ebook img

Adaptive Radar Detection: Model-Based, Data-Driven and Hybrid Approaches PDF

235 Pages·2022·30.29 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Adaptive Radar Detection: Model-Based, Data-Driven and Hybrid Approaches

Adaptive Radar Detection Model-Based, Data-Driven, and Hybrid Approaches Coluccia: “fm_v2” — 2022/10/7 — 13:05 — page i — #1 For a complete listing of titles in the Artech House Radar Series, turn to the back of this book. UUnnttiittlleedd--11 iiii 1100//77//22002222 99::4433::5533 AAMM Adaptive Radar Detection Model-Based, Data-Driven, and Hybrid Approaches Angelo Coluccia Coluccia: “fm_v2” — 2022/10/7 — 13:05 — page iii — #3 LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheU.S.LibraryofCongress. BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary. CoverdesignbyAndyMeaden ISBN13:978-1-63081-900-2 ©2023ARTECHHOUSE 685CantonStreet Norwood,MA02062 All rights reserved. Printed and bound in the United States of America. No part of this book maybereproducedorutilizedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,orbyanyinformationstorageandretrievalsystem,withoutpermission inwritingfromthepublisher. Alltermsmentionedinthisbookthatareknowntobetrademarksorservicemarkshavebeen appropriatelycapitalized.ArtechHousecannotattesttotheaccuracyofthisinformation.Useofa terminthisbookshouldnotberegardedasaffectingthevalidityofanytrademarkorservicemark. 10 9 8 7 6 5 4 3 2 1 Coluccia: “fm_v2” — 2022/10/7 — 13:05 — page iv — #4 Contents Preface ix Acknowledgments xv 1 Model-BasedAdaptiveRadarDetection 1 1.1 IntroductiontoRadarProcessing 1 1.1.1 GeneralitiesandBasicTerminologyofCoherent Radars 2 1.1.2 ArrayProcessingandSpace-TimeAdaptiveProcessing 5 1.1.3 TargetDetectionandPerformanceMetrics 8 1.2 UnstructuredSignalinWhiteNoise 9 1.2.1 OldbutGold:BasicSignalDetectionandthe EnergyDetector 9 1.2.2 TheNeyman–PearsonApproach 11 1.2.3 AdaptiveCFARDetection 13 1.2.4 CorrelatedSignalModelinWhiteNoise 15 1.3 StructuredSignalinWhiteNoise 18 1.3.1 DetectionofaStructuredSignalinWhiteNoise andMatchedFilter 18 1.3.2 GeneralizedLikelihoodRatioTest 20 1.3.3 DetectionofanUnknownRank-OneSignalin WhiteNoise 24 v Coluccia: “fm_v2” — 2022/10/7 — 13:05 — page v — #5 vi AdaptiveRadarDetection:Model-Based,Data-Driven,andHybridApproaches 1.3.4 SteeringVectorKnownuptoaParameterand DopplerProcessing 25 1.4 AdaptiveDetectioninColoredNoise 25 1.4.1 One-Step,Two-Step,andDecoupledProcessing 27 1.4.2 GeneralHypothesisTestingProblemviaGLRT:A Comparison 28 1.4.3 BehaviorunderMismatchedConditions: RobustnessvsSelectivity 31 1.4.4 Model-BasedDesignofAdaptiveDetectors 33 1.5 Summary 42 References 43 2 ClassificationProblemsandData-DrivenTools 49 2.1 GeneralDecisionProblemsandClassification 49 2.1.1 M-aryDecisionProblems 50 2.1.2 ClassifiersandDecisionRegions 55 2.1.3 BinaryClassificationvsRadarDetection 61 2.1.4 SignalRepresentationandUniversal Approximation 64 2.2 LearningApproachesandClassification Algorithms 66 2.2.1 StatisticalLearning 66 2.2.2 Bias-VarianceTrade-Off 71 2.3 Data-DrivenClassifiers 72 2.3.1 k-NearestNeighbors 73 2.3.2 LinearMethodsforDimensionalityReductionand Classification 75 2.3.3 SupportVectorMachineandKernelMethods 77 2.3.4 DecisionTreesandRandomForests 81 2.3.5 OtherMachineLearningTools 84 2.4 NeuralNetworksandDeepLearning 85 2.4.1 MultilayerPerceptron 86 2.4.2 FeatureEngineeringvsFeatureLearning 88 2.4.3 DeepLearning 89 2.5 Summary 93 References 93 Coluccia: “fm_v2” — 2022/10/7 — 13:05 — page vi — #6 Contents vii 3 RadarApplicationsofMachineLearning 97 3.1 Data-DrivenRadarApplications 97 3.2 ClassificationofCommunicationand RadarSignals 100 3.2.1 AutomaticModulationRecognitionand Physical-LayerApplications 100 3.2.2 DatasetsandExperimentation 102 3.2.3 ClassificationofRadarSignalsandRadiationSources 107 3.3 DetectionBasedonSupervisedMachineLearning 109 3.3.1 SVM-BasedDetectionwithControlledP 110 FA 3.3.2 DecisionTree-BasedDetectionwithControlledP 111 FA 3.3.3 RevisitingtheNeyman–PearsonApproach 112 3.3.4 SVMandNNforCFARProcessing 114 3.3.5 FeatureSpaceswith(Generalized)CFARProperty 117 3.3.6 DeepLearningBasedDetection 120 3.4 OtherApproaches 123 3.4.1 UnsupervisedLearningandAnomalyDetection 123 3.4.2 ReinforcementLearning 125 3.5 Summary 126 References 127 4 HybridModel-BasedandData-DrivenDetection 137 4.1 ConceptDrift,Retraining,andAdaptiveness 137 4.2 HybridizationApproaches 139 4.2.1 DifferentDimensionsofHybridization 139 4.2.2 HybridModel-BasedandData-DrivenIdeasin SignalProcessingandCommunications 140 4.3 FeatureSpacesBasedonWell-KnownStatisticsor RawData 142 4.3.1 NonparametricLearning:k-NearestNeighbors 142 4.3.2 Quasi-WhitenedRawDataasFeatureVector 144 4.3.3 Well-KnownCFARStatisticsasaFeatureVector 147 4.4 RethinkingModel-BasedDetectioninaCFAR FeatureSpace 151 4.4.1 MaximalInvariantFeatureSpace 151 Coluccia: “fm_v2” — 2022/10/7 — 13:05 — page vii — #7 viii AdaptiveRadarDetection:Model-Based,Data-Driven,andHybridApproaches 4.4.2 CharacterizingModel-BasedDetectorsinCFAR-FP 153 4.4.3 DesignStrategiesintheCFAR-FP 158 4.5 Summary 159 References 160 5 Theories,Interpretability,andOtherOpenIssues 165 5.1 ChallengesinMachineLearning 165 5.2 Theoriesfor(Deep)NeuralNetworks 167 5.2.1 NetworkStructuresandUnrolling 168 5.2.2 InformationTheory,Coding,andSparse Representation 171 5.2.3 UniversalMapping,Expressiveness,and Generalization 172 5.2.4 OverparametrizedInterpolation,Reproducing KernelHilbertSpaces,andDoubleDescent 176 5.2.5 MathematicsofDeepLearning,Statistical Mechanics,andSignalProcessing 180 5.3 OpenIssues 181 5.3.1 AdversarialAttacks 181 5.3.2 Stability,Efficiency,andInterpretability 182 5.3.3 Visualization 184 5.3.4 Sustainability,MarginalReturn,andPatentability 185 5.4 Summary 187 References 188 ListofAcronyms 195 ListofSymbols 199 AbouttheAuthor 203 Index 205 Coluccia: “fm_v2” — 2022/10/7 — 13:05 — page viii — #8 Preface Radar systems have already more than one century of history and underwent a significant evolution over decades, extending from the original military motivations to numerous applications in civil contexts, for instance in the automotive field. Although modern systems have multiple functionalities, the foundational goal of a radar certainly remains that of detecting the possible presence of a target by making an automatic decision based on the noisy signal observedbackatthereceiver.Despiteitsarguablyseemingsimplicity,suchatask bears a number of formidable challenges; in the end, telling apart useful signal fromnoisebackgroundisaradicalontologicalquestionthatgoesbeyondpractical engineering, and has connections with information-theoretic and theoretical- physicsfundamentalprinciples.Inthespecificcaseofradarsystems,controllable performance is required, especially in terms of number of false alarms, but propertiessuchasrobustnessarealsodesirableinpractice.Atthesametime,the detectormustadapttoatemporallyandspatiallyvaryingdisturbancebackground possiblymadeofnoise,clutter,interference,and/orjamming. In recent years, the role of data-driven techniques has grown enormously, coming out of the original computer science, pattern recognition, and artificial intelligence fields to reach into many disciplines in engineering. This has been driven by significant advances in automatic classification and recognition tasks. Key factors in this revolution have been the huge increase in computational power due to hardware advances as well as the availability of huge datasets and ready-to-usesoftwarelibraries.Multimedia(speech,image)andonline-collected data (from platforms and apps providing social network, messaging, shopping, streaming,filesharing,andotherservices)areinfactabundantandeasytogather today, andtechcompaniesarepushingfordevelopingapplicationsoftheirown data-drivenframeworksinmoreandmorecontexts. ix Coluccia: “fm_v2” — 2022/10/7 — 13:05 — page ix — #9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.