ebook img

A note on primitive $1-$normal elements over finite fields PDF

0.04 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A note on primitive $1-$normal elements over finite fields

A note on primitive 1−normal elements over finite fields LucasReis 7 DepartamentodeMatema´tica,UniversidadeFederaldeMinasGerais,UFMG,BeloHorizonte, 1 MG,30123-970,Brazil 0 2 n a J 9 Abstract 1 Let q be a prime power of a prime p, n a positive integer and Fqn the finite field ] with qn elements. The k−normal elements over finite fields were introduced and T characterizedbyHuczynskaetal(2013). Undertheconditionthatnisnotdivisible N by p,theyobtainedanexistenceresultonprimitive1−normalelementsofF over . qn h F forq> 2. Inthisnote,weextendtheirresulttotheexcluded caseq = 2. t q a m Keywords: FiniteFields,NormalBasis,k-normalelements,Primitiveelements [ 2010MSC:12E20,11T06 1 v 1. Introduction 3 4 LetF bethefinitefieldwithqn elements,whereqisaprimepowerandnisa 6 qn 5 positiveinteger. Recallthatanelementα ∈ F issaidtobenormaloverF ifA = qn q 0 {α,αq,··· ,αqn−1}isabasisofF overF ;Aiscalledanormalbasis. Normalbasis . qn q 1 are frequently used in cryptography and computer algebra systems; sometimes it 0 7 is useful to take normal basis composed by primitive elements, i.e., generators of 1 the multiplicative group F∗ . The Primitive Normal Basis Theorem states that for qn v: any extension field Fqn of Fq, there exists a basis composed by primitive normal i elements;thisresultwasfirstprovedbyLenstraandSchoof[6]andaproofwithout X theuseofacomputerwaslattergivenin[3]. r a Acharacterization ofnormalelements isgivenin([7],Theorem2.39): anele- mentα ∈ F isnormaloverF ifandonlyifthepolynomials qn q n−1 g (x) := αqixn−1−i and xn−1, α Xi=0 arerelativelyprimeoverF . Motivatedbythischaracterization, in[5],theauthors qn introduce k−normalelements: Emailaddress: [email protected](LucasReis) PreprintsubmittedtoElsevier January23,2017 Definition1.1. Letα ∈ F∗ andg (x) = n−1αqi·xn−1−i. Wesaythatαisk−normal qn α i=0 overFq ifthegreatest commondivisor oPf xn−1andgα(x)overFqn hasdegreek. From definition, 0−normal elements correspond to normal elements in the usual sense. In the same paper, the authors give a characterization of k−normal elementsandfindaformulafortheirnumber. Also,theyobtainanexistenceresult onprimtive1−normalelements: Theorem 1.2 ([5], Theorem 5.10). Let q = pe be a prime power and n a positive integer notdivisible by p. Assumethatn ≥ 6ifq ≥ 11andthatn ≥ 3if3 ≤ q ≤ 9. Thenthereexistsaprimitive1−normalelementofF overF . qn q Theauthors proposeanextensionoftheabovetheorem forallpairs(q,n)with n ≥ 2asaproblem ([5],Problem6.2);theyconjectured thatsuchelementsalways exist. However, it was proved in [1] that for odd q > 3 and n = 2, there are no primitive 1−normal elements of F over F . The aim of this note is to extend q2 q Theorem 1.2 to the case when q = 2 and n is odd. Essentially, we show that the toolsusedin[5]toproveTheorem1.2canbeadaptedtothatcase. 2. Existenceofprimitive1−normalelementsoverF 2 First, we present some definitions and results that will be useful in the rest of thispaper. Definition2.1. (a) Let f(x)beamonicpolynomialwithcoefficientsinF . TheEulerPhiFunction q forpolynomials overF isgivenby q F [x] ∗ Φ (f) = q , q (cid:12) hfi ! (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) wherehfiistheidealgenerated by f((cid:12)x)inF [x(cid:12)]. (cid:12) q (cid:12) (b) If t is a positive integer (or a monic polynomial over F ), W(t) denotes the q numberofsquare-free (monic)divisors oft. We have an interesting formula for the number of k−normal elements over finitefields: Lemma2.2([5],Theorem3.5). Thenumber N ofk−normalelementsofF over k qn F isgivenby q Φ (h), (1) q hX|xn−1 deg(h)=n−k wherethedivisorsaremonicandpolynomial divisionisoverF . q 2 In particular, if n ≥ 2, the number of 1−normal elements of F over F is at qn q leastequaltoΦ (T),whereT = xn−1. q x−1 2.1. Asieveinequality The proof of Theorem 1.2 is based in an application of the Lenstra-Schoof method, introduced in [6]; this method has been used frequently in the character- ization of elements in finite fields with particular properties like being primitive, normal and of zero-trace. For more details, see [3] and [5]. In particular, from Corollary5.8of[5],wecaneasilydeducethefollowing: Lemma2.3. Supposethatqisapowerofaprime p,n ≥ 2isapositiveintegernot divisible by pandT(x) = xn−1. If x−1 W(T)·W(qn−1) < qn/2−1, (2) thenthereexist1−normalelementsofF overF . qn q Inequality (2) is an essential step in the proof of Theorem 1.2 and it was first studied in[2]; under thecondition that n ≥ 6for q ≥ 11and n ≥ 3 for3 ≤ q ≤ 9, this inequality is not true only for afinite number ofpairs (q,n) (see Theorem 4.5 of[2]). Hereweextendthestudy ofinequality (2)tothecasewhenq = 2andnis odd. First,wehavethefollowing: Proposition 2.4. Suppose that n ≥ 3 is odd and T(x) := xn−1 ∈ F [x]. Then x−1 2 W(T) ≤ 2n+59. Proof. For each 2 ≤ i ≤ 4, let s be the number of irreducible factors of degree i i dividingT(x). Sincenisodd,T(x)hasnolinearfactor. Byadirectverificationwe seethatthenumberofirreducible polynomials overF ofdegrees2,3and4is1,2 2 and 3, respectively. Hence s ≤ 1,s ≤ 2 and s ≤ 3. In particular, the number of 2 3 4 irreducible factorsofT(x)overF isatmost 2 n−1−2s −3s −4s n−1+3s +2s + s 2 3 4 + s + s + s = 2 3 4. 2 3 4 5 5 Since n−1+3s2+2s3+s4 ≤ n−1+3+4+3 = n+9,weconclude theproof. 5 5 5 AccordingtoLemma7.5in[4],W(2n−1) < 27n+2 ifnisodd. Inparticular, we obtainthefollowing: Corollary 2.5. Suppose that n , 15 is odd, q = 2 and T(x) = xn−1 ∈ F [x]. For x−1 2 n > 9,inequality (2)holds. 3 Proof. Noticethat n+9+n+2< n−1forn≥ 31. FromProposition2.4andLemma 5 7 2 7.5of[4],itfollowsthatinequality (2)holdsforoddn ≥ 31. Theremaining cases canbeverifieddirectly. Wearereadytostateandproveourresult: Theorem 2.6. Suppose that n ≥ 3 is odd. Then there exist a primitive 1−normal elementofF overF . 2n 2 Proof. AccordingtoLemma2.3andCorollary2.5,thisstatementistrueforn > 9 if n , 15. For the remaining cases n = 3,5,7,9 and 15 we use the following argument. LetPbethenumberofprimitiveelementsofF and N thenumberof 2n 1 1−normalelementsofF overF ;ifP+N > 2n,thereexistsaprimitive1−normal 2n 2 1 element of F over F . Notice that P = ϕ(2n −1) and, according to Lemma 2.2, 2n 2 N ≥ Φ xn−1 . Byadirectcalculation weseethat 1 2 x−1 (cid:16) (cid:17) xn−1 ϕ(2n−1)+Φ > 2n, 2 x−1 ! forn = 3,5,7,9and15. Thiscompletes theproof. References [1] M. Alizadeh. Some notes on the k−normal elements and k−normal polyno- mialsoverfinitefields,Journal ofAlgebraandItsApplications 16(2017). [2] S.D.Cohen,D.Hachenberger, Primitivenormalbaseswithprescribedtrace, ApplicableAlgebrainEngineering,CommunicationandComputing9(1999) 383403. [3] S. D. Cohen, S. Huczynska. The primitive normal basis theorem - without a computer, JournaloftheLondonMathematical Society67(2003)41-56. [4] S.D.Cohen. Pairsofprimitive elements infields ofevenorder, FiniteFields Appl.28(2014)22-42. [5] S. Huczynska, G.L. Mullen, D. Panario, and D. Thomson, Existence and properties of k−normal elements over finite fields, Finite Fields Appl. 24 (2013)170-183. [6] H.W.Lenstra,R.Schoof,Primitivenormalbasesforfinitefields,Mathemat- icsofComputation 48(1987)217-231. [7] R. Lidl, H. Niederreiter, Finite Fields: Encyclopedia ofMathematics and Its Applications, vol.20,2nded.CambridgeUniversityPres,Cambridge, 1997. 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.