ebook img

Advanced REIT Portfolio Optimization: Innovative Tools for Risk Management PDF

268 Pages·2022·14.697 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced REIT Portfolio Optimization: Innovative Tools for Risk Management

Dynamic Modeling and Econometrics in Economics and Finance 30 W. Brent Lindquist Svetlozar T. Rachev Yuan Hu Abootaleb Shirvani Advanced REIT Portfolio Optimization Innovative Tools for Risk Management Dynamic Modeling and Econometrics in Economics and Finance Volume 30 SeriesEditors StefanMittnik,DepartmentofStatistics,LudwigMaximilianUniversityofMunich, Munich,Germany WilliSemmler,NewSchoolforSocialResearch,BielefeldUniversity,Germany NewSchoolforSocialResearch,NY,USA In recent years there has been a rapidly growing interest in the study of dynamic nonlinear phenomena in economic and financial theory, while at the same time econometricians and statisticians have been developing methods for modeling such phenomena. Despite the common focus of theorists and econometricians, bothlinesofresearchhavehad theirown publication outlets. The new book series is designed to further the understanding of dynamic phenomena in economics and finance by bridging the gap between dynamic theory and empirics and to provide cross-fertilizationbetweenthetwostrands.Theserieswillplaceparticularfocuson monographs,surveys,editedvolumes,conferenceproceedingsandhandbookson: (cid:129) Nonlineardynamicphenomenaineconomicsandfinance,includingequilibrium, disequilibrium, optimizing and adaptive evolutionary points of view; nonlinear andcomplexdynamicsinmicroeconomics,finance,macroeconomicsandapplied fieldsofeconomics. (cid:129) Econometric and statistical methods for analysis of nonlinear processes in eco- nomics and finance, including computational methods, numerical tools and softwaretostudynonlineardependence,asymmetries,persistenceoffluctuations, multipleequilibria,chaoticandbifurcationphenomena. (cid:129) Applications linking theory and empirical analysis in areas such as macrodynamics, microdynamics, asset pricing, financial analysis and portfolio analysis,internationaleconomics,resourcedynamicsandenvironment,industrial organizationanddynamicsoftechnicalchange,laboreconomics,demographics, populationdynamics,andgametheory. Thetargetaudienceofthisseriesincludesresearchersatuniversitiesandresearch and policy institutions, students at graduate institutions, and practitioners in eco- nomics,financeandinternationaleconomicsinprivateorgovernmentinstitutions. Alltitlesinthisseriesarepeer-reviewed.TheseriesisindexedinScopus. (cid:129) (cid:129) W. Brent Lindquist Svetlozar T. Rachev (cid:129) Yuan Hu Abootaleb Shirvani Advanced REIT Portfolio Optimization Innovative Tools for Risk Management W.BrentLindquist SvetlozarT.Rachev DepartmentofMathematics DepartmentofMathematics andStatistics andStatistics TexasTechUniversity TexasTechUniversity Lubbock,TX,USA Lubbock,TX,USA YuanHu AbootalebShirvani DepartmentofMathematics DepartmentofMathematics UniversityofCaliforniaSanDiego KeanUniversity LaJolla,CA,USA Union,NJ,USA ISSN1566-0419 ISSN2363-8370 (electronic) DynamicModelingandEconometricsinEconomicsandFinance ISBN978-3-031-15285-6 ISBN978-3-031-15286-3 (eBook) https://doi.org/10.1007/978-3-031-15286-3 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Foreword This book offers a scholarly presentation of the premises and applications of the mathematicsoftheproprietarysoftwareofJantzAnalytics,LLP.TheJantzmodels focusonpubliclytradedstocksofrealestateinvestmenttrusts(REITs).Specifically, themodelsprovidehighlyadvancedanalyticsforREITportfoliooptimization.The Jantzmodelsprovidethefollowingtoolset: (cid:129) Portfolio optimization strategies incorporating tail-risk assessment, day-ahead return forecasting, turnover and performance attribute constraints, benchmark tracking,andinvestorviewinput (cid:129) Backtesting (cid:129) A spectrum of risk-assessment tools augmenting traditional risk measures with earlywarningsystemsandriskbudgeting (cid:129) Optionvaluation (cid:129) Inclusionofenvironmental,social,andgovernanceratingsinportfoliooptimiza- tionandoptionpricing These tools are employed within a unified framework consistent with dynamic asset pricing (rational finance). The Jantz software is unique among existing portfolio-optimization platforms. Many such platforms are based on historical per- formance,buttheJantzsoftwareispredictive.AllJantzforecastingandriskmodels areconsistentwiththeregulatoryrequirementsinBaselIIandBaselIII.Inshort,we believe the Jantz software reflects the “state of the science” in portfolio optimiza- tion,riskanalysis,andoptionvaluation. The expertise of the Jantz team is multidimensional. It represents a unique combinationofbusinessknowledge,realestateexperience,andworld-classmathe- matical and statistical credentials. The cofounders of Jantz have over 80 years of combined valuation and consulting experience in real estate throughout the United StatesandPuertoRico.Thisexperience includesvirtuallyallproperty types.Their clients have included commercialbanks, pension funds, various public-sector enti- ties,andinvestmentbanks. v vi Foreword Dr. Svetlozar (Zari) Rachev is one of the world’s foremost authorities on the applicationofheavy-taileddistributionsinfinance.Heisacofounderandformerly the president of Bravo Risk Management Group, which originated the Cognity methodology. Bravo was acquired by FinAnalytica, where Zari served as chief scientist. Dr. W. Brent Lindquist is a computational mathematician with 40 years ofexperienceindevelopingnumericalmethods.Heisacofounderofthecompany that marketed the Frontier package used in oil reservoir simulation and has com- mercially licensed his 3DMA-Rock code for studying flow at pore scales. Dr. Abootaleb Shirvani is an expert in Lévy subordinated processes applied to finance. Dr. Yuan Hu’s expertise is in option pricing in complete markets with non-Gaussianreturns. Weanticipatethatthereadershipofthisbookwillbenotonlymathematicaland statisticalexpertsbutalsomanagement-levelprofessionalswithoutdeepknowledge ofthemathematicspresented.Toassistinthelatter’scomprehension,asummaryof contentinnonmathematicaltermsispresentedasanabstractprecedingeachchapter. JantzAnalytics,Dallas,TX,USA StephenT.Crosson JantzAnalytics,Plano,TX,USA JimmyH.Jackson About This Book This book provides an investor-friendly presentation of the premises and applica- tions of the quantitative finance models governing investment in one asset class of publiclytradedstocks,specificallyrealestateinvestmenttrusts(REITs).Themodels providehighlyadvancedanalyticsforREITinvestment,including: (cid:129) Portfoliooptimizationusingbothhistoricandpredictivereturnestimation (cid:129) Modelbacktesting (cid:129) Acompletespectrumofriskassessmentandmanagementtoolswithanemphasis onearlywarningsystems,riskbudgeting,estimatingtailrisk,andfactoranalysis (cid:129) Derivativevaluation (cid:129) IncorporatingESGratingsintoREITinvestment Thesequantitativefinancemodelsarepresentedinaunifiedframeworkconsistent withdynamicassetpricing.Givenitsscopeandpracticalorientation,thisbookwill appeal to investors interested in portfolio optimization and innovative tools for investmentriskassessment. vii Contents 1 TheRealEstateInvestmentMarket:TheCurrentStateandWhy AdvancesAreNeeded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 TheData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 REITAssetDescriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 DomesticREITs. . . . . . . . . . . . . . . . . . . . . . . . .. . . . 13 2.1.2 InternationalREITs. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 RealEstateStockDescriptions. . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.1 Indices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.2 ExchangeTradedFunds. . . . . . . . . . . . . . . . . . . . . . . 24 2.3.3 MutualFunds. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. 24 2.4 AdditionalAssetsandIndices. . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 DataObservations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 ModernPortfolioTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 ReturnTimeSeries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 MPT-BasedPortfolios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.1 MarkowitzMean-VariancePortfolio. . . . . . . . . . . . . . 32 3.2.2 CapitalMarketLineandtheMarkowitz Mean-VarianceTangentPortfolio. . . . . . . . . . . . . . . . 35 3.2.3 CVaR-MinimizingPortfolios. . . . . . . . . . . . . . . . . . . 37 3.2.4 CapitalMarketLineandtheCVaRαTangent Portfolio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.5 CriticismsofMean-VarianceOptimization. . . . . . . . . . 42 3.3 Black–LittermanModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 HistoricalOptimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ix x Contents 4 HistoricalPortfolioOptimization:DomesticREITs. . . . . . . . . . . . . 49 4.1 BasicStrategies,Price,andReturnPerformance. . . . . . . . . . . . 50 4.1.1 Long-OnlyStrategy. . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.1.2 Jacobsetal.Long–ShortStrategy. . . . . . . . . . . . . . . . 52 4.1.3 Lo–PatelLong–ShortStrategy. . . .. . . . . . .. . . . . . .. 53 4.1.4 Long–ShortMomentumStrategy. . . . . . . . . . . . . . . . . 55 4.2 PerformanceUnderTurnoverConstraints. . . . . . . . . . . . . . . . . 56 4.3 Performance–RiskMeasures. . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4 Observations. .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. 70 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5 DiversificationwithInternationalREITs. . . . . . . . . . . . . . . . . . . . . 73 5.1 InternationalPortfolioPerformance. . . . . . . . . . . . . . . . . . . . . 74 5.1.1 Long-OnlyInternationalPortfolios. . . . . . . . . . . . . . . 74 5.1.2 Jacobsetal.Long–ShortInternationalPortfolios. . . . . 77 5.1.3 Lo–PatelLong–ShortInternationalPortfolios. . . . . . . . 80 5.2 GlobalPortfolioPerformance. . . . . . . . . . . . . . . . . . . . . .. . . . 80 5.2.1 Long-OnlyGlobalPortfolios. . . . . . . . . . . . . . . . . . . . 80 5.2.2 Jacobsetal.Long–ShortGlobalPortfolios. . . . . . . . . . 85 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6 Black–LittermanOptimizationResults. . . . . . . . . . . . . . . . . . . . . . 87 6.1 DomesticPortfolios. .. . . . . . . . . .. . . . . . . . . .. . . . . . . . .. . 87 6.2 GlobalPortfolios. . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . . .. 90 7 DynamicPortfolioOptimization:BeyondMPT. . . . . . . . . . . . . . . . 93 7.1 DynamicOptimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.1.1 ARMA(1,1)–GARCH(1,1)withStudent’s t-Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.1.2 Multivariatet-Distributionandt-Copulas. . . . . . . . . . . 96 7.1.3 GenerationofDynamicReturns. . . . . . . . . . . . . . . . . 96 7.1.4 CombiningtheDynamicApproachwith Black–LittermanOptimization. . . . . . . . . . . . . . . . . . 98 7.2 PortfolioOptimizationUsingDynamicReturns. . . . . . . . . . . . . 99 7.2.1 DynamicLong-OnlyPortfolios. . . . . . . . . . . . . . . . . . 99 7.2.2 DynamicJacobsetal.Long–ShortPortfolios. . . . . . . . 105 7.2.3 DynamicLo–PatelLong–ShortPortfolios. . . . . . . . .. 108 7.3 DynamicOptimizationwiththeBlack–LittermanModel. . . . . . 110 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 8 Backtesting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.1 VaRTests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.1.1 BinomialTest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.1.2 TrafficLightTest. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.1.3 Kupiec’sTests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8.1.4 Christoffersen’sTests. . . . . . . . . . . . . . . . . . . . . . . . . 119

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.