Alkali and Alkaline Earth Oxoacid Salts; Synthesis, Hydration, Stability, and Electrical Conductivity Aleksander Andestad Elstad Thesis for the degree of ’Master of Science’, Spring 2017 Summary Proton-conductingelectrolytesaresoughafterforuseinvariousapplicationswithinthe field of electrochemistry. Pure and high proton conductivity has been found in many perovskite-type oxides like BaZrO (BZY) and BaCeO , with BaCeO -based materials 3 3 3 being among the best proton-conducting oxides. In the intermediate temperature range of 400 to 800◦C, BZY has been established as one of the most promising materials, exhibiting a protonic conductivity higher than 1×10−2Scm−1 over the whole temper- ature range. However, it is difficult to process, and the resulting materials are usually grainy and possess highly resistive grain-boundaries [1]. For low-temperature regions, compounds like CsHSO and CsH PO show great potential with respect to protonic 4 2 4 conductivity, even displaying superprotonic transitions that immensely increase their conductivity, however their stability is lacking with respect to temperature and solubil- ityinwater[2]. With this project, the aim is to broaden the horizon and investigate compounds that fall outside the common perovskite-definition. In this work, various solid acids (E.g. KBaPO ,NaCaHSiO andBaH SiO ),inwhichthecationsarealkaliandalkalineearth 4 4 2 4 metals and the anionic groups are separated XO tetrahedra, are synthesized and subse- 4 quently characterized by X-Ray Diffraction (XRD), Thermogravimetric Analysis (TG), as well as electrical characterization by Impedance Spectroscopy (IS). The work on KBaPO culminatedinasubmittedpaper[3]. 4 KBaPO hasbeenproposedtotransformintoagreatprotonicconductoruponhydration 4 at low temperatures. Effectively, hydration through steam at 80◦C is said to give the compound a protonic conductivity of 1×10−2Scm−1 just below 100◦C [4]. This is a remarkable result and, if it can be reproduced, it can become a viable rival to BZY. For this reason, KBaPO was chosen as a topic for this work. Here, we synthesize 4 KBaPO through a high-temperature solid state reaction, and subsequently character- 4 ize the system with respect to thermal stability and its inherent electrical conductivity. Through electrical measurements, we found that the conductivity of pure KBaPO was 4 very low, around 2×10−6Scm−1 at 600◦C, with an activation energy exceeding 1eV. The compound is indifferent to the presence of humidity, and results indicate that the chargecarrierinthecompoundisnotprotonic,butratheritistheorizedtobepotassium ions, with potassium Frenkel defects being the predominating defect, however this has not been explicitly confirmed. All in all, we propose a defect model for KBaPO with 4 Frenkeldefectsasthepredominatingdefects. ThroughattemptsathydratingKBaPO inaccordancetothemethodproposedbyGood- 4 enough,wefoundthatitdoesnottransformintoahigh-conductivityphase,butratherde- composes into potassium doped Ba (PO ) , and that the resulting system shows similar 3 4 2 i properties,suchasthermalstability(Decomposingat300◦C)andprotonicconductivity (1.6×10−6Scm−1 at 250◦C), to the system Ba K H (PO ) previously investigated 3-x x x 4 2 by Haile et al. [5], albeit with a significantly lower potassium content than the systems theyhavecharacterized,possiblyindicatingthatasaturationofKinBa (PO ) hasbeen 3 4 2 reached. By subsequently heating Ba K H (PO ) to high temperatures, the system is found 3-x x x 4 2 to expel potassium and form a two-phase system of Ba (PO ) and a secondary phase 3 4 2 of KBaPO , showing similarities to the system Ba K (PO ) previously investi- 4 3(1-x) 3x 4 2-x gated by Iwahara et al. [6]. Through impedance spectroscopy of said system, we found evidence that points toward the system being a protonic conductor, with a bulk conduc- tivityslightlyhigherthan1×10−3Scm−1 at600◦C,andanactivationenergyofaround 0.67eV. This is one order of magnitude higher than the one previously reported by Iwaharaetal.,andonlyoneorderofmagnitudelowerthanthatofBaZrO . 3 Parallelly,NaCaHSiO andrelatedcompoundsABHXO (A−−Li,NaorK. B−−Ca,Sror 4 4 Ba. X−−Si, Ge or Sn) were synthesized hydrothermally and subsequently characterized. ElectricalcharacterizationofNaCaHSiO gavelowconductivities,althoughprotonic,of 4 1.8×10−8Scm−1 at 250◦C, with an activation energy of 0.9eV. Based on the results, we propose a defect model in which interstitial hydroxide ions and interstitial protons strsignificantdefectsinthecompound. However, although NaCaHSiO could be successfully synthesized and subsequently 4 characterized, the other syntheses did not yield the desired results. In fact, the only synthesis that yielded a pure product was that which gave Sr SiO , possibly providing 2 4 a hydrothermal approach to synthesizing a compound previously produced by a high- temperaturesolidstatereaction. Lastly, the compound BaH SiO was synthesized, according to a hydrothermal route, 2 4 and characterized with respect to thermal stability and electrical conductivity. It was foundtoexhibitaconductivityof2.5×10−8Scm−1 at200◦Cwithanactivationenergy of 0.88eV, comparable to that of NaCaHSiO . Due to BaH SiO showing similar re- 4 2 4 sponsetovariousatmospheresasNaCaHSiO ,adefectmodelcontaininghydroxideand 4 hydrogeninterstitialsisproposedforBaH SiO aswell. 2 4 Comparedtoearlierreports,adiscrepancywasfoundinthattheBaH SiO decomposes 2 4 priortotemperatureregionsinwhichdataonelectricalconductivityhasbeenpreviously reported. Another,separateinvestigationintoBaH SiO isthereforerecommended. 2 4 ii Acknowledgements OverthelasttwoyearsIhavehadtheopportunitytoworkonaprojectthatwasabitout oftheordinary. Ithasbeentwointerestingyears,withtheprojectcontinuouslyevolving asexperimentsgaveunexpectedresults,andnewroadshavehadtobepaved. Intheend, I arrived at a goal that was not the one I initially set out for. However, looking back, it hasbeenquiteajourney,andIamleftwithalotofknowledgeandideasforthefuture. I would like to express my gratitude to my supervisors, Truls Norby and Sabrina Sar- tori, for their continuous support and for their eagerness to help me when I have had questions,attimesresultinginalongemaildroppingintomyinboxinthemiddleofthe night. IwouldliketothankReidar,EinarandRagnarforhavingthetimeandpatiencetoassist mewithinstruments,interpretations,defectchemistry,andeverythingelseIhaveneeded helpwith. Additionally,IwouldliketothankallthepeopleinFASE.Therewasalways someoneIcouldask. Iwouldalsoliketogiveashout-outtoKevinNguyenforthemanydiscussionswehave hadinordertounderstandwhatwehavebeendoing. Lastly,Iamverygratefulformyfamilyfortheirloveandsupport,eventhoughtheyare notentirelysureaboutwhatIhavebeenworkingonduringalltheseyears. iii Contents Summary ii Acknowledgements iii ListofFigures xiii ListofTables xvi 1 Introduction 1 1.1 FuelCells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 HighTemperature: MOFCsandSOFCs . . . . . . . . . . . . . 2 1.1.2 Low-andIntermediateTemperatures . . . . . . . . . . . . . . 3 1.2 GoalofProject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 TheoreticalBackground 7 2.1 IonicConductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 ConductionThroughDefectsinSolids . . . . . . . . . . . . . . 7 2.1.2 CalculationofConductivityandActivationEnergy . . . . . . . 8 2.2 DefectsandStructuralConsiderations . . . . . . . . . . . . . . . . . . 9 2.2.1 DefectChemistry . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 DefectModels . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 ImpedanceSpectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 TheConceptofImpedance . . . . . . . . . . . . . . . . . . . . 18 2.3.2 CircuitElements . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.3 ImpedanceSweepsandModelling . . . . . . . . . . . . . . . . 21 3 LiteratureReview 25 3.1 IonicConductioninOxoacidSalts . . . . . . . . . . . . . . . . . . . . 25 3.2 KBaPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 3.2.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.2 AcceptorDopingKBaPO . . . . . . . . . . . . . . . . . . . . 26 4 3.3 Orthosilicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.1 NaCaHSiO andRelatedCompounds . . . . . . . . . . . . . . 27 4 3.3.2 BaH SiO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 4 v Contents 4 Experimental 29 4.1 SamplePreparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.2 PelletPreparation . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.1 X-RayDiffraction-XRD . . . . . . . . . . . . . . . . . . . . 32 4.2.2 ScanningElectronMicroscopy-SEM . . . . . . . . . . . . . . 33 4.2.3 EnergyDispersiveX-RaySpectroscopy-EDS . . . . . . . . . 34 4.2.4 ThermogravimetricAnalysis-TGA . . . . . . . . . . . . . . . 34 4.3 ImpedanceSpectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.2 ElectricalMeasurements . . . . . . . . . . . . . . . . . . . . . 36 4.4 OtherExperimentalMethods . . . . . . . . . . . . . . . . . . . . . . . 37 4.4.1 HydrationofKBaPO . . . . . . . . . . . . . . . . . . . . . . 37 4 4.5 SourcesofError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 Results 43 5.1 KBaPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 5.1.1 Synthesis&Characterization . . . . . . . . . . . . . . . . . . . 43 5.1.2 Hydration-KBaPO → Ba K H (PO ) . . . . . . . . . . . . 46 4 3-x x x 4 2 5.1.3 ImpedanceSpectroscopy . . . . . . . . . . . . . . . . . . . . . 51 5.2 NaCaHSiO andRelatedCompounds . . . . . . . . . . . . . . . . . . 61 4 5.2.1 Synthesis&Characterization . . . . . . . . . . . . . . . . . . . 61 5.2.2 ImpedanceSpectroscopy . . . . . . . . . . . . . . . . . . . . . 62 5.3 BaH SiO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2 4 5.3.1 Synthesis&Characterization . . . . . . . . . . . . . . . . . . . 65 5.3.2 ImpedanceSpectroscopy . . . . . . . . . . . . . . . . . . . . . 65 6 Discussion 67 6.1 KBaPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4 6.1.1 SynthesisandCharacterizationofKBaPO . . . . . . . . . . . 67 4 6.1.2 ConductivityofKBaPO . . . . . . . . . . . . . . . . . . . . . 69 4 6.1.3 HydrationandDecompositionofKBaPO . . . . . . . . . . . . 72 4 6.2 HydratedKBaPO -Ba K H (PO ) . . . . . . . . . . . . . . . . . . 75 4 3-x x x 4 2 6.2.1 ConductivityofK-containingBa (PO ) -phase . . . . . . . . . 75 3 4 2 6.2.2 Two-PhaseSystemofBa (PO ) andKBaPO . . . . . . . . . 77 3 4 2 4 6.2.3 Comparison of KBaPO , Ba K H (PO ) , Two-Phase System 4 3-x x x 4 2 ofBa (PO ) andKBaPO ,andPureBa (PO ) . . . . . . . . . 79 3 4 2 4 3 4 2 vi Contents 6.3 SilicatesandRelatedCompounds(ABHXO ) . . . . . . . . . . . . . . 81 4 6.3.1 SynthesisofNaCaHSiO andOtherOrthosilicates . . . . . . . 81 4 6.3.2 ConductivitiesandDefectModelsofOrthosilicates . . . . . . . 82 7 ConclusionsandFurtherWork 87 7.1 KBaPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4 7.1.1 IonicConductivityofKBaPO . . . . . . . . . . . . . . . . . . 87 4 7.1.2 HydrationofKBaPO . . . . . . . . . . . . . . . . . . . . . . 87 4 7.2 SilicatesandRelatedCompounds . . . . . . . . . . . . . . . . . . . . 88 7.2.1 NaCaHSiO andABHXO . . . . . . . . . . . . . . . . . . . . 88 4 4 7.2.2 BaH SiO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2 4 7.3 FurtherWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 A Appendix 91 A.1 DerivationofRelativeUncertainties . . . . . . . . . . . . . . . . . . . 91 Bibliography 93 vii
Description: