ebook img

Alkali and Alkaline Earth Oxoacid Salts; Synthesis, Hydration, Stability, and Electrical Conductivity PDF

116 Pages·2017·9.59 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Alkali and Alkaline Earth Oxoacid Salts; Synthesis, Hydration, Stability, and Electrical Conductivity

Alkali and Alkaline Earth Oxoacid Salts; Synthesis, Hydration, Stability, and Electrical Conductivity Aleksander Andestad Elstad Thesis for the degree of ’Master of Science’, Spring 2017 Summary Proton-conductingelectrolytesaresoughafterforuseinvariousapplicationswithinthe field of electrochemistry. Pure and high proton conductivity has been found in many perovskite-type oxides like BaZrO (BZY) and BaCeO , with BaCeO -based materials 3 3 3 being among the best proton-conducting oxides. In the intermediate temperature range of 400 to 800◦C, BZY has been established as one of the most promising materials, exhibiting a protonic conductivity higher than 1×10−2Scm−1 over the whole temper- ature range. However, it is difficult to process, and the resulting materials are usually grainy and possess highly resistive grain-boundaries [1]. For low-temperature regions, compounds like CsHSO and CsH PO show great potential with respect to protonic 4 2 4 conductivity, even displaying superprotonic transitions that immensely increase their conductivity, however their stability is lacking with respect to temperature and solubil- ityinwater[2]. With this project, the aim is to broaden the horizon and investigate compounds that fall outside the common perovskite-definition. In this work, various solid acids (E.g. KBaPO ,NaCaHSiO andBaH SiO ),inwhichthecationsarealkaliandalkalineearth 4 4 2 4 metals and the anionic groups are separated XO tetrahedra, are synthesized and subse- 4 quently characterized by X-Ray Diffraction (XRD), Thermogravimetric Analysis (TG), as well as electrical characterization by Impedance Spectroscopy (IS). The work on KBaPO culminatedinasubmittedpaper[3]. 4 KBaPO hasbeenproposedtotransformintoagreatprotonicconductoruponhydration 4 at low temperatures. Effectively, hydration through steam at 80◦C is said to give the compound a protonic conductivity of 1×10−2Scm−1 just below 100◦C [4]. This is a remarkable result and, if it can be reproduced, it can become a viable rival to BZY. For this reason, KBaPO was chosen as a topic for this work. Here, we synthesize 4 KBaPO through a high-temperature solid state reaction, and subsequently character- 4 ize the system with respect to thermal stability and its inherent electrical conductivity. Through electrical measurements, we found that the conductivity of pure KBaPO was 4 very low, around 2×10−6Scm−1 at 600◦C, with an activation energy exceeding 1eV. The compound is indifferent to the presence of humidity, and results indicate that the chargecarrierinthecompoundisnotprotonic,butratheritistheorizedtobepotassium ions, with potassium Frenkel defects being the predominating defect, however this has not been explicitly confirmed. All in all, we propose a defect model for KBaPO with 4 Frenkeldefectsasthepredominatingdefects. ThroughattemptsathydratingKBaPO inaccordancetothemethodproposedbyGood- 4 enough,wefoundthatitdoesnottransformintoahigh-conductivityphase,butratherde- composes into potassium doped Ba (PO ) , and that the resulting system shows similar 3 4 2 i properties,suchasthermalstability(Decomposingat300◦C)andprotonicconductivity (1.6×10−6Scm−1 at 250◦C), to the system Ba K H (PO ) previously investigated 3-x x x 4 2 by Haile et al. [5], albeit with a significantly lower potassium content than the systems theyhavecharacterized,possiblyindicatingthatasaturationofKinBa (PO ) hasbeen 3 4 2 reached. By subsequently heating Ba K H (PO ) to high temperatures, the system is found 3-x x x 4 2 to expel potassium and form a two-phase system of Ba (PO ) and a secondary phase 3 4 2 of KBaPO , showing similarities to the system Ba K (PO ) previously investi- 4 3(1-x) 3x 4 2-x gated by Iwahara et al. [6]. Through impedance spectroscopy of said system, we found evidence that points toward the system being a protonic conductor, with a bulk conduc- tivityslightlyhigherthan1×10−3Scm−1 at600◦C,andanactivationenergyofaround 0.67eV. This is one order of magnitude higher than the one previously reported by Iwaharaetal.,andonlyoneorderofmagnitudelowerthanthatofBaZrO . 3 Parallelly,NaCaHSiO andrelatedcompoundsABHXO (A−−Li,NaorK. B−−Ca,Sror 4 4 Ba. X−−Si, Ge or Sn) were synthesized hydrothermally and subsequently characterized. ElectricalcharacterizationofNaCaHSiO gavelowconductivities,althoughprotonic,of 4 1.8×10−8Scm−1 at 250◦C, with an activation energy of 0.9eV. Based on the results, we propose a defect model in which interstitial hydroxide ions and interstitial protons strsignificantdefectsinthecompound. However, although NaCaHSiO could be successfully synthesized and subsequently 4 characterized, the other syntheses did not yield the desired results. In fact, the only synthesis that yielded a pure product was that which gave Sr SiO , possibly providing 2 4 a hydrothermal approach to synthesizing a compound previously produced by a high- temperaturesolidstatereaction. Lastly, the compound BaH SiO was synthesized, according to a hydrothermal route, 2 4 and characterized with respect to thermal stability and electrical conductivity. It was foundtoexhibitaconductivityof2.5×10−8Scm−1 at200◦Cwithanactivationenergy of 0.88eV, comparable to that of NaCaHSiO . Due to BaH SiO showing similar re- 4 2 4 sponsetovariousatmospheresasNaCaHSiO ,adefectmodelcontaininghydroxideand 4 hydrogeninterstitialsisproposedforBaH SiO aswell. 2 4 Comparedtoearlierreports,adiscrepancywasfoundinthattheBaH SiO decomposes 2 4 priortotemperatureregionsinwhichdataonelectricalconductivityhasbeenpreviously reported. Another,separateinvestigationintoBaH SiO isthereforerecommended. 2 4 ii Acknowledgements OverthelasttwoyearsIhavehadtheopportunitytoworkonaprojectthatwasabitout oftheordinary. Ithasbeentwointerestingyears,withtheprojectcontinuouslyevolving asexperimentsgaveunexpectedresults,andnewroadshavehadtobepaved. Intheend, I arrived at a goal that was not the one I initially set out for. However, looking back, it hasbeenquiteajourney,andIamleftwithalotofknowledgeandideasforthefuture. I would like to express my gratitude to my supervisors, Truls Norby and Sabrina Sar- tori, for their continuous support and for their eagerness to help me when I have had questions,attimesresultinginalongemaildroppingintomyinboxinthemiddleofthe night. IwouldliketothankReidar,EinarandRagnarforhavingthetimeandpatiencetoassist mewithinstruments,interpretations,defectchemistry,andeverythingelseIhaveneeded helpwith. Additionally,IwouldliketothankallthepeopleinFASE.Therewasalways someoneIcouldask. Iwouldalsoliketogiveashout-outtoKevinNguyenforthemanydiscussionswehave hadinordertounderstandwhatwehavebeendoing. Lastly,Iamverygratefulformyfamilyfortheirloveandsupport,eventhoughtheyare notentirelysureaboutwhatIhavebeenworkingonduringalltheseyears. iii Contents Summary ii Acknowledgements iii ListofFigures xiii ListofTables xvi 1 Introduction 1 1.1 FuelCells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 HighTemperature: MOFCsandSOFCs . . . . . . . . . . . . . 2 1.1.2 Low-andIntermediateTemperatures . . . . . . . . . . . . . . 3 1.2 GoalofProject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 TheoreticalBackground 7 2.1 IonicConductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 ConductionThroughDefectsinSolids . . . . . . . . . . . . . . 7 2.1.2 CalculationofConductivityandActivationEnergy . . . . . . . 8 2.2 DefectsandStructuralConsiderations . . . . . . . . . . . . . . . . . . 9 2.2.1 DefectChemistry . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 DefectModels . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 ImpedanceSpectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 TheConceptofImpedance . . . . . . . . . . . . . . . . . . . . 18 2.3.2 CircuitElements . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.3 ImpedanceSweepsandModelling . . . . . . . . . . . . . . . . 21 3 LiteratureReview 25 3.1 IonicConductioninOxoacidSalts . . . . . . . . . . . . . . . . . . . . 25 3.2 KBaPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 3.2.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.2 AcceptorDopingKBaPO . . . . . . . . . . . . . . . . . . . . 26 4 3.3 Orthosilicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.1 NaCaHSiO andRelatedCompounds . . . . . . . . . . . . . . 27 4 3.3.2 BaH SiO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 4 v Contents 4 Experimental 29 4.1 SamplePreparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.2 PelletPreparation . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.1 X-RayDiffraction-XRD . . . . . . . . . . . . . . . . . . . . 32 4.2.2 ScanningElectronMicroscopy-SEM . . . . . . . . . . . . . . 33 4.2.3 EnergyDispersiveX-RaySpectroscopy-EDS . . . . . . . . . 34 4.2.4 ThermogravimetricAnalysis-TGA . . . . . . . . . . . . . . . 34 4.3 ImpedanceSpectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.2 ElectricalMeasurements . . . . . . . . . . . . . . . . . . . . . 36 4.4 OtherExperimentalMethods . . . . . . . . . . . . . . . . . . . . . . . 37 4.4.1 HydrationofKBaPO . . . . . . . . . . . . . . . . . . . . . . 37 4 4.5 SourcesofError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 Results 43 5.1 KBaPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 5.1.1 Synthesis&Characterization . . . . . . . . . . . . . . . . . . . 43 5.1.2 Hydration-KBaPO → Ba K H (PO ) . . . . . . . . . . . . 46 4 3-x x x 4 2 5.1.3 ImpedanceSpectroscopy . . . . . . . . . . . . . . . . . . . . . 51 5.2 NaCaHSiO andRelatedCompounds . . . . . . . . . . . . . . . . . . 61 4 5.2.1 Synthesis&Characterization . . . . . . . . . . . . . . . . . . . 61 5.2.2 ImpedanceSpectroscopy . . . . . . . . . . . . . . . . . . . . . 62 5.3 BaH SiO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2 4 5.3.1 Synthesis&Characterization . . . . . . . . . . . . . . . . . . . 65 5.3.2 ImpedanceSpectroscopy . . . . . . . . . . . . . . . . . . . . . 65 6 Discussion 67 6.1 KBaPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4 6.1.1 SynthesisandCharacterizationofKBaPO . . . . . . . . . . . 67 4 6.1.2 ConductivityofKBaPO . . . . . . . . . . . . . . . . . . . . . 69 4 6.1.3 HydrationandDecompositionofKBaPO . . . . . . . . . . . . 72 4 6.2 HydratedKBaPO -Ba K H (PO ) . . . . . . . . . . . . . . . . . . 75 4 3-x x x 4 2 6.2.1 ConductivityofK-containingBa (PO ) -phase . . . . . . . . . 75 3 4 2 6.2.2 Two-PhaseSystemofBa (PO ) andKBaPO . . . . . . . . . 77 3 4 2 4 6.2.3 Comparison of KBaPO , Ba K H (PO ) , Two-Phase System 4 3-x x x 4 2 ofBa (PO ) andKBaPO ,andPureBa (PO ) . . . . . . . . . 79 3 4 2 4 3 4 2 vi Contents 6.3 SilicatesandRelatedCompounds(ABHXO ) . . . . . . . . . . . . . . 81 4 6.3.1 SynthesisofNaCaHSiO andOtherOrthosilicates . . . . . . . 81 4 6.3.2 ConductivitiesandDefectModelsofOrthosilicates . . . . . . . 82 7 ConclusionsandFurtherWork 87 7.1 KBaPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4 7.1.1 IonicConductivityofKBaPO . . . . . . . . . . . . . . . . . . 87 4 7.1.2 HydrationofKBaPO . . . . . . . . . . . . . . . . . . . . . . 87 4 7.2 SilicatesandRelatedCompounds . . . . . . . . . . . . . . . . . . . . 88 7.2.1 NaCaHSiO andABHXO . . . . . . . . . . . . . . . . . . . . 88 4 4 7.2.2 BaH SiO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2 4 7.3 FurtherWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 A Appendix 91 A.1 DerivationofRelativeUncertainties . . . . . . . . . . . . . . . . . . . 91 Bibliography 93 vii

Description:
Thesis for the degree of 'Master of Science', Spring 2017 conductivity, however their stability is lacking with respect to temperature and solubil- O2 = v2a/ i. + aOx. O + 2ah. ·. (2.2.8). Due to the compounds in question being ionic, and there are no atomic species with variable oxidation state
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.