ebook img

A simply connected numerical Campedelli surface with an involution PDF

0.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A simply connected numerical Campedelli surface with an involution

A SIMPLY CONNECTED NUMERICAL CAMPEDELLI SURFACE WITH AN INVOLUTION HEESANGPARK,DONGSOOSHIN,ANDGIANCARLOURZU´A 2 1 ABSTRACT. Weconstructasimplyconnectedminimalcomplexsurfaceofgeneraltype 0 with pg=0andK2=2whichhasaninvolutionsuchthattheminimalresolutionofthe 2 quotientbytheinvolutionisasimplyconnectedminimalcomplexsurfaceofgeneraltype n withpg=0andK2=1.Inordertoconstructtheexample,wecombineadoublecovering a andQ-Gorensteindeformation. Especially,wedevelopamethodforprovingunobstruct- J ednessfordeformationsofasingularsurfacebygeneralizingaresultofBurnsandWahl whichcharacterizesthespaceoffirstorderdeformationsofasingularsurfacewithonly 4 rationaldoublepoints.WedescribethestablemodelinthesenseofKolla´randShepherd- Barronofthesingularsurfacesusedforconstructingtheexample.Wecountthedimension ] G oftheinvariantpartofthedeformationspaceoftheexampleundertheinducedZ/2Z- action. A . h t a 1. INTRODUCTION m [ Oneofthefundamentalproblemsintheclassificationofcomplexsurfacesistofinda new family of complex surfaces of general type with pg =0. In this paper we construct 3 newsimplyconnectednumericalCampedellisurfaceswithaninvolution,i.e. simplycon- v nected minimal complex surfaces of general type with p =0 and K2 =2, that have an 7 g 9 automorphismoforder2. 7 Therehasbeenagrowinginterestforcomplexsurfacesofgeneraltypewithp =0hav- g 0 inganinvolution; cf.J.Keum-Y.Lee[12], Calabri-Ciliberto-MendesLopes[4], Calabri- . 8 Mendes Lopes-Pardini [5], Y. Lee-Y. Shin [17], Rito [23]. A classification of numerical 0 Godeauxsurfaces(i.e. minimalcomplexsurfacesofgeneraltypewith p =0andK2=1) g 1 with an involution is given in Calabri-Ciliberto-Mendes Lopes [4]. It is known that the 1 quotientsurfaceofanumericalGodeauxsurfacebyitsinvolutioniseitherrationalorbira- : v tionaltoanEnriquessurface,andthebicanonicalmapofthenumericalGodeauxsurface i X factorsthroughthequotientmap. However,thesituationismoreinvolvedinthecaseofnumericalCampedellisurfaces, r a becausethebicanonicalmapmaynotfactorthroughthequotientmap;cf.Calabri-Mendes Lopes-Pardini [5]. In particular it can happen that the quotient is of general type. More precisely,letX beanumericalCampedellisurfacewithaninvolutionσ.Ifσ hasonlyfixed points and no fixed divisors, then the minimal resolution S of the quotientY =X/σ is a numericalGodeauxsurfaceandσ hasonlyfourfixedpoints;cf.Barlow[2].Conversely,if Sisofgeneraltype,thenσ hasonlyfourfixedpointsandnofixeddivisors;Calabri-Mendes Lopes-Pardini[5]. There are some examples of numerical Campedelli surfaces X with an involution σ having only four fixed points. Barlow [1] constructed examples with π (X)=Z/2Z⊕ 1 Date:December31,2011. 2000MathematicsSubjectClassification. 14J29,14J10,14J17,53D05. Keywordsandphrases. surfaceofgeneraltype,involution,Q-Gorensteinsmoothing. 1 2 H.PARK,D.SHIN,ANDG.URZU´A Z/4Z,Z/8Z. Barlow [2] also constructed examples with π (X)=Z/5Z whose minimal 1 resolutionofthequotientbytheinvolutionisthefirstexampleofasimplyconnected nu- merical Godeaux surface. Also all Catanese’s surfaces [6] have such an involution and π =Z/5Z. Recently Calabri, Mendes Lopes, and Pardini [5] constructed a numerical 1 CampedellisurfacewithtorsionZ/3Z⊕Z/3Zandtwoinvolutions. ItisknownthattheordersofthealgebraicfundamentalgroupsofnumericalCampedelli surfaces are at most 9 and the dihedral groups D and D cannot be realized. Recently, 3 4 the existence question for numerical Campedelli surfaces with |πalg|≤9 was settled by 1 the construction of examples with πalg =Z/4Z; Frapporti [10] and H. Park-J. Park-D. 1 Shin [22]. Hence it would be an interesting problem to construct numerical Campedelli surfaceshaving aninvolutionwith πalg=G foreach givengroupG with |G|≤9. Espe- 1 cially we are concerned with the simply connected case because the fundamental groups ofalltheknownexampleswithaninvolutionhavelargeorder: |G|≥5. Furthermorethe firstexampleofsimplyconnectednumericalCampedellisurfacesisveryrecent(Y.Lee-J. Park[15]),butwehavenoinformationabouttheexistenceofaninvolutionintheirexam- ple. Themaintheoremofthispaperis: Theorem (Corollary 3.6). There are simply connected minimal complex surfaces X of generaltypewith p (X)=0andK2 =2whichhaveaninvolutionσ suchthattheminimal g X resolution S of the quotientY =X/σ is a simply connected minimal complex surface of generaltypewith p (S)=0andK2=1. g S WealsoshowthattheminimalresolutionSofthequotientY =X/σ hasalocaldefor- mationspaceofdimension4correspondingtodeformationsS ofS suchthatitsgeneral fiberS istheminimalresolutionofaquotientX/σ ofanumericalCampedellisurfaceX t t t t byaninvolutionσ;Theorem5.2. Inaddition,weshowthattheresolutionSshouldbeal- t wayssimplyconnectedifthedoublecoverX isalreadysimplyconnected;Proposition3.7. Conversely Barlow [2] showed that if the resolution S is a simply connected numerical Godeauxsurfacethenthepossibleorderofthealgebraicfundamentalgroupofthedouble coverX is1,3,5,7,or9. Asfarasweknow,theexampleinBarlow[2]wastheonlyone whosequotientissimplyconnected. Ithasπ (X)=Z/5Zasmentionedearlier. Herewe 1 findanexamplewithπ (X)=1. Henceitwouldbeanintriguingprobleminthiscontext 1 toconstructanexamplewithπ (X)=Z/3Z. 1 Inordertoconstructtheexamples,wecombineadoublecoveringandaQ-Gorenstein smoothing method developed in Y. Lee-J. Park [15]. First we build singular surfaces by blowing up points and then contracting curves over a specific rational elliptic surface. Thesesingularsurfacesdifferbycontractingcertain(−2)-curves. Ifwecontractallofthe (−2)-curves, we obtain a stable surfaceY(cid:48) in the sense of Kolla´r–Shepherd-Barron [14], andweprovethatthespaceofQ-GorensteindeformationsofY(cid:48) issmoothand8dimen- sional; Proposition2.2. A(Q-Gorenstein)smoothingofY(cid:48) inthisspaceproducessimply connectednumericalGodeauxsurfaces. Inparticular,thesmoothingofY(cid:48) givestheexis- tenceofatwodimensionalfamilyofsimplyconnectednumericalGodeauxsurfaceswith six(−2)-curves;Corollary2.3. Wealsoprovethatafourdimensionalfamilyinthisspace producessimplyconnectednumericalGodeauxsurfaceswitha2-divisibledivisorconsist- ingoffourdisjoint(−2)-curves;Theorem2.4andTheorem5.2.ThesenumericalGodeaux surfacesareusedtoconstructthenumericalCampedellisurfaceswithaninvolution. The desirednumericalCampedellisurfacesareobtainedbytakingdoublecoveringsofthenu- mericalGodeauxsurfacesbranchedalongthefourdisjoint(−2)-curves;Theorem3.4. ANUMERICALCAMPEDELLISURFACEWITHANINVOLUTION 3 OntheotherhandwecanalsoobtaintheCampedellifamilyexplicitlyfromasingular stablesurfaceX(cid:48). Itcomesfromblowinguppointsandcontractingcurvesoveracertain rational elliptic surface; Proposition 3.1. The Q-Gorenstein space of deformations of X(cid:48) issmoothand6dimensional;Proposition3.3. InbothGodeauxandCampedellicaseswe computeH2(T)=0toshownolocal-to-globalobstructiontodeformthem;Theorem2.1 andTheorem3.2. Thisinvolvesanewtechnique(Theorem4.4)whichgeneralizesaresult ofBurns-Wahl[3]describingthespaceoffirstorderdeformationsofasingularcomplex surfacewithonlyrationaldoublepoints. Notations. A cyclic quotient singularity (germ at (0,0) of) C2/G, where G=(cid:104)(x,y)(cid:55)→ (ζx,ζqy)(cid:105) with ζ a m-th primitive root of 1, 1<q<m, and (q,m)=1, is denoted by 1(1,q). A means 1(1,m−1). A(−1)-curve(or(−2)-curve)inasmoothsurfaceisan m m m embedded CP1 with self-intersection −1 (respectively, −2). Throughout this paper we use the same letter to denote a curve and its proper transform under a birational map. A singularityofclassT isaquotientsingularitywhichadmitsaQ-Gorensteinoneparameter smoothing. Theyare eitherrationaldouble pointsor 1 (1,dna−1)with1<a<n and dn2 (n,a)=1;seeKolla´r–Shepherd-Barron[14,§3]. ForanormalvarietyX itstangentsheaf TX isHomOX(Ω1X,OX). ThedimensionofHiishi. Acknowledgements. TheauthorswouldliketothankProfessorYongnamLeeforhelpful discussionduringthework,carefulreadingofthedraftversion,andmanyvaluablecom- ments. The authors also wish to thank Professor Jenia Tevelev for indicating a mistake in an earlier version of this paper. Heesang park was supported by Basic Science Re- search Program through the National Research Foundation of Korea (NRF) grant funded bytheKoreanGovernment(2011-0012111). DongsooShinwassupportedbyBasicSci- enceResearchProgramthroughtheNationalResearchFoundationofKorea(NRF)grant fundedbytheKoreanGovernment(2010-0002678). GiancarloUrzu´awassupportedbya FONDECYTIniciograntfundedbytheChileanGovernment(11110047). 2. NUMERICALGODEAUXSURFACESWITHA2-DIVISIBLEDIVISOR InthissectionweconstructafamilyofsimplyconnectednumericalGodeauxsurfaces havinga2-divisibledivisorconsistingoffourdisjoint(−2)-curvesbysmoothingasingu- lar surfaceY(cid:101); Theorem 2.4. This is the key to construct numerical Campedelli surfaces withaninvolution. Inaddition, wedescribetheexplicitstablemodelofthesingularsur- faceY(cid:101). Infact,weconstructarationalnormalprojectivesurfaceY(cid:48) withfoursingularities A3, A3, 812(1,8·5−1), 712(1,7·4−1) and KY(cid:48) ample. HenceY(cid:48) is a stable surface (cf. Kolla´r-Shepherd-Barron[14],Hacking[11]). WewillprovethattheversalQ-Gorenstein deformationspaceDefQG(Y(cid:48))(cf.Hacking[11,§3])issmoothand8dimensional,andthat theQ-GorensteinsmoothingsofY(cid:48) aresimplyconnectednumericalGodeauxsurfaces. In particular,thisshowsthattherearesimplyconnectednumericalGodeauxsurfaceswhose canonicalmodelhaspreciselytwoA singularities;Corollary2.3. Furthermoreafourdi- 3 mensionalfamilyinDefQG(Y(cid:48))producestheabovesimplyconnectednumericalGodeaux surfaces with a 2-divisible divisor consisting of four disjoint (−2)-curves; Theorem 2.4 andTheorem5.2. 2.1. ArationalellipticsurfaceE(1). WestartwitharationalellipticsurfaceE(1)with an I -singular fiber, an I -singular fiber, and two nodal singular fibers. In fact we will 8 2 usethesamerationalellipticsurfaceE(1)inthepapersH.Park-J.Park-D.Shin[20,21]. 4 H.PARK,D.SHIN,ANDG.URZU´A However,weneedtosketchtheconstructionofE(1)toshowtherelevantcurvesthatwill beusedtobuildthesingularsurfacesY(cid:101)andY(cid:48). LetL , L , L , and(cid:96)belinesinCP2 andletcbeasmoothconicinCP2 givenbythe 1 2 3 followingequations. TheyintersectasinFigure1. √ √ L :2y−3z=0, L :y+ 3x=0, L :y− 3x=0 1 2 3 (cid:96):x=0, c:x2+(y−2z)2−z2=0. ℓ p b c s b L3 L1 qb L2 rb FIGURE1. Apencilofcubiccurves Weconsiderthepencilofcubics √ √ {λ(y− 3x)(y+ 3x)(2y−3z)+µx(x2+(y−2z)2−z2)|[λ :µ]∈CP1} generatedbythetwocubiccurvesL +L +L and(cid:96)+c. Thispencilhasfourbasepoints 1 2 3 √ p,q,r,s,andfoursingularmemberscorrespondingto[λ :µ]=[1:0],[0:1],[2:3 3],[2: √ −3 3]. Thelattertwosingularmembersarenodalcurves, denotedbyF andF respec- √ √ 1 2 tively. Theyhavenodesat[− 3:0:1]and[ 3:0:1],respectively. In order to obtain a rational elliptic surface E(1) from the pencil, we resolve all base points (including infinitely near base-points) of the pencil by blowing-up 9 times as fol- lows. Wefirstblowupatthepoints p,q,r,s. Lete ,e ,e ,e betheexceptionaldivisors 1 2 3 4 overp,q,r,s,respectively.Weblowupagainatthethreepointse ∩L ,e ∩L ,e ∩(cid:96).Let 1 3 2 2 3 e ,e ,e betheexceptionaldivisorsovertheintersectionpoints,respectively. Wefinally 5 6 7 blowupateachintersectionpointse ∩cande ∩c. Lete ande betheexceptionaldi- 5 6 8 9 visorsovertheblown-uppoints. WethengetarationalellipticsurfaceE(1)=CP2(cid:93)9CP2 overCP1;seeFigure2. The four exceptional curves e , e , e , e are sections of the elliptic fibration E(1), 4 7 8 9 which correspond to the four base points s, r, p, q, respectively. The elliptic fibration E(1)hasoneI8-singularfiber∑8i=1Bi containingallLi (i=1,2,3): B2=L2,B3=L3,and B =L ;cf.Figure2. WewillusefrequentlythesumB=B +B +B +B ,whichwill 5 1 1 2 3 4 beshowntobe2-divisible. ThesurfaceE(1)hasalsooneI -singularfiberconsistingof(cid:96) 2 andc,andithastwomorenodalsingularfibersF andF . 1 2 ThereisaspecialbisectiononE(1). LetMbethelineinCP2passingthroughthepoint √ √ r=[0:0:1]andthetwonodes[− 3:0:1]and[ 3:0:1]ofF andF . SinceMmeets 1 2 every member in the pencil at three points but it passes through only one base point, the proper transform of M is a bisection of the elliptic fibration E(1)→CP1; cf. Figure 2. NotethatM2=0inE(1). ANUMERICALCAMPEDELLISURFACEWITHANINVOLUTION 5 e 4 e 9 F F ℓ B 1 2 8 B B 4 3 c B 7 M B 5 B B 1 2 B 6 e 7 e 8 FIGURE2. ArationalellipticsurfaceE(1) A 2-divisible divisor on E(1). Let h∈Pic(E(1)) be the class of the pull-back of a line in CP2. We denote again by e ∈Pic(E(1)) the class of the pull-back of the exceptional i divisore. WehavethefollowinglinearequivalencesofdivisorsinE(1): i B ∼e −e , B ∼h−e −e −e , B ∼h−e −e −e , 1 2 6 2 2 3 6 3 1 3 5 B ∼e −e , B ∼h−e −e −e , B ∼e −e , 4 1 5 5 1 2 4 6 6 9 B ∼e −e , B ∼e −e , F ∼3h−e −···−e , 7 3 7 8 5 8 1 1 9 F ∼3h−e −···−e , (cid:96)∼h−e −e −e . 2 1 9 3 4 7 Let L:=h−e −e −e . Note that the divisor B=B +B +B +B is 2-divisible 3 5 6 1 2 3 4 becauseoftherelation B=B +B +B +B ∼2(h−e −e −e )=2L. (2.1) 1 2 3 4 3 5 6 2.2. ArationalsurfaceZ=E(1)(cid:93)7CP2. IntheconstructionofZ,weuseonlyonesection S:=e . WefirstblowupatthetwonodesofthenodalsingularfibersF andF sothatwe 4 1 2 obtainablown-uprationalellipticsurfaceW =E(1)(cid:93)2CP2;Figure3.LetE andE bethe 1 2 exceptionalcurvesoverthenodesofF andF , respectively. Wefurtherblowupateach 1 2 threemarkedpoints•andblowuptwiceatthemarkedpoint(cid:74)inFigure3. Wethenget Z=E(1)(cid:93)7CP2 asinFigure4. ThereexisttwolinearchainsoftheCP1 inZ whosedual graphsaregivenby: −2 −3 −5 −3 −2 −6 −2 −3 C = ◦ − ◦ − ◦ − ◦, C = ◦ − ◦ − ◦ − ◦, 8,5 7,4 whereC consistsof(cid:96),S,F ,E ,andC containsF ,E ,M. 8,5 1 1 7,4 2 2 2.3. Numerical Godeaux surfaces. We construct rational singular surfaces which pro- duceunderQ-Gorensteinsmoothingssimplyconnectedsurfacesofgeneraltypewithp = g 0andK2=1. We first contract the two chainsC andC of CP1’s from the surface Z so that we 8,5 7,4 have a normal projective surfaceY(cid:101) with two singularities p1, p2 of class T: 812(1,8·5− 1),712(1,7·4−1). Denotethecontractionmorphismbyα(cid:101): Z→Y(cid:101). LetY bethesurface obtained by contracting the four (−2)-curves B1,...,B4 inY(cid:101). We denote the contraction morphism by α: Y(cid:101) →Y. Then Y is also a normal projective surface with singularities p1, p2 fromY(cid:101), and four A1’s (ordinary double points), denoted by q1,...,q4. We finally 6 H.PARK,D.SHIN,ANDG.URZU´A S b ×2 F F ℓ B 1 2 8 B B 4 3 E1 E2 c B 7 M B b 5 B B 1 2 B6 b b FIGURE3. Ablown-uprationalellipticsurfaceW =E(1)(cid:93)2CP2 −3 −2−1 −5 −6 −2 B 8 B B 4 3 −3 −2 −3 −1 −1 −1 B B 1 2 B 6 FIGURE4. ArationalsurfaceZ=E(1)(cid:93)7CP2 contractC ,C ,B +B +B andB +B +B inZtoobtainY(cid:48). Ithasthesingularities 8,5 7,4 4 8 3 1 6 2 1(1,8·5−1), 1(1,7·4−1),andtwoA = 1(1,3)’s. Letα(cid:48): Z→Y(cid:48)bethecontraction. 82 72 3 4 In Section 4 we will prove that the obstruction spaces to local-to-global deformations ofthesingularsurfacesY(cid:101),Y andY(cid:48)vanish. Thatis: Theorem2.1. H2(Y(cid:101),TY(cid:101))=0,H2(Y,TY)=0,andH2(Y(cid:48),TY(cid:48))=0. ThesingularsurfaceY(cid:48)isthestablemodelofthesingularsurfacesY(cid:101)andY: Proposition 2.2. The surfaceY(cid:48) has KY2(cid:48) =1, pg(Y(cid:48))=0, and KY(cid:48) is ample. The space DefQG(Y(cid:48)) is smooth and 8 dimensional. A Q-Gorenstein smoothing of Y(cid:48) is a simply connectedcanonicalsurfaceofgeneraltypewith p =0andK2=1. g Proof. ForasurfaceY(cid:48)withonlysingularitiesoftypeT wehave K2 =K2+ ∑ s − ∑ µ , Y(cid:48) Z p p p∈Sing(Y(cid:48)) p∈Sing(Y(cid:48)) wheres isthenumberofexceptionalcurvesover pandµ istheMilnornumberof p. In p p ourcase,K2 =−7+4+4=1. Wehave p (Y(cid:48))=q(Y(cid:48))=0becauseoftherationalityof Y(cid:48) g thesingularities. ANUMERICALCAMPEDELLISURFACEWITHANINVOLUTION 7 Wenowcomputeα(cid:48)∗(KY(cid:48))inaQ-numericallyeffectiveway. LetF bethegeneralfiber oftheellipticfibrationinZ. LetE ,E ,E betheexceptionalcurvesoverM∩E ,F ∩E , 3 4 5 1 1 1 F ∩E respectively. Let E , E be the exceptional curves over F ∩S with E2 =−1. 2 2 6 7 2 7 Then,KZ∼−F+∑7i=1Ei+E3+E4+E5+E7. WealsohaveF∼F1+2E1+2E3+3E4∼ F +2E +3E +E +E . WritingF≡ 1F+1F inK andaddingthediscrepanciesfrom 2 2 5 6 7 2 2 Z p and p ,weobtain 1 2 3 5 5 5 α(cid:48)∗(KY(cid:48))≡ F1+ F2+ E1+ E2+E3 8 14 8 7 1 1 13 3 4 3 6 + E + E + E + E + M+ (cid:96)+ S. 4 5 6 7 2 2 14 2 7 8 8 We now intersect α(cid:48)∗(KY(cid:48)) with all the curves in its support, which are not contracted byα(cid:48), tocheckthatKY(cid:48) isnef. Moreover, ifΓ.α(cid:48)∗(KY(cid:48))=0foracurveΓnotcontracted byα(cid:48),thenΓisacomponentofafiberintheellipticfibrationwhichdoesnotintersectany curve in the support. This is because F , E , E , and E belong to the support, and they 1 1 3 4 are the components of a fiber. One easily checks that Γ does not exist, proving that KY(cid:48) is ample. Therefore any Q-Gorenstein smoothing ofY(cid:48) over a (small) disk will produce canonicalsurfaces;cf.Kolla´r-Mori[13,p.34]. TocomputethefundamentalgroupofaQ-Gorensteinsmoothingweusetherecipein Y.Lee-J.Park[15]. WefollowtheargumentasinY.Lee-J.Park[15,p.493]. Considerthe normalcirclesaroundMandE . WecancomparethemthroughthetransversalsphereE . 1 3 Sincetheordersofthecirclesare49and64,whicharecoprime,weobtainthatbothend upbeingtrivial. The smoothness of DefQG(Y(cid:48)) follows from Theorem 2.1 and Hacking [11, §3]. To computethedimension,weobservethatifY(cid:48)→∆isaQ-GorensteinsmoothingofY(cid:48)= 0 Y(cid:48) and TY(cid:48)|∆ is the dual of Ω1Y(cid:48)|∆, then TY(cid:48)|∆ restricts to Yt(cid:48) as TYt(cid:48) (tangent bundle of Yt(cid:48))whent(cid:54)=0,andTY(cid:48)|∆|Y(cid:48)⊂TY(cid:48) withcokernelsupportedatthesingularpointsofY0(cid:48); cf.Wahl[25]. Thentheflatn0essofT0Y(cid:48)|∆ andsemicontinuityincohomologyplusthefact that H2(Y(cid:48),TY(cid:48))=0 gives H2(Yt(cid:48),TYt(cid:48))=0 for anyt. But then, since Yt(cid:48) is of general type,Hirzebruch-Riemann-RochTheoremsays H1(Yt(cid:48),TYt(cid:48))=10χ(Yt(cid:48),OYt(cid:48))−2KY2t(cid:48) =10−2=8. Thisprovestheclaim. (cid:3) Corollary2.3. Thereisatwodimensionalfamilyofsimplyconnectedcanonicalnumerical GodeauxsurfaceswithtwoA singularities. 3 Proof. Weconsiderthesequence 0→H1(Y(cid:48),TY(cid:48))→TQ1G,Y(cid:48) →H0(Y(cid:48),TQ1G,Y(cid:48))→0 attheendofHacking[11,§3]. WejustprovedthatT1 is8dimensional,andweknow QG,Y(cid:48) thatH0(Y(cid:48),T1 )is8dimensional,sinceeachA gives3dimensionsandeach p gives1 QG,Y(cid:48) 3 i dimension. ThereforeH1(Y(cid:48),TY(cid:48))=0. Toproducetheclaimedfamilyweneedtosmooth upatthesametime p and p . (cid:3) 1 2 A simply connected numerical Godeaux surfaces with a 2-divisible divisor consisting of four disjoint (−2)-curves is obtained from a Q-Gorenstein smoothing of the singular surfaceY(cid:101): 8 H.PARK,D.SHIN,ANDG.URZU´A Theorem2.4. (a) ThereisaQ-GorensteinsmoothingY(cid:102)→∆overadisk∆withcentral fiberY(cid:102)0=Y(cid:101)andaneffectivedivisorB⊂Y(cid:102)suchthattherestrictiontoafiberY(cid:101)t over t∈∆ Bt :=B∩Y(cid:101)t =B1,t+B2,t+B3,t+B4,t is2-divisibleinY(cid:101)t consistingoffourdisjoint(−2)-curvesandB0=B. (b) ThereisaQ-GorensteindeformationY →∆ofY withcentralfiberY =Y suchthat 0 afiberY overt (cid:54)=0hasfourordinarydoublepointsasitsonlysingularitiesandthe t minimalresolutionofYt isthecorrespondingfiberY(cid:101)t ofY(cid:102)→∆. Proof. WeapplyasimilarmethodinY.Lee-J.Park[16]. Sinceanylocaldeformationsof thesingularitiesofY canbeglobalizedbyTheorem2.1,thereareQ-Gorensteindeforma- tionsofY overadisk∆whichkeepallfourordinarydoublepointsandsmoothup p and 1 p . LetY →∆besuchdeformation, withY asitscentralfiber, andY (t (cid:54)=0)anormal 2 t projectivesurfacewithfourA sasitsonlysingularities. Weresolvesimultaneouslythese 1 four singularities in each fiber Yt. We then get a family Y(cid:102)→∆ that is a Q-Gorenstein smoothingofthecentralfiberY(cid:101),whichshowsthataQ-GorensteinsmoothingofY canbe liftedtoaQ-Gorensteinsmoothingofthepair(Y,B),i.e. the2-divisibledivisorBonY(cid:101) is extendedtoaneffectivedivisorB⊂Y(cid:102). We finally show that the effective divisor Bt is 2-divisible inY(cid:101)t for t (cid:54)=0. According to Manetti [18, Lemma 2], the natural restriction map rt :Pic(Y(cid:102))→Pic(Y(cid:101)t) is injective foreveryt ∈∆andbijectivefor0∈∆. Hereweareusingthat pg(Y(cid:101))=q(Y(cid:101))=0. Since the divisor B is nonsingular, B is also nonsingular. Since B∼2L in (2.1), it follows t that Bt ∼2Lt, where L is extended to a line bundle L ⊂Y(cid:102)and Lt is the corresponding restriction. (cid:3) 3. NUMERICALCAMPEDELLISURFACESWITHANINVOLUTION ThemainpurposeofthissectionistoconstructsimplyconnectednumericalCampedelli surfaceswithaninvolution. Alongtheway,wewillintroducearationalnormalprojective surfaceX(cid:48)with6singularities(twoA1,two 812(1,8·5−1),andtwo 712(1,7·4−1))andKX(cid:48) ample.AcertainfourdimensionalQ-GorensteindeformationofX(cid:48)willproducenumerical Campedellisurfaceswithaninvolution. Recall that the rational surface Z has a 2-divisible divisor B = B +B +B +B ; 1 2 3 4 cf. (2.1). LetV be the double cover of Z branched along the divisor B, where the dou- blecoverisgivenbythedataB∼2L,L=h−e −e −e . Wedenotethedoublecovering 3 5 6 byψ :V →Z. ThesurfaceV hastwoC ’sandtwoC ’s. 8,5 7,4 OntheotherhandthesurfaceV canbeobtainedfromacertainrationalellipticsurface by blowing-ups, as we now explain. The morphism ψ: V →Z blows down to a double coverψ(cid:48):V(cid:48)→E(1)branchedalongB. Theramificationdivisorψ(cid:48)−1(B)consistsoffour disjoint (−1)-curves R ,...,R . We blow down them fromV(cid:48) to obtain a surface E(1)(cid:48); 1 4 cf. Figure 5. In Figure 5 the pull-back of the B are the B(cid:48), of the curve (cid:96) is (cid:96) +(cid:96) , of i i 1 2 thesectionS isS +S , andofthedoublesectionM isM +M . EachI inE(1)(cid:48) isthe 1 2 1 2 2 pull-backofeachI inE(1). 1 NotethatthesurfaceE(1)(cid:48) hasanellipticfibrationstructurewithtwoI -singularfibers 4 and two I -singular fibers. In fact, the surface E(1)(cid:48) can be obtained from the pencil of 2 cubicsinCP2 {λx(y−z)(x−2z)+µy(x−z)(y−2z)|[λ :µ]∈CP1} ANUMERICALCAMPEDELLISURFACEWITHANINVOLUTION 9 S 1 B′ ℓ 8 1 M 1 B′ B′ 5 7 M2 B6′ ℓ2 S 2 FIGURE5. RelevantcurvesintheellipticrationalsurfaceE(1)(cid:48) wheretheI -singularfiberscomefromx(y−z)(x−2z)=0andy(x−z)(y−2z)=0,andthe 4 I -singularfiberscomefrom(x+y−2z)(xy−yz−xz)=0and(x−y)(xy−xz+2z2−yz)= 2 √ 0. The two double sections M and M are defined by the lines x = (1+ −1)z and √ 1 2 x=(1− −1)z. Insummary: Proposition3.1. ThesurfaceV(cid:48)istheblow-upatfournodesofoneI -singularfiberofthe 4 rationalellipticfibrationE(1)(cid:48)→CP1. HencethesurfaceV canbeobtainedfromV(cid:48) by blowing-upintheobviousway. LetX(cid:101)bethedoublecoverofthesingularsurfaceY(cid:101)branchedalongthedivisorB. Note that the surface X(cid:101) is a normal projective surface with four singularities of class T whose resolutiongraphsconsistoftwoC8,5’sandtwoC7,4’s. TheramificationdivisorinX(cid:101) con- sistsofthefourdisjoint(−1)-curvesR1,...,R4. Letφ(cid:101):X(cid:101)→Y(cid:101)bethedoublecovering. On theotherhandthesurfaceX(cid:101)canbeobtainedfromtherationalsurfaceV bycontractingthe twoC8,5’sandtwoC7,4’s. Letβ(cid:101):V →X(cid:101)bethecontractionmorphism. Let X be the surface obtained by blowing down the four (−1)-curves R ,...,R from 1 4 X(cid:101). Wedenotetheblowing-downmorphismbyβ :X(cid:101)→X. Thenthereisadoublecovering φ :X →Y branchedalongthefourordinarydoublepointsq ,...,q . Finally,letX(cid:48) bethe 1 4 contractionofthe(−2)-curvesB(cid:48) andB(cid:48) inX. Letβ(cid:48):V →X(cid:48)bethecontraction. Tosum 8 6 up,wehavethefollowingcommutativediagram: E(1)(cid:48) (cid:111)(cid:111) V(cid:48) (cid:111)(cid:111) V β(cid:101) (cid:47)(cid:47)X(cid:101) β (cid:47)(cid:47)X (cid:47)(cid:47)X(cid:48) ψ(cid:48) ψ φ(cid:101) φ (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) E(1)(cid:111)(cid:111) Z α(cid:101) (cid:47)(cid:47)Y(cid:101) α (cid:47)(cid:47)Y (cid:47)(cid:47)Y(cid:48) WewillshowinSection4theobstructionspacestolocal-to-globaldeformationsofthe singularsurfacesX(cid:101),X andX(cid:48)vanish: Theorem3.2. H2(X(cid:101),TX(cid:101))=0,H2(X,TX)=0,andH2(X(cid:48),TX(cid:48))=0. ThesingularsurfaceX(cid:48)isthestablemodelofX(cid:101)andX: Proposition 3.3. The surface X(cid:48) has KX2(cid:48) =2, pg(X(cid:48))=0, and KX(cid:48) ample. The space DefQG(X(cid:48)) is smooth and 6 dimensional. A Q-Gorenstein smoothing of X(cid:48) is a simply connectedcanonicalsurfaceofgeneraltypewith p =0andK2=2. g 10 H.PARK,D.SHIN,ANDG.URZU´A Proof. The proof goes as the one forY(cid:48) in Proposition 2.2, using the explicit model we have forV by blowing-up E(1)(cid:48) in Proposition 3.1. One can check that an intersection computationasinProposition2.2verifiesamplenessforKX(cid:48). (cid:3) TheproofofthenextmainresultfollowseasilyfromTheorem2.4. Theorem3.4. ThereexistQ-GorensteinsmoothingsX(cid:102)→∆ofX(cid:101) andX →∆ofX that are compatible with the Q-Gorenstein deformations of Y(cid:102)→∆ ofY(cid:101) and Y →∆ ofY in Theorem2.4,respectively;thatis,thedoublecoveringsφ(cid:101):X(cid:101)→Y(cid:101) andφ :X →Y extend tothedoublecoveringsφ(cid:101)t:X(cid:101)t→Y(cid:101)t andφt:Xt→Yt betweenthefibersoftheQ-Gorenstein deformations. Remark3.5. ByTheorem3.2,theobstructionH2(X,T )tolocal-to-globaldeformations X of the singular surface X vanishes. The point of the above theorem is that there is a Q- GorensteinsmoothingofthecoverXthatiscompatiblewiththeQ-Gorensteindeformation ofthebaseY. Corollary3.6. AgeneralfiberX oftheQ-GorensteinsmoothingX →∆ofX isasim- t plyconnectednumericalCampedellisurfacewithaninvolutionσ suchthattheminimal t resolutionofthequotientY =X/σ isasimplyconnectednumericalGodeauxsurface. t t t 3.1. The fundamental group of the quotient by an involution. Let X be a minimal complex surface of general type with p =0 and K2 =2. Suppose that the group Z/2Z g acts on X with just 4 fixed points. LetY =X/(Z/2Z) be the quotient and let S→Y be the minimal resolution ofY. Barlow [2, Proposition 1.3] proved that if πalg(S)=1 then 1 |πalg(X)|=1,3,5,7,9. Conversely: 1 Proposition3.7. IfX issimplyconnected,thensoisS. Proof. Let f :X →Y be the quotient map. Then f is a double covering branched along the four ordinary double points ofY. Let T be the blow-up of X at the four ramification points. DenotethefourexceptionaldivisorsbyE ,...,E . Thenthereisadoublecovering 1 4 g:T →S branched along the four (−2)-curves R ,...,R which is an extension of the 1 4 covering f :X →Y. LetX =T\∪4 E andY =S\∪4 R. Theng| :X →Y isan 0 i=1 i 0 i=1 i X0 0 0 e´tale double covering. Since π (X )=π (X)=1, we have π (Y )=Z/2Z. Therefore 1 0 1 1 0 π (S)istrivialorZ/2ZbyvanKampentheorem. 1 Supposethatπ (S)=Z/2Z. Thenthereisane´taledoublecoveringh:U →Ssuchthat 1 U issimplyconnectedandconnected. ThenthefiberproductofT andU overSisane´tale doublecoverofT. Letφ :T× U →U bethedoublecovering,whichisbranchedalong Y theeight(−2)-curvesh∗(∑4i=1Ri). Thatis,wehavethefollowingcommutativediagram: (cid:111)(cid:111) (cid:111)(cid:111) e´tale X T T× U Y 2:1 f g φ (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:111)(cid:111) (cid:111)(cid:111) h Y S U Set U0 =U\h∗(∑4i=1Ri). Since h:U0 →Y0 is e´tale and π1(Y0)=Z/2Z, it follows that π (U )=1. Furthermore, since T is simply connected, the fiber product T × U 1 0 Y is diffeomorphic to the disjoint union T(cid:116)T. Then φ :X (cid:116)X →U is an e´tale double 0 0 0 coveringandπ (U )=1andU isconnected. ThereforeX (cid:116)X isdiffeomorphictoU (cid:116) 1 0 0 0 0 0 U . Notethat∂X isdiffeomorphictothedisjointunionof3-spheresS3. However∂U is 0 0 0 diffeomorphictothedisjointunionofthelensspaceL(2,1),whichisacontradiction. (cid:3)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.