A note on primitive 1−normal elements over finite fields LucasReis 7 DepartamentodeMatema´tica,UniversidadeFederaldeMinasGerais,UFMG,BeloHorizonte, 1 MG,30123-970,Brazil 0 2 n a J 9 Abstract 1 Let q be a prime power of a prime p, n a positive integer and Fqn the finite field ] with qn elements. The k−normal elements over finite fields were introduced and T characterizedbyHuczynskaetal(2013). Undertheconditionthatnisnotdivisible N by p,theyobtainedanexistenceresultonprimitive1−normalelementsofF over . qn h F forq> 2. Inthisnote,weextendtheirresulttotheexcluded caseq = 2. t q a m Keywords: FiniteFields,NormalBasis,k-normalelements,Primitiveelements [ 2010MSC:12E20,11T06 1 v 1. Introduction 3 4 LetF bethefinitefieldwithqn elements,whereqisaprimepowerandnisa 6 qn 5 positiveinteger. Recallthatanelementα ∈ F issaidtobenormaloverF ifA = qn q 0 {α,αq,··· ,αqn−1}isabasisofF overF ;Aiscalledanormalbasis. Normalbasis . qn q 1 are frequently used in cryptography and computer algebra systems; sometimes it 0 7 is useful to take normal basis composed by primitive elements, i.e., generators of 1 the multiplicative group F∗ . The Primitive Normal Basis Theorem states that for qn v: any extension field Fqn of Fq, there exists a basis composed by primitive normal i elements;thisresultwasfirstprovedbyLenstraandSchoof[6]andaproofwithout X theuseofacomputerwaslattergivenin[3]. r a Acharacterization ofnormalelements isgivenin([7],Theorem2.39): anele- mentα ∈ F isnormaloverF ifandonlyifthepolynomials qn q n−1 g (x) := αqixn−1−i and xn−1, α Xi=0 arerelativelyprimeoverF . Motivatedbythischaracterization, in[5],theauthors qn introduce k−normalelements: Emailaddress: [email protected](LucasReis) PreprintsubmittedtoElsevier January23,2017 Definition1.1. Letα ∈ F∗ andg (x) = n−1αqi·xn−1−i. Wesaythatαisk−normal qn α i=0 overFq ifthegreatest commondivisor oPf xn−1andgα(x)overFqn hasdegreek. From definition, 0−normal elements correspond to normal elements in the usual sense. In the same paper, the authors give a characterization of k−normal elementsandfindaformulafortheirnumber. Also,theyobtainanexistenceresult onprimtive1−normalelements: Theorem 1.2 ([5], Theorem 5.10). Let q = pe be a prime power and n a positive integer notdivisible by p. Assumethatn ≥ 6ifq ≥ 11andthatn ≥ 3if3 ≤ q ≤ 9. Thenthereexistsaprimitive1−normalelementofF overF . qn q Theauthors proposeanextensionoftheabovetheorem forallpairs(q,n)with n ≥ 2asaproblem ([5],Problem6.2);theyconjectured thatsuchelementsalways exist. However, it was proved in [1] that for odd q > 3 and n = 2, there are no primitive 1−normal elements of F over F . The aim of this note is to extend q2 q Theorem 1.2 to the case when q = 2 and n is odd. Essentially, we show that the toolsusedin[5]toproveTheorem1.2canbeadaptedtothatcase. 2. Existenceofprimitive1−normalelementsoverF 2 First, we present some definitions and results that will be useful in the rest of thispaper. Definition2.1. (a) Let f(x)beamonicpolynomialwithcoefficientsinF . TheEulerPhiFunction q forpolynomials overF isgivenby q F [x] ∗ Φ (f) = q , q (cid:12) hfi ! (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) wherehfiistheidealgenerated by f((cid:12)x)inF [x(cid:12)]. (cid:12) q (cid:12) (b) If t is a positive integer (or a monic polynomial over F ), W(t) denotes the q numberofsquare-free (monic)divisors oft. We have an interesting formula for the number of k−normal elements over finitefields: Lemma2.2([5],Theorem3.5). Thenumber N ofk−normalelementsofF over k qn F isgivenby q Φ (h), (1) q hX|xn−1 deg(h)=n−k wherethedivisorsaremonicandpolynomial divisionisoverF . q 2 In particular, if n ≥ 2, the number of 1−normal elements of F over F is at qn q leastequaltoΦ (T),whereT = xn−1. q x−1 2.1. Asieveinequality The proof of Theorem 1.2 is based in an application of the Lenstra-Schoof method, introduced in [6]; this method has been used frequently in the character- ization of elements in finite fields with particular properties like being primitive, normal and of zero-trace. For more details, see [3] and [5]. In particular, from Corollary5.8of[5],wecaneasilydeducethefollowing: Lemma2.3. Supposethatqisapowerofaprime p,n ≥ 2isapositiveintegernot divisible by pandT(x) = xn−1. If x−1 W(T)·W(qn−1) < qn/2−1, (2) thenthereexist1−normalelementsofF overF . qn q Inequality (2) is an essential step in the proof of Theorem 1.2 and it was first studied in[2]; under thecondition that n ≥ 6for q ≥ 11and n ≥ 3 for3 ≤ q ≤ 9, this inequality is not true only for afinite number ofpairs (q,n) (see Theorem 4.5 of[2]). Hereweextendthestudy ofinequality (2)tothecasewhenq = 2andnis odd. First,wehavethefollowing: Proposition 2.4. Suppose that n ≥ 3 is odd and T(x) := xn−1 ∈ F [x]. Then x−1 2 W(T) ≤ 2n+59. Proof. For each 2 ≤ i ≤ 4, let s be the number of irreducible factors of degree i i dividingT(x). Sincenisodd,T(x)hasnolinearfactor. Byadirectverificationwe seethatthenumberofirreducible polynomials overF ofdegrees2,3and4is1,2 2 and 3, respectively. Hence s ≤ 1,s ≤ 2 and s ≤ 3. In particular, the number of 2 3 4 irreducible factorsofT(x)overF isatmost 2 n−1−2s −3s −4s n−1+3s +2s + s 2 3 4 + s + s + s = 2 3 4. 2 3 4 5 5 Since n−1+3s2+2s3+s4 ≤ n−1+3+4+3 = n+9,weconclude theproof. 5 5 5 AccordingtoLemma7.5in[4],W(2n−1) < 27n+2 ifnisodd. Inparticular, we obtainthefollowing: Corollary 2.5. Suppose that n , 15 is odd, q = 2 and T(x) = xn−1 ∈ F [x]. For x−1 2 n > 9,inequality (2)holds. 3 Proof. Noticethat n+9+n+2< n−1forn≥ 31. FromProposition2.4andLemma 5 7 2 7.5of[4],itfollowsthatinequality (2)holdsforoddn ≥ 31. Theremaining cases canbeverifieddirectly. Wearereadytostateandproveourresult: Theorem 2.6. Suppose that n ≥ 3 is odd. Then there exist a primitive 1−normal elementofF overF . 2n 2 Proof. AccordingtoLemma2.3andCorollary2.5,thisstatementistrueforn > 9 if n , 15. For the remaining cases n = 3,5,7,9 and 15 we use the following argument. LetPbethenumberofprimitiveelementsofF and N thenumberof 2n 1 1−normalelementsofF overF ;ifP+N > 2n,thereexistsaprimitive1−normal 2n 2 1 element of F over F . Notice that P = ϕ(2n −1) and, according to Lemma 2.2, 2n 2 N ≥ Φ xn−1 . Byadirectcalculation weseethat 1 2 x−1 (cid:16) (cid:17) xn−1 ϕ(2n−1)+Φ > 2n, 2 x−1 ! forn = 3,5,7,9and15. Thiscompletes theproof. References [1] M. Alizadeh. Some notes on the k−normal elements and k−normal polyno- mialsoverfinitefields,Journal ofAlgebraandItsApplications 16(2017). [2] S.D.Cohen,D.Hachenberger, Primitivenormalbaseswithprescribedtrace, ApplicableAlgebrainEngineering,CommunicationandComputing9(1999) 383403. [3] S. D. Cohen, S. Huczynska. The primitive normal basis theorem - without a computer, JournaloftheLondonMathematical Society67(2003)41-56. [4] S.D.Cohen. Pairsofprimitive elements infields ofevenorder, FiniteFields Appl.28(2014)22-42. [5] S. Huczynska, G.L. Mullen, D. Panario, and D. Thomson, Existence and properties of k−normal elements over finite fields, Finite Fields Appl. 24 (2013)170-183. [6] H.W.Lenstra,R.Schoof,Primitivenormalbasesforfinitefields,Mathemat- icsofComputation 48(1987)217-231. [7] R. Lidl, H. Niederreiter, Finite Fields: Encyclopedia ofMathematics and Its Applications, vol.20,2nded.CambridgeUniversityPres,Cambridge, 1997. 4