumulationof trol and BafA -treated cells, antibody APPCter-C17 labeling 1 APP-CTFs and AICD as determined by biochemical analyses partially overlapped EEA1 early endosome marker labeling. (14). Herein, we investigated the cellular compartments in However,EEA1stainingdidnotcorrespondtolargeengulfed whichthisaccumulationmayarise.Weinvestigatedthecellular vesicles.Tsg101isamarkeroflateendosomalcompartments localization of APP in chloroquine- and BafA -treated SY5Y- and particularly of multivesicular endosomes (46). In control 1 APPWTcellsbyimmunofluorescenceusing8E5andAPPCter- SY5Y-APPWT cells, few vesicles were stained by both anti- C17antisera(Fig.1).Afterdrugtreatment,APPaccumulatedin Tsg101 and APPCter-C17 antibodies. In sharp contrast, all numerousengulfedvesicles(Fig.1).Theselargeengulfedvesi- large vesicles were stained by anti-Tsg101 and APPCter-C17 cles were not seen under control conditions and could result antibodies in BafA -treated cells. We showed previously that 1 fromdefectiveendocytosisorroutingofAPP. theselargevesiclesarealsopartiallypositivefortheLAMP-2 BafA hasbeendemonstratedtoreduceslightlytherateof lysosomemarker(14).WesuggestthatBafA treatmentresults 1 1 internalization, recycling, and intracellular sorting of trans- intheaccumulationofAPPanditsderivativesinlateendoso- membraneproteinandtocompletelyblockthetransportfrom malcompartments. lateendosomestolysosomes(44,45).Weassessedtheinternal- APPandItsDerivativesAreFoundinMVBsinBafA -treated 1 izationofAPPincontrolandBafA -treatedcells.SY5Y-APPWT Cells—Wenextobservedcellularorganellesattheultrastruc- 1 cells were incubated with the 8E5 antibody at 4°C, and the turallevelincontrolandBafA -treatedcells.Numerouslarge 1 JUNE22,2007•VOLUME282•NUMBER25 JOURNALOFBIOLOGICALCHEMISTRY 18199 APP-CTFsAreSecretedinExosomeVesicles We first investigated the pres- enceorabsenceofexosomevesicles in the medium of SY5Y-APPWT cells (Fig. 4). SY5Y-APPWT cells were differentiated with retinoic acid for 15 days in a medium that did not contain fetal calf serum, whichisasourceofexogenousexo- somes (43). To ascertain the pres- enceofexosome-likevesiclesindif- ferentiated SY5Y-APPWT cells, the medium was collected after 24, 48, or72hofcultureandprocessedas described for the isolation of secreted vesicles (43). Flotillin and HSP70, which are often found in exosomevesicles,wereusedasexo- somemarkers(36,43,47).Wealso usedelectronmicroscopytodeter- mine the morphology of the secretedvesicles.Followingtwolow speed centrifugations, filtration, and ultracentrifugation, the pellet wasanalyzedforthepresenceofflo- tillinandHSP70.Weobservedboth flotillin and HSP70 by Western blotting (Fig. 4B). Electron micros- copy analysis of the same pellet revealed the presence of numerous membranevesicleswithameansize of 50–90 nm and a typical “cup shape”(Fig.4B),hencecorrespond- ingtothemorphologicalcharacter- istics of exosomes (35). We excluded the possibility that the FIGURE2.APPisinternalizedinthepresenceofalkalizingdrugsandcolocalizeswithlateendosome releaseofsuchvesiclesisacharac- markers.A,thekineticsofAPPendocytosiswasindirectlyvisualizedbyinternalizationofthe8E5antibody. teristicofourcellmodel,assecreted CellswerepretreatedornotwithBafA for24h,placedat4°Cinacoldroom,andincubatedwiththe8E5 antibodyfor1h.Thetemperaturewasth1enshiftedto37°C,andcellswereprocessedforimmunofluorescence exosome vesicles were isolated in at0,5,15,30,and60mintoallowAPPinternalization.B,untreatedSY5Y-APPWTcells(control(Ctrl))orcells mock SY5Y cells as well as in pri- treatedwithBafA wereprocessedforimmunofluorescenceandlabeledwiththeAPPCter-C17,anti-EEA1,or 1 mary neuronal culture cells (Fig. 4, anti-Tsg101antibody. CandD). To further demonstrate that vesiclescontainingsmallerintraluminalvesicleswereobserved thesevesiclescorrespondtoexosomes,weanalyzedtheprotein in BafA -treated SY5Y-APPWT cells, but not in control cells ina100,000(cid:2)gpellet.SY5Y-APPWTcellsweredifferentiated 1 (Fig.3AandsupplementalFig.1,AandD).Immunogoldlabel- with retinoic acid for 15 days, and the medium was collected ingwithourAPPCter-C17antibodyshowedthatfewgoldpar- fromthelast72h.Exosomevesicleswereisolatedfollowingthe ticleswerelocalizedinvesicularstructuresandMVBsincon- establishedprocedure,andthefinalpelletwashomogenizedin trolcells(supplementalFig.1C).SY5Y-APPWTcellswerenot SDS lysis buffer. Proteins were resolved by SDS-PAGE and stainedbythesecondaryantibodyalone(supplementalFig.1,A stained with Coomassie Blue (Fig. 5A). The identities of the and D). In BafA -treated cells, intraluminal vesicles were proteinsweredeterminedbypeptidemappingafterin-geltryp- 1 stainedbyourAPPCter-C17antibody.Wehypothesizedthat sindigestionandmassspectrometryanalyses(42).Alowparts/ theselargevesiclescorrespondtoengulfedMVBs. millionerror(inferiorto30ppm)wasappliedtomatchapro- MVBscanfusewiththeplasmamembranetoreleasetheir tein with a minimum of four matching peptides and a high luminalcontent,includingthesmallvesiclestermedexosomes probability score (Fig. 5A, table). The proteome of exosomes (33,36).Thelatteroriginatefromthebuddingoftheendosomal isolated from multiple biological sources has been described membranetoformintraluminalvesicles.IfMVBsarethecell (43,48,49).Theproteinsthatwereidentifiedherein,suchasthe compartments in which APP metabolites accumulate, then clathrin heavy chain, translation initiation factor-3, HSP90, theseproductsshouldbeassociatedwithexosomes. pyruvatekinase,tubulin,actin,elongationfactor-1(cid:3),andRas- 18200 JOURNALOFBIOLOGICALCHEMISTRY VOLUME282•NUMBER25•JUNE22,2007 APP-CTFsAreSecretedinExosomeVesicles FIGURE3.MVBlocalizationofAPPinSY5Y-APPWTcells.A,ultrastructural analysisofBafA -treatedSY5Y-APPWTcells;B,immunogoldlabelingofAPPin 1 SY5Y-APPWTcellstreatedwithBafA .18-nmgoldparticleswerelocalizedin 1 thesmallintraluminalvesiclesofalargervesicle.Notethattheshapeofthese vesiclesisverysimilartothatofmultivesicularstructuresobservedinthe samecellsunderthesameconditionsbyultrastructuralelectronmicroscopy (A).Nu,nucleus.Scalebars(cid:4)1(cid:5)m. relatednuclearprotein,werecharacterizedpreviouslyinexo- somes(43,48,49).Ourdataindicatethattheisolatedvesicles are SY5Y-derived exosomes. These exosomes are most likely FIGURE4.Secretionofexosome-likevesiclesbySY5Y-APPWTcells.SY5Y- notcontaminatedbyproteinsofotherunrelatedorganelles,as APPWTcellsweredifferentiatedfor15dayswithretinoicacid,andthemedium the vast majority of the proteins we have characterized were wascollectedafterthelast24,48or72h.Shownisasummaryoftheprotocol usedtoisolateexosomesfromthecellmedia(A).The100,000(cid:2)gpellet shownpreviously(43,48,49)inexosomesfromothersources. (exosomes)obtainedafterdifferentialcentrifugationfromthecrudecontrol Moreover, we performed staining with anti-EEA1 antibody. (Ctrl)medium(B,firstlane)orfromthesupernatantafter24,48,and72hofcell EEA1wasdetectedintheSY5Y-APPWTlysate,butnotinexo- culture(secondthroughfourthlanes)andthecelllysate(fifthlane)wereana- lyzed by Western blotting with anti-flotillin and anti-HSP70 antibodies. somesobtainedfrom10mlofculturemedium(Fig.5B). Shownaretheresultsfrommorphologicalanalysisbyelectronmicroscopyof APP,APP-CTFs,andAICDAreSecretedinExosomeVesicles— the100,000(cid:2)gpelletobtainedfromthe72-hcellculturesupernatant.The pellet was composed of 30–100-nm vesicles. Scale bar (cid:4) 100 nm. The WenextaddressedthequestionofthepresenceofAPPmeta- 100,000(cid:2)gpelletobtainedafterdifferentialcentrifugationfromthecrude bolicproductsinSY5Y-APPWTexosomes(Fig.6A).Immuno- medium(CandD,firstlanes)orfromthesupernatantafter24,48,and72hof SY5Ycellculture(C,secondthroughfourthlanes)orafter72hofprimary goldlabelingwithourAPPCter-C17antibodywasperformed neuronalcellculture(D,secondlane)wasanalyzedbyWesternblottingwith to localize APP metabolic products. Numerous vesicles of anti-flotillinandanti-HSP70antibodies.Shownaretheresultsfromelectron 50–90nmwerestainedwithgoldparticles18nmindiameter microscopyofthe100,000(cid:2)gpelletobtainedfromthe72-hcellculture mediumofdifferentiatedSY5Ycells(C)orratprimaryneuronalculturecells (Fig.6A).Thegoldparticleslocalizedinsidethevesicles.Using (D).Scalebars(cid:4)100nm.Notethecharacteristiccupshapeofthe50–90-nm the same antibody, we next characterized the APP metabolic vesicles(insetsinB–D). productsbyWesternblotting(Fig.6A).Thisanalysiswasper- formed on exosome vesicles obtained from differentiated densitygradient.Aftercentrifugationat200,000(cid:2)gfor18h, SY5Y-APPWT cells maintained in the culture medium for 24, 1-mlfractionswerecollectedandanalyzedbyWesternblotting 48,or72h.AnincreaseinHSP70stainingwasobserved(Fig. forthepresenceofEEA1,APP,APP-CTFs,AICD,HSP70,and 6A),suggestingthatexosomesaccumulatedinthecellmedium flotillin(Fig.6B).Exosomeswerefoundprincipallybetween1.0 withtime.TheAPPCter-C17antibodystainedfull-lengthAPP, and 1.25 M sucrose, corresponding to a density of 1.13–1.16 APP-CTFs,andAICD(Fig.6A).Whereasfull-lengthAPPstain- g/ml, as described previously (50, 51). APP, APP-CTFs, and ing only slightly increased under the three conditions, APP- AICD were strongly detected in the 1.0–1.25 M fractions; CTF staining strongly increased at 48 and 72 h. AICD was HSP70 and flotillin were strongly detected as well (Fig. 6B). observedmainlyafter72h.TofurtherdemonstratethatAPP, Moreover, we verified the presence of exosomes in the 1.0 M APP-CTFs, and AICD are associated with exosomes, the sucrosefractionbyelectronmicroscopy(Fig.6B)andshowed 100,000(cid:2)gpelletwasloadedonthetopofa0.25–2.5Msucrose alsothatEEA1wasnotdetectedinthisfraction,butwasslightly JUNE22,2007•VOLUME282•NUMBER25 JOURNALOFBIOLOGICALCHEMISTRY 18201 APP-CTFsAreSecretedinExosomeVesicles In the presence of the (cid:3)-secretase inhibitor compound E, AICD was detected neither in the cell lysate nor in the exosomes. Conversely, the amount of APP-CTFs was stronglyincreasedinSY5Y-APPWT cells and exosomes (Fig. 7B), dem- onstratingthatAICDinexosomesis producedby(cid:3)-secretasecleavageof APP-CTFs. Moreover, we showed that, in chloroquine-treated cells, AICD was increased in the SY5Y- APPWTlysateandinexosomes,sug- gesting further that chloroquine mightrepressAICDdegradationin MVBs.Altogether,ourdatademon- strate that APP, APP-CTFs, and AICDarefoundinintraluminalves- iclesofMVBs,wheretheyarelikely degraded,asareothertypeItrans- membraneproteins. DISCUSSION Inthisstudy,wehaveshownthat differentiated SY5Y cells stably expressing APP or not produced andsecretedsmallvesiclesof50–90 nm in diameter, consistent with morphological and biochemical properties of exosomes. We have also shown that proteins often foundinexosomes,e.g.HSP70and flotillin(36),weredetectedinthese small vesicles secreted by SY5Y cells. In contrast, a marker of early endosomes (EEA1) was not found associated with exosomes. Further similarities were deduced from characterization of the proteome SY5Y-derivedvesicles.Fiftypercent FIGURE5.ProteomiccharacterizationofexosomessecretedbySY5Y-APPWTcells.A,SDS-PAGEofthe proteinsofexosomesobtainedfromthe72-hcellculturemediumandstainedwithCoomassieBrilliantBlue of the proteins characterized were G-250.Thefirstlanecorrespondstothemolecularmassmarkers.CoomassieBlue-stainedbandswereexcised identified previously in exosomes fromthegel,trypsinized,andanalyzedbymassspectrometryforpeptidemassfingerprints.Thenamesand from other biological sources (43, accessionnumberscorrespondtothoseprovidedbytheSwiss-ProtProteinKnowledgebase(ca.expasy.org/ sprot/).Thetheoreticalmass,numberofpeptidesmatched,andpercentcoverageareindicated.B,absenceof 48). Similar vesicles were also iso- EEA1inexosomes.Exosomeswerepreparedfrom10mlofSY5Y-APPWTcellsdifferentiatedfor15daysaccord- latedfromprimaryneuronalculture ingtotheprotocoldescribedinthelegendtoFig.4.Proteinsfromexosomesandfromthecelllysate(SY5Y- APPWT)wereloadedontoSDS-polyacrylamidegelandWestern-blottedwithanti-EEA1,anti-HSP70,andanti- cells, demonstrating that the pro- flotillinantibodies.NotethatEEA1wasdetectedonlyinSY5Y-APPWTcelllysate. ductionofexosomesisnotaspeci- ficity of SY5Y neuroblastoma cells, butispossiblyaphysiologicalproc- detected in fractions below 2.0 M sucrose when the blot was ess of neuronal cells (51). More important, our data demon- overexposed(Fig.6B).OurdatashowthatSY5Y-APPWTcells strate that APP derivatives, including full-length APP, APP- producedexosomesinwhichAPPandAPPmetaboliteswere CTFs, and more surprisingly, AICD, are found in exosomes co-sedimentedwithexosomemarkers.Finally,todemonstrate secretedbydifferentiatedSY5Ycells.TheseAPPfragmentsare that the AICD we observed in exosomes was released by alsoco-sedimentedwithmarkersofexosomesatasucroseden- (cid:3)-secretase and not by an unrelated proteolytic cleavage, we sitycorrespondingtothatdescribedforexosomes(50,51).The used a specific (cid:3)-secretase inhibitor. SY5Y-APPWT cells were presenceofsolublefull-lengthAPPinthemediumwasdemon- treatedfor24hwitheithercompoundEorchloroquine,and stratedpreviouslyincellstransfectedwithAPP,butremained weanalyzedtheexosomecontentaftertreatment(Fig.7A). unexplained(52,53).SecretionofAPPwithinexosomesiscon- 18202 JOURNALOFBIOLOGICALCHEMISTRY VOLUME282•NUMBER25•JUNE22,2007 APP-CTFsAreSecretedinExosomeVesicles useofa(cid:3)-secretaseinhibitorabro- gated the release AICD. Moreover, AICDwasnotproducedduringthe purification of exosomes. First, we failed to detect presenilin in exo- somes;andsecond,whenexosomes were incubated at 37°C for 24 h, APP-CTFswerenotprocessedfur- ther to produce AICD or other catabolites(datanotshown).How- ever, our negative findings do not excludethepossibilitythat(cid:3)-secre- tase cleavage occurs prior to exo- somesecretion. Exosomesderivefromtheinward buddingofthemembraneofendo- somes en route for multivesicular endosomes (54). Several proteins are markers of this cellular com- partment such as flotillin, HSP70, and Tsg101 (36, 43). Interestingly, flotillinwasshownrecentlytoasso- ciate with AICD (55). We have shownherethatAPPanditsderiva- tives were found in exosomes and multivesicular endosomes and accumulated in engulfed vesicles followingtreatmentswithalkalizing drugs. Together with our recent data,wesuggestthatAPPandAPP- CTFs that are not processed by (cid:3)-secretasearedirectedtothislate endosomalcompartmentfordegra- dationbyfusionofMVBswithlyso- somes.A(cid:1)andAICD,whichresult from the (cid:3)-secretase cleavage of APP-CTFs,arealsodirectedtomul- tivesicularendosomesandareinte- grated in the luminal vesicles, namely exosomes. The presence of AICD in exosomes is consistent with (cid:3)-secretase cleavage of APP- CTFs that would occur during the FIGURE6.APP,APP-CTFs,andAICDaresecretedandco-sedimentedwithexosomemarkers.A,shownare budding of the late endosomal theresultsfromelectronmicroscopyofthe100,000(cid:2)gpelletobtainedfrom2mlofthe72-hcellculture membrane.However,thecontribu- mediumimmunogold-labeledwiththeAPPCter-C17antibody.Scalebars(cid:4)0.1(cid:5)m.Exosomeswerealsoana- tion of flotillin to this mechanism lyzedbyWesternblottingwithanti-flotillin,anti-HSP70,andanti-APPCter-C17antibodies.Anequalvolume(3 ml)ofthenativeculturemedium(control(Ctrl))wasprocessedforexosomeisolationandloadedinthefirst remainstobeestablished.Theproc- lane.Thelastlanecorrespondstothecelllysate.Tenmicrogramsofproteinwasloaded.B,exosomeswere essofAPPfollowingendocytosisis prepared from 65 ml of medium obtained after 72 h of culture of differentiated SY5Y-APPWT cells. The 100,000(cid:2)gpelletwasrecoveredin0.25Msucroseandlayeredoverasucrosedensitygradient.Tenfractions illustratedinFig.8. of1mlwererecoveredaftercentrifugationat200,000(cid:2)gfor18handconcentrated.Theconcentrationsofthe Recentdatasuggestthatmultive- sucrosefractionsareindicated.ThewholeproteinswereloadedontoSDS-polyacrylamidegel.Full-lengthAPP, sicular endosomes are important APP-CTFs,AICD,EEA1,HSP70,andflotillinweredetected.EEA1stainingwasperformedafterAPPlabeling.The residualstainingofAPPisindicatedbytheasteriskbecauseaverylongexposuretimewasnecessaryto cellular compartments in neurode- visualizeEEA1staining.AICDwasobservedafteralongerexposure(10min(mn))andisindicatedbythearrow. generativedisorders.Exosomesthat Electronmicroscopywasperformedtoverifythepresenceofexosomesinthe1Msucrosefraction.Scalebar(cid:4) 100nm. are produced in these compart- ments contain prion protein and sistent with these observations and could be an explanation. have been suggested to mediate the diffusion of the scrapie WehavealsodemonstratedthatAICDfoundinexosomeswas formoftheprotein(56).Morerecently,A(cid:1)hasbeenshownto producedbycleavageofAPP-CTFsby(cid:3)-secretasebecausethe be a component of the exosomal membrane (37). Protease JUNE22,2007•VOLUME282•NUMBER25 JOURNALOFBIOLOGICALCHEMISTRY 18203 APP-CTFsAreSecretedinExosomeVesicles somes,buttheirpotentialrolesremainunclear(51).Herein,we haveshownthatseveralmetabolitesofAPP,includingAICD, arefoundinexosomes. MVBsandexosomesareofgrowinginterestinneurodegen- erativediseases.Wedonotknowwhetherthe“alkalizing”con- ditionsusedhereinreflectanAlzheimerdisease-relatedsitua- tion,althoughwehaveshownthatalkalizingdrugsinducedan intracellular accumulation of APP catabolites. However, an alteredroutingofAPPtolateendosomalcompartmentscould be associated with an increase risk of developing Alzheimer disease.ArecentworkbyRogaevaetal.(58)demonstratesthat genetic polymorphisms of SORL1 are at risk for late onset Alzheimer disease. SORL1 acts as a sorting receptor for full- lengthAPPandfavorsitsrecycling.AlossoffunctionofSORL1 resultsinincreasedproductionofA(cid:1)inlateendosomalcom- FIGURE7.Inhibitionof(cid:1)-secretaseortreatmentwithchloroquineabol- partments. Further work will be needed to study markers of ishestheproductionorenhancesthequantityofAICDinexosomes, respectively.A,SY5Y-APPWTcellsweredifferentiatedfor14daysandtreated exosomesinAlzheimerdiseaseandtherelationship,ifany,toa thelast24hwithcompoundE(CompE)orchloroquine(Chloro);themedium potentialdefectoflateendosomalcompartmentssuchMVBs. (3ml/condition)wascollected;andexosomeswereisolated.APP,APP-CTFs, Thereleaseofexosomesismostlikelyregulatedasdemon- AICD,flotillin,andHSP70weredetectedbyWesternblottinginexosomesand celllysates.Molecularmassesareindicatedtotheright.Ctrl,control.B,the stratedbyFaureetal.(51);thus,depolarizationstimulatesthe ratioofAPP-CTFsdetectedinexosomestothosedetectedincellsisexpressed exosomes released. The release of full-length APP was also inarbitraryunits. demonstrated to be stimulated by cholinergic agonists (52). Thesedata,togetherwiththedatafromthisstudy,showthat APP and its catabolites can be released associated with exo- somes and that this process is likely modulated by several parameters.However,furtherworkwillbeneededtoinvesti- gatethesehypotheses. Inconclusion,wehavedemonstratedanovelsecretionpath- wayofAPPmetabolites(includingAPP,APP-CTFs,andAICD) thatismediatedbyexosomevesicles.Ourworkprovidesnew researchperspectivestowardtheunderstandingofAPPbiolog- ical function. A more complete characterization of the pro- teomeofneuron-derivedexosomescouldalsobehelpfulindis- coveringnewbiomarkersusefulfordiagnosticpurposesandin developingtherapeuticdrugsforAlzheimerdisease. Acknowledgment—The 8E5 antibody was kindly provided by Dr. PeterSeubert. REFERENCES 1. Suh,Y.-H.,andChecler,F.(2002)Pharmacol.Rev.54,469–525 2. Sastre, M., Steiner, H., Fuchs, K., Capell, A., Multhaup, G., Condron, M.M.,Teplow,D.B.,andHaass,C.(2001)EMBORep.2,835–841 3. Kim,S.H.,Ikeuchi,T.,Yu,C.,andSisodia,S.S.(2003)J.Biol.Chem.278, 33992–34002 4. Andrau,D.,Dumanchin-Njock,C.,Ayral,E.,Vizzavona,J.,Farzan,M., Boisbrun,M.,Fulcrand,P.,Hernandez,J.F.,Martinez,J.,Lefranc-Jullien, S.,andChecler,F.(2003)J.Biol.Chem.278,25859–25866 FIGURE8.SchematicrepresentationofthesortingofAPPanditscata- 5. Baulac,S.,LaVoie,M.J.,Kimberly,W.T.,Strahle,J.,Wolfe,M.S.,Selkoe, bolicderivativesinMVBsandexosomes.APPorAPP-CTFsareinternalized anddirectedtoearlyendosomes.Buddingfromthelimitingmembraneof D.J.,andXia,W.(2003)Neurobiol.Dis.14,194–204 endosomesintotheirlumenformsinternalvesiclescharacteristicofMVBs.En 6. Gu,Y.,Misonou,H.,Sato,T.,Dohmae,N.,Takio,K.,andIhara,Y.(2001) routefordegradation,MVBscontainingAPP,APP-CTFs,andAICDfusewith J.Biol.Chem.276,35235–35238 lysosomes.Alternatively,MVBscanfusewiththeplasmamembrane,inwhich 7. Vingtdeux,V.,Hamdane,M.,Gompel,M.,Be´gard,S.,Drobecq,H.,Gh- casetheinternalvesiclesoftheMVBsarereleasedintotheextracellularspace, estem,A.,Grosjean,M.E.,Kostanjevecki,V.,Grognet,P.,Vanmechelen, theso-calledexosomescontainingAPPanditscatabolicderivatives. E.,Bue´e,L.,Delacourte,A.,andSergeant,N.(2005)Neurobiol.Dis.20, 625–637 implicatedinAPPmetabolismandotherproteinsshowingsim- 8. Weidemann,A.,Eggert,S.,Reinhard,F.B.,Vogel,M.,Paliga,K.,Baier,G., ilaritiestoAPPmetabolismsuchasL1andCD44arefoundin Masters, C. L., Beyreuther, K., and Evin, G. (2002) Biochemistry 41, exosomes(57).Exosomesintheimmunesystemareknownto 2825–2835 contributetoantigenpresentation.Neuronsalsoproduceexo- 9. Baek,S.H.,Ohgi,K.A.,Rose,D.W.,Koo,E.H.,Glass,C.K.,andRosenfeld, 18204 JOURNALOFBIOLOGICALCHEMISTRY VOLUME282•NUMBER25•JUNE22,2007 APP-CTFsAreSecretedinExosomeVesicles M.G.(2002)Cell110,55–67 35. Fevrier,B.,andRaposo,G.(2004)Curr.Opin.CellBiol.16,415–421 10. Kim,H.-S.,Kim,E.-M.,Lee,J.-P.,Park,C.H.,Kim,S.,Seo,J.-H.,Chang, 36. Johnstone,R.M.(2005)BloodCellsMol.Dis.34,214–219 K.-A.,Yu,E.,Jeong,S.-J.,Chong,Y.H.,andSuh,Y.-H.(2003)FASEBJ.17, 37. Rajendran,L.,Honsho,M.,Zahn,T.R.,Keller,P.,Geiger,K.D.,Verkade, 1951–1953 P.,andSimons,K.(2006)Proc.Natl.Acad.Sci.U.S.A.103,11172–11177 11. vonRotz,R.C.,Kohli,B.M.,Bosset,J.,Meier,M.,Suzuki,T.,Nitsch,R.M., 38. Casas,C.,Sergeant,N.,Itier,J.M.,Blanchard,V.,Wirths,O.,vanderKolk, andKonietzko,U.(2004)J.CellSci.117,4435–4448 N.,Vingtdeux,V.,vandeSteeg,E.,Ret,G.,Canton,T.,Drobecq,H.,Clark, 12. Pardossi-Piquard,R.,Petit,A.,Kawarai,T.,Sunyach,C.,AlvesdaCosta,C., A.,Bonici,B.,Delacourte,A.,Benavides,J.,Schmitz,C.,Tremp,G.,Bayer, Vincent,B.,Ring,S.,D’Adamio,L.,Shen,J.,Mu¨ller,U.,St.George-Hyslop, T.A.,Benoit,P.,andPradier,L.(2004)Am.J.Pathol.165,1289–1300 P.,andChecler,F.(2005)Neuron46,541–554 39. Santiard-Baron,D.,Langui,D.,Delehedde,M.,Delatour,B.,Schombert, 13. Cupers,P.,Orlans,I.,Craessaerts,K.,Annaert,W.,andDeStrooper,B. B.,Touchet,N.,Tremp,G.,Paul,M.F.,Blanchard,V.,Sergeant,N.,Dela- (2001)J.Neurochem.78,1168–1178 courte,A.,Duyckaerts,C.,Pradier,L.,andMercken,L.(2005)J.Neuro- 14. Vingtdeux,V.,Hamdane,M.,Be´gard,S.,Loyens,A.,Delacourte,A.,Beau- chem.93,330–338 villain,J.-C.,Bue´e,L.,Marambaud,P.,andSergeant,N.(2007)Neurobiol. 40. Sergeant,N.,David,J.P.,Champain,D.,Ghestem,A.,Wattez,A.,and Dis.25,686–696 Delacourte,A.(2002)J.Neurochem.81,663–672 15. Ehehalt,R.,Keller,P.,Haass,C.,Thiele,C.,andSimons,K.(2003)J.Cell 41. Scha¨gger,H.,andvonJagow,G.(1987)Anal.Biochem.166,368–379 Biol.160,113–123 42. Sergeant,N.,Bombois,S.,Ghestem,A.,Drobecq,H.,Kostanjevecki,V., 16. Vassar,R.,Bennett,B.D.,Babu-Khan,S.,Kahn,S.,Mendiaz,E.A.,Denis, Missiaen,C.,Wattez,A.,David,J.P.,Vanmechelen,E.,Sergheraert,C., P.,Teplow,D.B.,Ross,S.,Amarante,P.,Loeloff,R.,Luo,Y.,Fisher,S., andDelacourte,A.(2003)J.Neurochem.85,1581–1591 Fuller,J.,Edenson,S.,Lile,J.,Jarosinski,M.A.,Biere,A.L.,Curran,E., 43. Thery,C.,Boussac,M.,Veron,P.,Ricciardi-Castagnoli,P.,Raposo,G., Burgess,T.,Louis,J.C.,Collins,F.,Treanor,J.,Rogers,G.,andCitron,M. Garin,J.,andAmigorena,S.(2001)J.Immunol.166,7309–7318 (1999)Science286,735–741 44. vanWeert,A.W.,Dunn,K.W.,Gueze,H.J.,Maxfield,F.R.,andStoor- 17. Walter,J.,Fluhrer,R.,Hartung,B.,Willem,M.,Kaether,C.,Capell,A., vogel,W.(1995)J.CellBiol.130,821–834 Lammich, S., Multhaup, G., and Haass, C. (2001) J. Biol. Chem. 276, 45. vanDeurs,B.,Holm,P.K.,andSandvig,K.(1996)Eur.J.CellBiol.69, 14634–14641 343–350 18. Yan,R.,Bienkowski,M.J.,Shuck,M.E.,Miao,H.,Tory,M.C.,Pauley, 46. Babst, M., Odorizzi, G., Estepa, E. J., and Emr, S. D. (2000) Traffic 1, A.M.,Brashier,J.R.,Stratman,N.C.,Mathews,W.R.,Buhl,A.E.,Carter, 248–258 D.B.,Tomasselli,A.G.,Parodi,L.A.,Heinrikson,R.L.,andGurney,M.E. 47. deGassart,A.,Geminard,C.,Fevrier,B.,Raposo,G.,andVidal,M.(2003) (1999)Nature402,533–537 Blood102,4336–4344 19. Koh,Y.H.,vonArnim,C.A.,Hyman,B.T.,Tanzi,R.E.,andTesco,G. 48. Segura,E.,Amigorena,S.,andThery,C.(2005)BloodCellsMol.Dis.35, (2005)J.Biol.Chem.280,32499–32504 89–93 20. Lah,J.J.,andLevey,A.I.(2000)Mol.Cell.Neurosci.16,111–126 49. Mears,R.,Craven,R.A.,Hanrahan,S.,Totty,N.,Upton,C.,Young,S.L., 21. Pasternak,S.H.,Bagshaw,R.D.,Guiral,M.,Zhang,S.,Ackerley,C.A.,Pak, Patel,P.,Selby,P.J.,andBanks,R.E.(2004)Proteomics4,4019–4031 B. J., Callahan, J. W., and Mahuran, D. J. (2003) J. Biol. Chem. 278, 50. Raposo,G.,Nijman,H.W.,Stoorvogel,W.,Liejendekker,R.,Harding, 26687–26694 C.V.,Melief,C.J.,andGeuze,H.J.(1996)J.Exp.Med.183,1161–1172 22. Vetrivel,K.S.,Cheng,H.,Lin,W.,Sakurai,T.,Li,T.,Nukina,N.,Wong, 51. Faure,J.,Lachenal,G.,Court,M.,Hirrlinger,J.,Chatellard-Causse,C., P.C.,Xu,H.,andThinakaran,G.(2004)J.Biol.Chem.279,44945–44954 Blot,B.,Grange,J.,Schoehn,G.,Goldberg,Y.,Boyer,V.,Kirchhoff,F., 23. Kaether, C., Schmitt, S., Willem, M., and Haass, C. (2006) Traffic 7, Raposo, G., Garin, J., and Sadoul, R. (2006) Mol. Cell. Neurosci. 31, 408–415 642–648 24. Golde,T.E.,Estus,S.,Younkin,L.H.,Selkoe,D.J.,andYounkin,S.G. 52. Efthimiopoulos,S.,Vassilacopoulou,D.,Ripellino,J.A.,Tezapsidis,N., (1992)Science255,728–730 andRobakis,N.K.(1996)Proc.Natl.Acad.Sci.U.S.A.93,8046–8050 25. Haass,C.,Capell,A.,Citron,M.,Teplow,D.B.,andSelkoe,D.J.(1995) 53. Tezapsidis,N.,Li,H.C.,Ripellino,J.A.,Efthimiopoulos,S.,Vassilacopou- J.Biol.Chem.270,6186–6192 lou,D.,Sambamurti,K.,Toneff,T.,Yasothornsrikul,S.,Hook,V.Y.,and 26. Schrader-Fischer,G.,andPaganetti,P.A.(1996)BrainRes.716,91–100 Robakis,N.K.(1998)Biochemistry37,1274–1282 27. Koo,E.H.,andSquazzo,S.L.(1994)J.Biol.Chem.269,17386–17389 54. vanderGoot,F.G.,andGruenberg,J.(2006)TrendsCellBiol.16,514–521 28. Perez,R.G.,Soriano,S.,Hayes,J.D.,Ostaszewski,B.,Xia,W.,Selkoe,D.J., 55. Chen,T.Y.,Liu,P.H.,Ruan,C.T.,Chiu,L.,andKung,F.L.(2006)Bio- Chen, X., Stokin, G. B., and Koo, E. H. (1999) J. Biol. Chem. 274, chem.Biophys.Res.Commun.342,266–272 18851–18856 56. Fevrier,B.,Vilette,D.,Archer,F.,Loew,D.,Faigle,W.,Vidal,M.,Laude, 29. Nixon,R.A.(2005)Neurobiol.Aging26,373–382 H.,andRaposo,G.(2004)Proc.Natl.Acad.Sci.U.S.A.101,9683–9688 30. Takahashi,R.H.,Milner,T.A.,Li,F.,Nam,E.E.,Edgar,M.A.,Yamaguchi, 57. Stoeck,A.,Keller,S.,Riedle,S.,Sanderson,M.P.,Runz,S.,LeNaour,F., H.,Beal,M.F.,Xu,H.,Greengard,P.,andGouras,G.K.(2002)Am.J. Gutwein,P.,Ludwig,A.,Rubinstein,E.,andAltevogt,P.(2006)Biochem.J. Pathol.161,1869–1879 393,609–618 31. Langui,D.,Girardot,N.,ElHachimi,K.H.,Allinquant,B.,Blanchard,V., 58. Rogaeva,E.,Meng,Y.,Lee,J.H.,Gu,Y.,Kawarai,T.,Zou,F.,Katayama,T., Pradier,L.,andDuyckaerts,C.(2004)Am.J.Pathol.165,1465–1477 Baldwin,C.T.,Cheng,R.,Hasegawa,H.,Chen,F.,Shibata,N.,Lunetta, 32. Verbeek,M.M.,Otte-Holler,I.,Fransen,J.A.,anddeWaal,R.M.(2002) K. L., Pardossi-Piquard, R., Bohm, C., Wakutani, Y., Cupples, L. A., J.Histochem.Cytochem.50,681–690 Cuenco,K.T.,Green,R.C.,Pinessi,L.,Rainero,I.,Sorbi,S.,Bruni,A., 33. Gruenberg, J., and Stenmark, H. (2004) Nat. Rev. Mol. Cell Biol. 5, Duara,R.,Friedland,R.P.,Inzelberg,R.,Hampe,W.,Bujo,H.,Song,Y.Q., 317–323 Andersen,O.M.,Willnow,T.E.,Graff-Radford,N.,Petersen,R.C.,Dick- 34. deGassart,A.,Geminard,C.,Hoekstra,D.,andVidal,M.(2004)Traffic5, son,D.,Der,S.D.,Fraser,P.E.,Schmitt-Ulms,G.,Younkin,S.,Mayeux,R., 896–903 Farrer,L.A.,andSt.George-Hyslop,P.(2007)Nat.Genet.39,168–177 JUNE22,2007•VOLUME282•NUMBER25 JOURNALOFBIOLOGICALCHEMISTRY 18205

Description:
strongly increased in cells treated with alkalizing drugs (Vingt- deux, V. increased upon treatment with alkalizing drugs, suggesting that the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.