ebook img

A Rate-Splitting Approach To Robust Multiuser MISO Transmission PDF

0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Rate-Splitting Approach To Robust Multiuser MISO Transmission

A RATE-SPLITTING APPROACHTO ROBUST MULTIUSER MISO TRANSMISSION Hamdi Joudeh∗ andBrunoClerckx∗† ∗ DepartmentofElectrical and ElectronicEngineering,ImperialCollegeLondon,United Kingdom † School ofElectrical Engineering,KoreaUniversity,Seoul,Korea Email: {hamdi.joudeh10, b.clerckx}@imperial.ac.uk 6 1 ABSTRACT packing thecommon parts such that Wc = {Wc,1,...,Wc,K} ∈ 0 For multiuser MISO systems with bounded uncertainties in the Wc, where Wc = Wc,1 ×...×Wc,K. Wc is encoded using a 2 Channel StateInformation (CSI),we consider twoclassical robust commoncodebooksharedbyallusers,whileW1,...,WK areen- codedusingprivatecodebooksknownbytheircorrespondingusers. n designproblems:maximizingtheminimumratesubjecttoatransmit a power constraint, and power minimization under a rate constraint. TheresultingK+1encodedsymbolstreamsarelinearlyprecoded J Contrary to conventional strategies, we propose a Rate-Splitting andsimultaneouslytransmitted.Ateachreceiver,thecommonmes- sageisdecodedfirstbytreatingallprivatesignalsasnoise. Thisis 9 (RS)strategywhereeachmessageisdividedintotwoparts,acom- followedbydecodingtheprivatemessageafterremovingthecom- 1 monpartandaprivatepart. Allcommonpartsarepackedintoone super common messageencoded usingasharedcodebook andde- mon message via Successive Interference Cancellation (SIC). The ] codedbyallusers,whileprivatepartsareindependentlyencodedand originalmessagesaredeliveredgiventhateachreceiversuccessfully T decodesthecommonmessageanditsprivatemessage. retrievedbytheircorrespondingusers. WeprovethatRS-basedde- I A special case of the described RS scheme [7,8], where only signsachievehighermax-minDegreesofFreedom(DoF)compared . s to conventional designs (NoRS) for uncertainty regions that scale oneuser messageissplit, wasshown toboost thesum Degreesof c Freedom (DoF) under CSITerrors that decay withincreased SNR withSNR.Forthespecial caseof non-scaling uncertainty regions, [ RS contrasts with NoRS and achieves a non-saturating max-min atarateofO(SNR−α)forsomeconstantα∈ [0,1]. Thisstrategy 1 rate. In the power minimization problem, RS is shown to combat was leveraged to enhance the sum-rate performance under various v thefeasibilityproblemarisingfrommultiuserinterferenceinNoRS. CSIT assumptions [9,10]. RS was also shown to provide signifi- 5 ArobustdesignofprecodersforRSisproposed, andperformance cantsum-rategainsinthelarge-scalearrayregime[11]. Employing 0 gainsoverNoRSaredemonstratedthroughsimulations. RSinamoregeneralmannertoachievemax-minfairnesswasfirst 1 reportedinourpreviouswork[12],wheretheaverageperformance 5 IndexTerms— MISO-BC,degreesoffreedom, linearprecod- overtheerrordistributionwasconsidered. Thispapergivesamore 0 ing,max-minfairness,quality-of-service,robusttransceiverdesign. completetreatmentofthemax-minproblembyderivingtheasymp- . totic rate performance (in a DoF sense) of the optimally designed 1 1. INTRODUCTION RSscheme. Inaddition, theapproachisextendedtotacklethein- 0 versepoweroptimizationproblem.Weshouldalsohighlightthatthe 6 ConsideraMulti-User(MU)MultipleInputSingleOutput(MISO) worst-caseoptimizationconsideredinthisworkposesanextrachal- 1 : systemwhereaBaseStation(BS)equippedwithNtantennasserves lenge in comparison to [12] due to the minimization embedded in v asetofsingle-antennausersK , {1,...,K},withK ≤ Nt. Un- eachworst-caserateexpression. Therestofthepaperisorganized i der the assumption of erroneous Channel State Information at the as follows. The system model is described in Section 2. In Sec- X Transmitter (CSIT) with bounded uncertainty regions, we address tion 3, the problem isformulated and the asymptotic performance r twotypicaldesignproblems: maximizingtheminimumworst-case isderived. AnoptimizeddesignofprecodersfortheRSstrategyis a ratesubjecttoatotaltransmitpowerconstraint(rateproblem),and proposedinSection4.Simulationresultsandanalysisarepresented minimizingthetransmitpowersubjecttoaworst-caserateconstraint inSection5,andSection6concludesthepaper. (power problem). Such problems, which are non-convex in gen- eralandsemi-infinite,wereaddressedinliteratureusingvariousap- proaches and approximations [1–5]. However, all existing works 2. SYSTEMMODEL consider aconventional transmissionscheme, i.e. eachmessageis encodedintoanindependent datastream, thenallstreamsarespa- Forthesystemintroducedintheprevioussection,consideratrans- tiallymultiplexed. Fortherateproblem,suchdesignsareknownto missiontakingplaceoverablockofchanneluseswherethechannel yieldasaturatingperformanceathighSNRswhereMUinterference remainsfixed(quasi-static). Thesignalreceivedatthekthuserina becomesdominant[4–6].Conversely,thiscreatesafeasibilityissue givenchannelusewritesasy =hHx+n ,whereh ∈CNtisthe k k k k forthepowerproblem,sinceratesbeyondthesaturationlevelcan- channelvectorfromtheBStothekthuser,x∈CNt isthetransmit notbeachieved[1,4].Inthiswork,weproposeaRate-Splitting(RS) signal,andn ∼CN(0,σ2 )istheAdditiveWhiteGaussianNoise k n,k strategytocombattheseshortcomings. (AWGN)atthereceiver. Thetransmitsignal issubject toanaver- LetWt,1,...,Wt,Kbemessagesuniformlydrawnfromthesets age power constraint E{xHx} ≤ Pt. Without loss of generality, Wt,1,...,Wt,K,andintendedforreceivers1,...,K respectively. weassumeequalnoisevariancesacrossusers,i.e. σn2,k = σn2,and Intheproposedscheme,eachusermessageissplitintoaprivatepart channelentrieswithnormalizedaveragegains. Therefore,thelong W ∈W andacommonpartW ∈W ,whereW ×W = termSNRisdefinedasSNR , P /σ2. Moreover, σ2 isnon-zero k k c,k c,k k c,k t n n W . A super message (the common message) is composed by andremainsfixed.Hence,P →∞impliesSNR→∞. t,k t Wc,W1,...,WKareencodedintotheindependentdatastreams correspondstoperfectCSITresultingfromaninfinitelyhighnum- sc,s1,...,sK respectively. For a given channel use, symbols are beroffeedback bits. Inthefollowing, theexponentsaretruncated grouped ass , [sc,s1,...,sK]T ∈ CK+1, whereE{ssH} = I. suchthatα ∈ [0,1]whichiscustomaryinDoFanalysisasα = 1 ThesymbolsaremappedtotheBSantennasthroughtheprecoding correspondstoperfectCSITintheDoFsense[6,7]. matrixP,[pc,p1,...,pK],yieldingthetransmitsignalx=Ps, DuetotheCSITuncertainty,theactualratescannotbeconsid- where the common stream is superimposed on top of the private ered as design metrics at the BS. From the BS’s point of view, streams. Thepowerconstraintisrewrittenastr PPH ≤ P . The achievable rates also lie in bounded uncertainty regions. We t kthaveragereceivepowerisexpressedas consider a robust design where precoders are optimized w.r.t the (cid:0) (cid:1) worst-case achievable rates defined for the kth user as R¯ , c,k Sc,k Sk Ik minhk∈HkRc,k(hk) and R¯k , minhk∈HkRk(hk), where the de- Tc,k =z|hHk}p|c|2{+z|hHk}p|k|2{+zXi6=k|hHk}p|i|2+σn2{. (1) pamceihnttidienevngacbiWleescc,ooWmf mt1h,oe.n.r.raa,tteWesiKsondaetfihnkreadtaerasesRRh¯¯iccg,h,R¯li1gm,h.tien.d.j.,{RR¯¯TKc,hje}reKjw=sp1oe.rcsTtti-rvcaeanlssye-, Ic,k=Tk guarantees successful decoding at the receivers for all admissible channelswithintheuncertaintyregions. FollowingtheRSstructure | {z } Thecommonmessageisfirstdecodedbytreatinginterferencefrom inSection1, thekthuser’sportionof thecommon rateisdenoted aalslspcr,ikva=tesgigc,nkaylsk,aswnhoeirsee.gTc,hkeisktahsucsaelra’rseeqstuiamliazteer.ofGsicviesnotbhtaatintehde tboytaCl¯kacwhiheevraeblerKka=te1Ci¯skgi=venR¯acs. TR¯hte,kre=forRe¯,kth+eCk¯tkh,ucsoerrr’esspwoonrdsitn-cgastoe common message is successfully decoded, SIC is used to remove therateatwhiPchtheoriginalmessageW istransmitted. t,k the common signal from y before decoding the private message. b k Theestimateofs writesass = g (y −hHp s ), whereg k k k k k c c,k k 3.1. RateOptimizationProblem isthecorrespondingequalizer. Attheoutputofthekthreceiver,the commonandprivateMSEs,dbefinedasεc,k , E{|sc,k−sc|2}and UsingtheRSstrategy, therobust rateoptimizationproblem which ε ,E{|s −s |2}respectively,writeas: achievesmax-minfairnessisposedas k k k b εc,k =|gc,k|2Tc,k−2ℜ gc,khHkpc b+1 (2a) R¯tm,R¯ac,x¯c,P R¯t w(ChSeIrRe)Tkobitsadineεefikdn=etdhr|iognuk(g|12hT).kcWo−mem2aℜsos(cid:8)nugmak(cid:8)nehdpHkedprefkde(cid:9)cicta+CteS(cid:9)1dIadtotwhnelRinekcetirv(a2eibnrs)- RRS(Pt):s.t. RRC¯¯¯kcKk,k+≥=1≥C0¯C¯,Rk¯k∀c≥=k, R∀∈¯R¯ktcK,∈∀Kk∈K (3) ing. ThisassumptionisjustifiedbynotingthattheeffectsofCSIR Pk ewUshstieimcrshateiismonopvleoeryrrwoorhpsetliammreeudmatb(ytghtehe,sagimnfl)e,ueip.noecw.eetorhfeleCwvSeeIllTl-okfunnoacwdedrnittaiMivneitnynim[o1ius3me],. whereR¯t isanauxiliaryvariable,tra(cid:0)nPdP¯cH,(cid:1)[≤C¯1P,t....,C¯K]T. Point- MSE (MMSE) equalizerscg,kivenk as: gMMSE = pHh T−1 and wiseminimizationsinR¯t andR¯c arereplacedwithinequalitycon- c,k c k c,k straintsin(3),whereequalityholdsatleastforoneuseratoptimal- gεMkMMMSSEE ==Tp−Hk1hIkTk−an1d, fεrMomMSwEhi=chTth−e1IM.MTShEeskatrheSoIbNtaRinsewdraitse: ity. The constraints C¯k ≥ 0 guarantee non-negative splitting. In c,k c,k c,k k k k contrast,theNoRSversionoftheproblemisformulatedas as: γ = S I−1 = (1−εMMSE)/εMMSE andγ = S I−1 = c,k c,k c,k c,k c,k k k k max R¯ (1−εMkMSE)/εMkMSE. Under Gaussian signalling, the kth max- R¯,Pp −eimnsluoumgre2a(tεchhMca,iktMevaSalElb)lueasnerardsteRsdkeacro=edgeliovWge2n(,1asi+t: isRγkct)r,kan=s=m−itltloeogdg22(i(n1εMk+aMmγScuE,lk)ti.)caT=sot R(Pt):s.t. tR¯rkP≥pPR¯Hp, ∀k≤∈PKt. (4) c fashionatthecommonrateRc ,minj{Rc,j}Kj=1. where R¯ is the rate auxiliary varia(cid:0)ble, and(cid:1)Pp , [p1,...,pK]. Solving(4)isequivalenttosolving(3)overarestricteddomainchar- 3. PROBLEMSTATEMENTANDASYMPTOTIC acterizedbysetting¯c = 0, whichinturnforcesR¯c and kpck2 to PERFORMANCE zerosatoptimality. Asaresult,wehaveRRS(Pt)≥R(Pt). Next, welookattheoptimumasymptoticperformanceofthetwoschemes. For each channel vector h , the BS obtains an erroneous estimate ToanalysetheperformanceasSNRincreases,wedefineapre- k h ,fromwhichtheerrorunknowntotheBSisdefinedash ,h − coding scheme for (3) as a family of feasible precoders with one k k k h . AsfarastheBSisaware,h isboundedbyanorigin-centered precoderforeachSNRlevel,i.e. P(P ) . Theassociatedpow- k k t Pt rsbbepghieorneHwikth,radihuskδ|kh.kH=enchek,h+ekhisk,ckohnfiknke≤dwδkithi.nTthheisueinscreerlteavinatnyt earsskapllcokc2at=edOto(Pthtaecp)raencoddkinpgkkv2ec=(cid:8)torOs(aPreta(cid:9)aks)s,uwmheedretoascc,aalkew∈it[h0,P1t] aresomescalingexponents. Under agiven precoding scheme, the inlimitedfeednbacksystemsasquantizationerroorsarebounded. In kthworst-casecommonandprivateDoFaredefinedas scenarioswherethenumberboffeeedbackebitsismadetoscalewithin- creasedSNRtoprovideimprovedCSITquality[6,9],theuncertainty R¯ (P ) R¯ (P ) sretagniotnexsphorinneknststuhcahtqthuaatnδtik2fie=stOhe(PCt−SαIT),qwuhaelirteyαas∈SN[0R,∞gr)owissalcaorgne- d¯c,Ptli→m∞logc2(Ptt) and d¯k ,Ptli→m∞logk2(Ptt) (5) (αas=sum0eredptroesbeenttsheascaomnsetaancrto(sosrussloewrsl)y,is.ec.alαin,g)lniummPbt→er∞of−felleoodgg(b(δPak2tc))k. wThheerkeththeusdeerp’sensdpelintcoiefsd¯ocnisthdeefiponwederalsevc¯ekl a,relhimigPhtli→gh∞tedlCo¯gki2n((PP(t5t))),. bits,yieldingnon-decayingCSITerrors.Ontheotherhand,α=∞ where K c¯ = d¯. All definitions extend to the NoRS case k=1 k c P wherethecommonpartisdiscarded,andaprecodingschemefor(4) change withthe transmit power variation during the design proce- isdenotedby P (P ) . dure,aschannelestimationandfeedbackiscarriedoutpriortothe p t Pt precoder design. The rate and the power problems are monotoni- Theorem1. (cid:8)TheNoR(cid:9)Sproblemyieldsanoptimummax-minDoF cally non-decreasing in their arguments, and are related such that R P(R¯) = R¯ andR P (R¯ ) = R¯ ,whichcanbedemon- RS RS t t R(P ) d¯∗ , lim t =α (6) stratedusingthesamestepsin[15,16]. CombiningthiswithThe- Pt→∞log(Pt) ore(cid:0)m1,it(cid:1)followsthatund(cid:0)ernon-sca(cid:1)lingCSITerrors,R Pt con- vergestoafinitemaximumvalueasP → ∞, whichisthemaxi- whiletheoptimummax-minDoFfortheRSproblemisgivenby mumfeasiblerateforP(R¯). Ontheothterhand,R (P )(cid:0)do(cid:1)esnot RS t d¯∗ , lim RRS(Pt) = 1+(K−1)α. (7) converge.Hence,anyfiniterateisfeasibleforPRS(R¯t). RS Pt→∞ log(Pt) K 4. ROBUSTOPTIMIZATION Proof. Let {a∗}K be the power exponents of (4)’s optimum k k=1 precoding scheme. We initially assume that the optimum pow- Problems(3) and(8) aresemi-infiniteand appear tobeintractable ers satisfy a∗,...,a∗ = a∗. We have d¯∗ ≤ min{α,a∗}. intheir current forms. Even finiteinstances of the problems seem 1 K k This is shown through upper-bounding the worst-case SINR, i.e. to be intractable due to the non-convex coupled sum-rate expres- γ¯k , minhk∈Hkγk(hk), by selecting hk ∈ Hk such that the lth sions embedded in each user’s total rate. Therefore, we employ (l∈K\k)interferenceismaximized,anddiscardingsomeinterfer- theRate-WeightedMSE(WMSE)relationshipwhichisparticularly ence terms[14]. Sincethe point-wise minimum isupper-bounded suitableforproblems featuringsum-rateexpressions [17–19]. The by any element in the set, and d¯∗ ≤ d¯∗ for all k ∈ K, we have kthuser’saugmented WMSEs(referredtoasWMSEsfor brevity) k d¯∗ ≤ α. Next, assume that (3)’s optimum precoding scheme has are defined as: ξc,k , uc,kεc,k −log2(uc,k) and ξk , ukεk − power exponents a∗ anda∗ for thecommon andprivateprecoders log (u ),withu andu asthecorrespondingweights. Optimiz- c 2 k c,k k respectively.UsingR¯ +R¯ ≤R¯ +R¯ ,andthepreviousbound- ing over the equalizers and weights, the Rate-WMSE relationship c k c,k k ingtechniques,weobtaind¯∗c+d¯∗k ≤min{1+α−a∗,1}.Sincethe writesas: ξcM,kMSE , minuc,k,gc,kξc,k = 1−Rc,k andξkMMSE , max-minDoFisupper-boundedbytheaverageuserDoF,wewrite minuk,gkξk =1−Rk,wheretheoptimumequalizersandweights d¯∗RS ≤ d¯∗c+PKKk=1d¯∗k ≤ 1+(KK−1)α,wheretheright-mostinequality aregivenby: gc∗,k = gcM,kMSE,gk∗ = gkMMSE,u∗c,k = εMc,kMSE −1, isobtainedfromd¯∗+d¯∗ ≤1andd¯∗ ≤α. andu∗ = εMMSE −1 [10,12]. Fromthisrelationship, theworst- c 1 k k k (cid:0) (cid:1) The upper-bounds are achieved through feasible precoders as caseratesareequivalentlywrittenas (cid:0) (cid:1) follows. Best-effortZero-Forcing(ZF)obtainedusingtheavailable R¯ =1− max min ξ h ,g ,u (10a) channelestimatewithpowersscalingasO(Ptα)isusedforprivate c,k hk∈Hkuc,k,gc,k c,k k c,k c,k precoders,achievingd¯1,...,d¯K =α.ForRS,thisissuperimposed R¯k =1− max min ξk hk,(cid:0)gk,uk . (cid:1) (10b) by a random common precoder with power that scales as O(Pt), hk∈Hkuk,gk achievingd¯c = 1−αwhichissplitequallyamongusers. Relax- Equivalent WMSEproblems areo(cid:0)btained by(cid:1)substituting(10)into ingtheassumptionthata∗,...,a∗ areequalyieldsthesameresult (3)and(8),wherethedomainsareextendedtoincludetheequaliz- 1 K usingslightlymoreinvolvedupper-boundingsteps. ersand weightsasoptimization variables. Suchproblems have an interestingblock-wiseconvexstructurewhichcanbeexploitedus- ItshouldbenotedthatalthoughtheZFprecodersproposedinthe ingtheAlternatingOptimization(AO)principle. However,thenew proofareoptimuminaDoFsense, theymaybefarfromoptimum problemshaveinfinitelymanyoptimizationvariablesandconstraints fromaworst-caserateperspectiveatfiniteSNRs.Thismotivatesthe duetothedependencies oftheoptimumequalizersandweightson needfor robustlydesigned precoders. Itisevident that d¯∗ ≥ d¯∗ RS perfectCSI.Weresorttotheconservativeapproximationin[14]by holds for all α ∈ [0,1], and strictly holds for α ∈ [0,1). d¯∗ is RS swapping the minimization and maximization in (10). Equalizers lower-boundedby1/K. Hence,anoptimallydesignedRSscheme andweightsloosetheirdependenciesonperfectCSIandweobtain isexpectedtoachieveanever-growingmax-minrate. R =1− min max ξ h ,g ,u (11a) c,k c,k k c,k c,k ubc,k,gbc,khk∈Hk 3.2. PowerOptimizationProblem (cid:0) (cid:1) bRk =1− min max ξk hk,gk,ubk b (11b) ThepowerproblemwitharateconstraintR¯twritesas ubk,gbkhk∈Hk (cid:0) (cid:1) min tr PPH whereRcb,k ≤ R¯c,k andRk ≤ R¯k areblowebr-boundsontheworst- PRS(R¯t):sR¯.ct.,¯c,P RR¯¯kc(cid:0)Kk,k+=1≥C¯C¯kR¯k(cid:1)c≥=, R∀¯R¯ktc,∈∀Kk∈K (8) caraaapntspdeelip(erubrdaoctbb,tekolse,amub(lslkeyc)eiheaaflrondeonsttetnhlhoesetiaencbo1tsbnhtrseiaenucrvtn[ea1cdt4eivr,eteqaSiuWenactltyMiizoseSnerEtssI.VcaoPn.Budlun.2gwte]g)eri,pingaaghrntt(ds11w()bghicin,cktho,bgtahkree) OntheotherhanPd(,Rt¯h)e:N(oRmsP.tSi.pncouCPtR¯n¯rktk(cid:0)eP≥r≥ppa0PRr¯,tHp,i∀s(cid:1)∀kfko∈r∈mKuK.la.tedas (9) RRS(Pt):s1R1b.−tt−.,RbξmξckKc,(cid:0)bca,kh,xPk,Ch,gbgkb,ubk,=g,Rucbb,Rktk(cid:1),u+cC,bkk ≥≥RRbtc,,∀∀hhkk∈∈HHkk,,kk∈∈KK b k=1(cid:0) k c (cid:1) AW0.seT(c9ho)insissiidsaerrreelnesovtrnaic-nsttectdaolivn(e8gr)sCiaoSnndITo(f9w)(i8twh),hδwe12ree,.ht.ha.ev,eδCK2PSIRT=S(qROu¯at(l)1it)y≤, id.ePo.e(sαR¯nt=o)t.  PCtbrk(cid:0)P≥P0Hb,(cid:1)∀≤bk∈PbtKb b (12) where g , {g ,g | k ∈ K} and u , {u ,u | k ∈ K}. c,k k c,k k Extendingthisapproachtothepowerproblemyields 7 NRSoRS 7 NRSoRS 6 6 b b mibn tr PPH b b b Hz)5 Hz)5 PRS(Rt):s1R1b.−ct−.,bcξ,ξkPc(cid:0),,gkbh,kubh,kgk,(cid:0)g,uc,kk(cid:1),u+c(cid:1)C,kk ≥≥RRtc,,∀∀hhkk∈∈HHkk,,kk∈∈KK Rate(bps/1234 Rate(bps/1234 Tbhesembi-infiniteCPbnkeKks≥=s1i(cid:0)s0Cb,ebkl∀im=kbibn∈RbatcKebd.bby(cid:1)refobbrmulatingtheinfinite(s1e3ts) Fig0.51(.a1R0)aαte1=5SpNeR0r2,f0(odδBrm=)25a0n.c310efo3r5K =(b)N0α5t==1003.,51a,5SnδNdR=2δ0(1d0B,.δ)2152p,δ31300=P3t−5δ.α ofrateconstraintsintoequivalentLinearMatrixInequalities(LMIs) ucosinnsgtrtaτhikneψt−r0eikubnsλku(k(cid:0)l1tτ2ik)n−a+[n2δd0|ψkbg]g(Ik,kH1k|b32Pa)σspine2sd(cid:1)reo−−wnδlrtokihλtg0Pteek2TSnHp(Iub-abgpkskHr)o≤ced1(cid:23)u+re0.C,bTkλhk−ek≥Rbtht0tota((l11r44abate)) Num.offeasiblechannels124680000000 0.0NR1SoR0S.05 δ 0.1 0.15 TransmitPower111000012fceha.s0:..01NR100SoR0S.0953δ 0.611 0.1359 whilethekthcommonrateconstraintisexpressedas b (a)Feasiblechannelsoutof100 (b)Averagetransmitpower u τ +|g |2σ2 −log (u )≤1−R (15a) c,k c,k c,k n 2 c,k c Fig.2.Powerminimizationunderarateconstraintof3.3219bps/Hz, τc,kψ−cb,kλc,k(cid:0) ψIcHb,k −(cid:1)δkP0THgcHb,k(cid:23)0,λc,kb≥0 (15b) forK =Nt =3,andδ1,δ2,δ3 =δ. 0 −δ g P λ I k c,k c,k uncertainty regions, from which channel estimates are obtained as whereψH , g hHP −eT andψH b, g hHP−eT. Fora hk =hk−hk,∀k ∈K. Fig. 1showstheconservativeworst-case k k k pb k c,k c,k k 1 rate performance averaged over 100 channels. The scaling uncer- detailed description of the procedure, please refer to [2] and [14]. tbaintyinFig.e1bcoincideswiththenon-scalinguncertaintyinFig.1a Next,wedevelobpbanunifiedAOalgorithmthbatsoblves(12)and(13). at20dBSNR.ItisevidentthatRSoutperformsNoRSforallSNRs, withalmost30%improvementachievedathighSNRinFig.1a,and 4.1. AlternatingOptimizationAlgorithm 25%improvementachievedatintermediateSNRinFig.1b.Atfirst glance,theRSratesaturationinFig. 1aseemstocontradictTheo- Ineachiterationofthealgorithm,gisfirstoptimizedbysolvingthe rem1. However,thiscanberegardedtothedesign’ssub-optimality problemsminmaxε h ,g andminmaxε h ,g forall c,k k c,k k k k k ∈ K, fogbcr,mkuhlka∈teHdkwith(cid:0)objectiv(cid:1)be funcgbtikonhsk∈τHk +(cid:0)|g |2(cid:1)σ2 and amnidndthtehalotoTsheenoersesmof1thqeuacnotnifiseersvathtieveopatpimpruomximpeartfioornm[a1n4c],eb.earingin τ +|g |2σ2,andconstraintsb(15b)and(14b),rec,skpectivecl,ykb(wenights Forpoweroptimization,Fig. 2acomparesthefeasibilityofRS k k n are fixed and ignored in this step). Such problems are posed as andNoRSover arangeofδs, whereRSachieves animprovement b Semidefinite Programs (SDPs) and can be solved efficiently using exceeding100%comparedtoNoRSatδ =0.15.Ontheotherhand, b interior-point methods [21]. The resulting conservative MMSEs, Fig. 2b shows the improved power performance. Intuitively, we εMMSEandεMMSE,areusedtoupdatetheweightsinthenextstepas expectthepowergaptoincreasewithδ. However,sinceinfeasible k c,k u =1/εMMSEandu =1/εMMSE.Finally,(P,c)andtheaux- channelsareomittedintheaveragepowercalculation,averagingis k k c,k c,k ibliaryratevabriablesareupdatedbysolvingaSDPformulatedbyfix- restrictedtoverywellconditionedchannelsforlargerδs. ing(g,u)in(12),or(13).Thisprocedureisrepeatedinaniterative b b b b b manner until convergence, which is guaranteed since the bounded 6. CONCLUSION objectivefunctionsbehavemonotonicallyoveriterations. However, b b appropriateinitializationofPisrequiredforthepowerproblemto In this contribution, we developed a robust RS transmission strat- avoidfeasibilityissues.Thisisdonebyperformingrateoptimization egy to address the rate and power design problems in MU-MISO fordifferentpowerconstraintsinthefirstfewiterationsuntilafea- systemswithCSITuncertainties. ThisbuildsupontheexistingRS siblesolutionisfound,beforeswitchingtopoweroptimization.The approach used to boost the sum-DoF and sum-rate performances. conservativeapproximationsguaranteethattheAOalgorithmyields WeanalyticallyprovedthatproperlydesignedRSschemesachieve feasible (although possibly sub-optimal) solutions for the original superiormax-minDoFperformancescomparedtotheirNoRScoun- problems. However, global optimality cannot be guaranteed even terparts. Moreover, we showed that RS can be used to tackle the w.r.t(12)and(13)duetonon-convexity. Despitethissub-optimality, feasibilityproblemappearinginNoRSpowerdesigns.Weproposed suchalgorithmswereshowntoperformwell[14]. a sub-optimal unified algorithm that solves the robust RS rateand powerproblemsbasedonaconservativeapproximation. Thesupe- 5. SIMULATIONRESULTS riorperformanceoftheRSalgorithmcomparedtoitsNoRScounter- partwasdemonstratedthroughsimulations. Intheextendedversion We consider a system with K,N = 3, and i.i.d channel entries of this work, we seek todevelop anon-conservative robust design t drawnfromCN(0,1). Wesetσ2 = 1, yieldingalong-termSNR thatachievesthetheoreticallyanticipatednon-saturatingrateperfor- n of P . CSIT errors are uniformly drawn from the corresponding manceundernon-scalingCSITuncertainties. t 7. REFERENCES [11] M. Dai, B. Clerckx, D. Gesbert, and G. Caire, “A Rate SplittingStrategy for Massive MIMO with Imperfect CSIT,” [1] N.VucicandH.Boche, “RobustQoS-ConstrainedOptimiza- submitted to IEEE Trans. Wireless Commun., available at tionofDownlinkMultiuserMISOSystems,”IEEETrans.Sig- http://arxiv.org/abs/1512.07221. nalProcess.,vol.57,no.2,pp.714–725,Feb.2009. [12] H.JoudehandB.Clerckx, “AchievingMax-Minfairnessfor [2] N.Vucic,H.Boche,andS.Shi,“RobustTransceiverOptimiza- MU-MISO with partial CSIT: a multicast assisted transmis- tioninDownlinkMultiuserMIMOSystems,”IEEETrans.Sig- sion,” inProc.IEEEICC2015,Jun.2015,pp.6355–6360. nalProcess.,vol.57,no.9,pp.3576–3587,Sep.2009. [13] G.Caire,N.Jindal,M.Kobayashi, andN.Ravindran, “Mul- [3] M. Payaro´, A. Pascual-Iserte, and M. A. Lagunas, “Ro- tiuser MIMO Achievable RatesWithDownlink Training and bustPowerAllocationDesignsforMultiuserandMultiantenna Channel State Feedback,” IEEE Trans. Inf. Theory, vol. 56, DownlinkCommunicationSystemsthroughConvexOptimiza- no.6,pp.2845–2866,Jun.2010. tion,” IEEEJ.Sel.AreasCommun.,vol.25,no.7,pp.1390– [14] A. Tajer, N. Prasad, and X. Wang, “Robust Linear Precoder 1401,Sep.2007. DesignforMulti-CellDownlinkTransmission,” IEEETrans. [4] M.B. Shenouda and T.N. Davidson, “Convex Conic Formu- SignalProcess.,vol.59,no.1,pp.235–251,Jan.2011. lationsofRobustDownlinkPrecoderDesignsWithQualityof [15] A.Wiesel,Y.C.Eldar,andS.Shamai, “Linearprecodingvia ServiceConstraints,” IEEEJ.Sel.TopicsSignalProcess.,vol. conic optimization for fixed MIMO receivers,” IEEE Trans. 1,no.4,pp.714–724,Dec.2007. SignalProcess.,vol.54,no.1,pp.161–176,Jan.2006. [5] M.B. Shenouda and T.N. Davidson, “Nonlinear and linear [16] N.D.Sidiropoulos,T.N.Davidson,andZ.-Q.Luo, “Transmit broadcastingwithQoSrequirements:Tractableapproachesfor beamforming for physical-layer multicasting,” IEEE Trans. boundedchanneluncertainties,” IEEETrans.SignalProcess., SignalProcess.,vol.54,no.6,pp.2239–2251,Jun.2006. vol.57,no.5,pp.1936–1947,2009. [17] S.S. Christensen, R. Agarwal, E. Carvalho, and J.M. Cioffi, [6] N.Jindal,“MIMOBroadcastChannelsWithFinite-RateFeed- “Weightedsum-ratemaximizationusingweightedMMSEfor back,”IEEETrans.Inf.Theory,vol.52,no.11,pp.5045–5060, MIMO-BCbeamformingdesign,” IEEETrans.WirelessCom- Nov.2006. mun.,vol.7,no.12,pp.4792–4799,Dec.2008. [7] S.Yang, M. Kobayashi, D. Gesbert, and X. Yi, “Degrees of [18] Q.Shi,M.Razaviyayn,Z.-Q.Luo,andC.He, “AnIteratively freedomoftimecorrelatedMISObroadcast channel withde- WeightedMMSEApproachtoDistributedSum-UtilityMaxi- layedCSIT,” IEEETrans.Inf.Theory,vol.59,no.1,pp.315– mizationfor aMIMO InterferingBroadcast Channel,” IEEE 328,2013. Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Sept [8] C. Hao and B. Clerckx, “MISO BC with imperfect and 2011. (Un)matchedCSITinthefrequencydomain: DoFregionand [19] M.Razaviyayn,M.Hong,andZ.-Q.Luo, “Lineartransceiver transmission strategies,” in Proc. IEEE PIMRC 2013, Sep. design for a MIMO interfering broadcast channel achieving 2013,pp.1–6. max–min fairness,” Signal Processing, vol. 93, no. 12, pp. [9] C. Hao, Y. Wu, and B. Clerckx, “Rate Analysis of Two- 3327–3340,2013. ReceiverMISOBroadcastChannelWithFiniteRateFeedback: [20] Y.C.EldarandN.Merhav, “Acompetitiveminimaxapproach ARate-SplittingApproach,” IEEETrans.Commun., vol.63, torobustestimationofrandomparameters,” IEEETrans.Sig- no.9,pp.3232–3246,Sept2015. nalProcess.,vol.52,no.7,pp.1931–1946,Jul.2004. [10] H.JoudehandB.Clerckx, “SumratemaximizationforMU- [21] S.P.BoydandL.Vandenberghe, ConvexOptimization, Cam- MISO with partial CSIT using joint multicasting and broad- bridgeuniversitypress,2004. casting,” inProc.IEEEICC2015,Jun.2015,pp.6349–6354.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.