ebook img

A New Weighting Factor In Combining Belief Function PDF

2017·0.84 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A New Weighting Factor In Combining Belief Function

RESEARCHARTICLE A new weighting factor in combining belief function DeyunZhou1,QianPan1*,GyanChhipi-Shrestha2,XiaoyangLi1,KunZhang1, KasunHewage2,RehanSadiq2 1 SchoolofElectronicsandInformation,NorthwesternPolytechnicalUniversity,Xi’an,China,2 Schoolof Engineering,UniversityofBritishColumbiaOkanagan,Kelowna,BC,Canada *[email protected],[email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 a1111111111 Dempster-Shaferevidencetheoryhasbeenwidelyusedinvariousapplications.However, tosolvetheproblemofcounter-intuitiveoutcomesbyusingclassicalDempster-Shafercom- binationruleisstillanopenissuewhilefusingtheconflictingevidences.Manyapproaches basedondiscountedevidenceandweightedaverageevidencehavebeeninvestigatedand havemadesignificantimprovements.Nevertheless,alloftheseapproacheshaveinherent OPENACCESS flaws.Inthispaper,anewweightingfactorisproposedtoaddressthisproblem.First,a Citation:ZhouD,PanQ,Chhipi-ShresthaG,LiX, modifieddissimilaritymeasurementisproposedwhichischaracterizedbybothdistance ZhangK,HewageK,etal.(2017)Anewweighting factorincombiningbelieffunction.PLoSONE12 andconflictbetweenevidences.Second,ameasurementofinformationvolumeofeachevi- (5):e0177695.https://doi.org/10.1371/journal. dencebasedonDengentropyisintroduced.Thentwokindsofweightderivedfromafore- pone.0177695 mentionedmeasurementarecombinedtoobtainanewweightingfactorandaweighted Editor:YongDeng,SouthwestUniversity,CHINA averagemethodbasedonthenewweightingfactorisproposed.Numericalexamplesare Received:December19,2016 usedtoillustratethevalidityandeffectivenessoftheproposedmethod.Intheend,thenew methodisappliedtoareal-lifeapplicationofriverwaterqualitymonitoring,whicheffectively Accepted:May2,2017 identifythemajorlanduseactivitiescontributingtoriverpollution. Published:May25,2017 Copyright:©2017Zhouetal.Thisisanopen accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and Introduction reproductioninanymedium,providedtheoriginal authorandsourcearecredited. Dempster-Shafer(D-S)evidencetheoryprovidesareasonableandefficientwaytodealwith theinformationwhichisuncertainanddiscordant.Ithasbeenextensivelyusedinvarious DataAvailabilityStatement:ThedatainExample applicationsrelatedtodecision-makingsuchasinformationfusion[1–3],uncertainreasoning 5couldbeobtainedinthepublishedpaperof "Combinationofsourcesofevidencewithdifferent [4],faultdiagnosis[5],riskanalysis[6–9],cognitivemap[10],targetrecognitionandassocia- discountingfactorsbasedonanewdissimilarity tion[11–13].UnliketheprobabilitytheoryandBayesiantheory,theD-Sevidencetheory measure."Thedataintheapplicationof requiresfewpriorconditionsandknowledgewheninformationisprocessed.Forexample,the identificationofmajorlanduseactivities EvidentialReasoning(ER)algorithmisageneralizedBayesianinferenceprocessandtheER contributingtoriverpollutionarefrom"Riverwater rulerevealsthatthecombineddegreeofjointsupportforapropositionfromtwopiecesof qualityassessmentoftheManaharariverbyusing independentevidenceconstitutestwopartsingeneral[14–16].Whenthereisnoprioriinfor- macroinvertebratesasbiologicalindicators, KathmanduValley"studyareavailableinFigshare mation,theERrulewillreducetotheD-Scombinationrule.Moreover,thecombinationrule (https://doi.org/10.6084/m9.figshare.4980803). oftheD-Sevidencetheorysatisfiessomeofmathematicalproperties,suchascommutativity andassociativity.However,counter-intuitiveresultsmayoccurredbythenormalizationstep Funding:ThisworkwassupportedbytheNational NaturalScienceFoundationofChina(GrantNo. oftheclassicalD-Scombinationrulewhencollectedsourcesofevidencehighlyconflictwith PLOSONE|https://doi.org/10.1371/journal.pone.0177695 May25,2017 1/20 Anewweightingfactorincombiningbelieffunction 61401363)(K.Z.);NaturalSciencesand eachother,aspointedoutbyZadeh[17].TheeffectivenessoftheD-Sevidencetheorywillbe EngineeringResearchCouncilofCanada(NSERC) considerablyreducedbythisdeficiency. CollaborativeResearchandDevelopmentGrants Evidently,itiscrucialtohandletheevidenceswithhighconflict.Inthelastfewyears,many (GrantNo.CRDPJ446638-12)(K.H.);Scienceand researchershavecarriedoutcomprehensiveresearchandhaveappliedaseriesofmodifica- TechnologyonAvionicsIntegrationLaboratoryand tionstotheconventionalevidencecombinationrule[18–24].Ingeneral,theexistingmethods AeronauticalScienceFoundation(GrantNo. 20155153034)(K.Z.);FundamentalResearch canbedividedintotwokindsofsolutions:revisalofthecombinationruleandrevisalofthe FundsfortheCentralUniversities(GrantNo. evidences,fortheproblemofhighlevelconflictevidencefusion.Proponentsofthefirstargu- 3102016AXXX005,3102015BJIIJGZ009)(K.Z.). mentpresentthatillogicalresultsarecausedbyinappropriatedistributionoftheconflictinfor- Thefundershadnoroleinstudydesign,data mation.Therefore,themodifiedmethodsbasedontherevisalofthecombinationrulemainly collectionandanalysis,decisiontopublish,or focusonalteringtheassignmentofconflictinformation[2,18,21,25–27].Amongthem,solu- preparationofthemanuscript. tionsofthetransferablebeliefmodel(TBM)andDezert-Smarandachetheory(DSmT)are Competinginterests:Theauthorshavedeclared morepopular.TheTBMdevelopsamethodtotransferthebasicbeliefassignments(BBAs)to thatnocompetinginterestsexist. probabilities,butthemethodonlycanbeusedinclosedworld[25,28].DSmTextendsthe assignmentuniverseofBBAsfromapowersettoasuperpowersetwhichismorethorough andcomplete,andcorrespondingcombinationmodelsandrulesaredevelopedaswell[27]. Nonetheless,themodifiedcombinationruleshavelimitationsinsomesituation.Forexample, mostofthemodifiedcombinationrulesarenotcommutativeandassociativeandaretime consumingwhendealingwithalargeamountofevidences. Theothermodification,revisaloftheevidences,preprocessesconflictevidencesbefore combinationprocess.ThefavorablemathematicalpropertiesoftheD-Scombinationruleare reservedintheimprovementastheydonotchangetheD-Scombinationrule.Manyrelated workhavebeenproposedtosupportthismodificationmethod[22–24,29–32].Murphy[29] generatesanewevidencebyaveragingNevidenceswithequalweightsandthencombineit withN-1times.Basedonthisidea,Deng[22]proposesaweightedaveragingmethodtoobtain thenewevidence.Besidestheweightedaveragingmethod,thediscountingmethodalsoplays animportantroleinpreprocessingconflictevidences.Theweightingfactorofboththe weightedaveragemethodanddiscountingmethodcanbeidentifiedbyevidencedistance, whichisusuallyusedtodescribetheconflictordissimilarity[33–35].Liu[35]arguesthatthe conflictcoefficientkintheevidencetheoryisinadequatetoreflectthedegreeofconflictand dissimilaritybetweenevidences,andheutilizesatwo-dimensioncell<evidenceconflict,evi- dencedistance>tomeasurethedissimilaritybetweenevidences.Thecellisindeedmorecom- prehensiveandadequatethanthesinglecoefficientkwhendescribingthedissimilarity,butit alsohasintrinsicshortcomingsinpracticalsituation.Forinstance,theconflicttolerance thresholdεislargelysubjectiveanddependsontheperceptionofadecisionmaker.Inaddi- tion,thecellisnotsyncretizedinthecombinationrule.Adissimilaritymeasureisproposed onthebasisofHamacherT-conormfusionrulesgivenbyLiu,whoconsidersnotonlytheevi- denceconflictanddistancebutalsocombinesitinthecombinationruleasadiscount[36]. Nevertheless,therearetwofoldlimitationsassociatedwiththemathematicalmodeling.First, sincetheconflictfactorsonlyusethemaximalsubjectiveprobabilityoftheBBAs,itcannot solvethesituationrelatedtothepropositionswithequalbeliefvalues,whichareinvestigated inSection3.Second,combiningtheevidenceonebyonehasalowconvergencerate. Besidesevidenceconflictanddistance,theevidencevolumeisanothercriteriontomeasure theimportanceofanevidence[37].Ifanevidencehasmoreinformation,itshouldhavea greaterimpactonthefinalaggregatedresult.Dengentropy[38],asageneralizationofShan- nonentropy,canmeasuretheevidenceinformationvolumeundertheframeworkofD-Sevi- dencetheory.Inthispaper,Dengentropyandmodifieddissimilaritymeasureareusedto formanewweightingfactor.Thenthenewcombinationruleofevidenceiscarriedoutbased onthenewweightingfactor,whichhasimprovedtheversatilityandhasafastconvergence rate. PLOSONE|https://doi.org/10.1371/journal.pone.0177695 May25,2017 2/20 Anewweightingfactorincombiningbelieffunction Thispaperisorganizedasfollows.Section2describessomebasicconceptsrelatedtothe D-Sevidencetheoryanddissimilaritymeasure.Section3presentsproblemsofexistingconflict coefficients,especiallythelimitationsofLiu’smethod.Section4investigatesthenewweighting factorofmodifieddissimilarityandDengentropy,andsomeexamplesandanalysisarepre- sentedtoshowthesuperiorityandeffectivenessofproposedmethod.InSection5,thepro- posedmethodisusedinareal-lifeapplicationoftheidentificationofwaterpollutionsources. Finally,conclusionsaredrawninSection6. Preliminaries 2.1BasicsofD-Sevidencetheory Definition1.SupposeΘbeanonemptyfinitesetofmutuallyexclusivealternativesanddefined asframeofdiscernment.SetofallthepossiblesubsetsofΘ,denotedby2Θ,iscalledpowerset. Themappingm:2Θ![0,1]isdefinedasthebasicbeliefassignment(BBA)(alsoknownas basicprobabilityassignment,BPA)[39,40].TheBBAsatisfies P mðAÞ¼1 ð1Þ A(cid:18)Y mð;Þ¼0 ð2Þ wherem(A)reflectsthestrengthofeachofevidencesupportforthepropositionAintheframe ofdiscernment,and;denotestheemptysetofΘ.Aiscalledthefocalelement,ifm(A)>0. Definition2.ThebelieffunctionBel(A)andplausibilityfunctionPl(A)fromaBBAare definedas P BelðAÞ¼ mðBÞ ð3Þ B(cid:18)A P PlðAÞ¼ mðBÞ ð4Þ B\A6¼; whereBel(A)representstheamountofbeliefthatdefinitelysupportA,andthePl(A)couldbe viewedastheamountofbeliefthatpotentiallyplacedinA. Definition3.Letm andm betwoBBAsdefinedonthesameframeΘ.D-Sevidencetheory 1 2 combinationruleisexpressedas 8P < m ðBÞm ðCÞ B\C¼A 1 2 A6¼; mðAÞ¼ 1(cid:0) k ð5Þ : 0 A¼; with P k¼ m ðBÞm ðCÞ ð6Þ B\C¼; 1 2 wherekisnamedasconflictcoefficienttomeasurethedegreeofconflictbetweentwoBBAs. Thecombinationruleisoutofworkwhenk=1. Zadeh[17]presentsafamousexamplethattheD-Scombinationrulewillproduceanunex- pectedresult.SupposeaframeisΘ={A,B,C}andtwoBBAsaregivenas m :m ðAÞ¼0:99;m ðBÞ¼0:01 1 1 1 m :m ðBÞ¼0:01;m ðCÞ¼0:99 2 2 2 bytheD-Scombinationrule,theaggregatedresultisk=0.9999,m(A)=m(C)=0andm(B)= 1,whichisobviouslycounter-intuitiveandunreasonable. PLOSONE|https://doi.org/10.1371/journal.pone.0177695 May25,2017 3/20 Anewweightingfactorincombiningbelieffunction 2.2Jousselmedistance Jousselmedistance[32],consideringboththemassandcardinalityoffocalelementsofeach BBA,iscommonlyusedasthemeasureofdissimilarity. Definition4.Letm andm betwoBBAsonthesameframeΘ,containingNmutually 1 2 exclusiveandexhaustivepropositions.TheJousselmedistancebetweenm andm aredefined 1 2 as qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi dm1 ¼ 0:5(cid:3)ðkm k2þkm k2(cid:0) 2hm ;m iÞ ð7Þ Jm2 1 2 1 2 wherekm k2=hm ,m i,km k2=hm ,m iandhm ,m iisgivenby 1 1 1 2 2 2 1 2 P P jA \Bj hm ;m i¼ 2N 2Nm ðAÞm ðBÞ i j ð8Þ 1 2 i¼1 j¼1 1 i 2 j jA [Bj i j withA andB aretheelementsofthepowerset2Θ.|A \B|and|A [B|denotethecardinality i j i j i j intersectionsetandunionsetofA andB. i j 2.3Probabilistic-baseddistance SincetheprobalilistictransformationhasanabilitytoconvertaBBAfromthefocalelements intoaprobabilitymeasureofdistinctatomic,itprovidesaprobabilistic-baseddistancetomea- surethedissimilarityoftwoevidences[41]. Definition5.LetmbeaBBAonaframeΘ,andtheprobabilisticexpressionofasingleton elementBinΘcouldbeobtainedbypignisticprobabilityfunction P mðAÞ BetP ðBÞ¼ ð9Þ m A22Y;B(cid:18)A jAj where|A|isthecardinalityofpropositionA.If|A|=1,thenB=AandBetP(B)=BetP(A)=m (A). Definition6.Letm andm betwoBBAsonthesameframeΘandletBetP andBetP be 1 2 m1 m2 theresultsofpignisticprobabilitytransformationofm andm ,theprobabilistic-baseddis- 1 2 tancedifBetPm2 isdefinedas m1 difBetPm2 ¼max ðjBetP ðAÞ(cid:0) BetP ðAÞjÞ ð10Þ m1 A2Y m1 m2 andtheMurkowskidistance[36]proposedbyLiuisdefinedas P distPm2 ¼ 0:5(cid:3)ðjBetP ðAÞ(cid:0) BetP ðAÞjÞ ð11Þ m1 Ai2Y m1 i m2 i 2.4Combinatorialdissimilaritymeasure Somecompounddissimilaritymeasuresarepresentedbasedontheconflictcoefficient,evi- dencedistanceandprobabilistic-baseddistance. Definition7.Letm andm betwoBBAsonthesameframeΘ,andacombinatorialdissimi- 1 2 laritymeasurebasedontheconflictcoefficientkm2andprobabilistic-baseddistancedifBetPm2 m1 m1 isdefinedas cfm1 ¼hkm2;difBetPm2i ð12Þ m2 m1 m1 m1andm2areinconflict,iffbothkmm21 >εanddifBetPmm12 >ε.ε2[0,1]denotesthethreshold ofconflicttolerance,andidentifiedaccordingtodifferentapplications[35]. PLOSONE|https://doi.org/10.1371/journal.pone.0177695 May25,2017 4/20 Anewweightingfactorincombiningbelieffunction Definition8.Letm andm betwoBBAsonthesameframeΘ,andacombinatorialdissimi- 1 2 laritymeasure[42]basedontheconflictcoefficientkm2andJousselmedistancedm2 isdefined m1 Jm1 as 1 k ¼ (cid:2)ðkm2þdm2Þ ð13Þ d 2 m1 Jm1 Definition9.Letm andm betwoBBAsonthesameframeΘandletBetP andBetP be 1 2 m1 m2 theresultsofpignisticprobabilitytransformationofm andm .Thenacombinatorialdissimi- 1 2 laritymeasurebasedontheHamacherT-conormfusionrules[43]isdefinedas distPm2 þConfPm2 DismPm2≜TðdistPm2;ConfPm2Þ¼ m1 m1 ð14Þ m1 m1 m1 1þdistPm2 (cid:1)ConfPm2 m1 m1 whereConfPm2 denotestheconflictcoefficientbasedonthepignisticprobability, m1 ( 0; if BetPðXmaxÞ\BetPðXmaxÞ6¼; ConfPm2 ¼ m1 m2 ð15Þ m1 BetPðXmaxÞ(cid:1)BetPðXmaxÞ; otherwise m1 m2 whereBetPðXmaxÞ¼arg max BetP ðxÞ;i¼1;2 m1 x2Y mi 2.5Dengentropy Dengentropy,asageneralizationofShannonentropy,provideasolutiontomeasuretheinfor- mationvolumeofaBBA.ItisobservedthattheDengentropyandShannonentropycorre- spondtoanuncertaindegreeofmeasurement[38]. Definition10.LetmbeaBBAontheframeΘandtheDengentropyofmisdefinedas P mðAÞ E ¼(cid:0) mðAÞlog i ð16Þ d i i 2jAij(cid:0) 1 whereA isapropositioninBBAm,and|A|isthecardinalityofA.TheDengentropywill i i i becomeidenticaltoShannonentropyif|A|=1,thatis i P mðAÞ P E ¼(cid:0) mðAÞlog i ¼(cid:0) mðAÞlogmðAÞ ð17Þ d i i 2jAij(cid:0) 1 i i i LimitationsofexitingdissimilaritymeasurementsbetweenBBAs Example1.Letm ,m andm bethreeBBAsonthesameframeΘwithfourpropositionsΘ= 1 2 3 {A ,A ,A ,A }.ThethreeBBAsaregivenas 1 2 3 4 m : m ðA Þ¼m ðA Þ¼m ðA Þ¼m ðA Þ¼0:25 1 1 1 1 2 1 3 1 4 m : m ðA Þ¼m ðA Þ¼m ðA Þ¼m ðA Þ¼0:25 2 2 1 2 2 2 3 2 4 m : m ðA Þ¼m ðA Þ¼m ðA Þ¼1=3 3 3 1 3 2 3 3 wecangettheconflictcoefficientskm2 ¼0:75andkm3 ¼0:67byusingEq(6)betweenthe m1 m1 BBAs.Theresultshowsthatthedegreeofconflictbetweenm andm isbiggerthanthedegree 1 2 ofconflictbetweenm andm ,andtheybothareinrelativehighconflict.Infact,thereisno 1 3 conflictintuitivelybetweenm andm becausetheyarethesame.ByusingtheEq(10)andEq 1 2 PLOSONE|https://doi.org/10.1371/journal.pone.0177695 May25,2017 5/20 Anewweightingfactorincombiningbelieffunction (12),wecangetthedifBetPmm12 ¼0andcf(m1,m2)=h0.75,0i,whichillustratesthatm1andm2 areconsistentandmeasurementofcoefficientkcannotmeasurethedegreeofconflictbetween theevidencesinthissituation.AlthoughthecombinedmeasurementimpliesthattheD-S combinationruleshouldbeused,itcannotconcludethathowmuchtheerrorwillbeconduct byusingthecombinationrule.Therefore,thecombinationrulehasalimitationintermsof providinganexplicitexpressionandcannotbeuseddirectlyinthecombinationrule. Example2.Letm andm betwoBBAsonthesameframeΘ={A ,A ,...,A },suchthat 1 2 1 2 2n 1 m : m ðA Þ¼m ðA Þ¼(cid:1)(cid:1)(cid:1)¼m ðA Þ¼ 1 1 1 1 2 1 n n (cid:0) (cid:1) (cid:0) (cid:1) 1 m : m A ¼m A ¼(cid:1)(cid:1)(cid:1)¼m ðA Þ¼ 2 2 nþ1 2 nþ2 2 2n n Itisobviousthatthem andm aretotallycontrarytoeachotherastheysupportthedifferent 1 2 propositions.Thedifferentdissimilaritiesbetweenm andm aredisplayedinFig1. 1 2 FromFig1,itisevidentthatthevaluesofthed,k ,anddifBetPare1,whenn=1,which J d areintuitive.Butwhenn>1,thevaluesofd anddifBetPtendto0,andk tendsto0.6,in- J d dicatingthatm andm aregettingcloserandlessconflictwiththeincreaseofn,whichare 1 2 counter-intuitiveandabnormal.OnlytheDismPkeeps1withtheincreasewithn,meaning thatthem andm aretotallyindisagreementwitheachother.Therefore,d,k ,anddifBetP 1 2 J d cannotbeusedasmeasurementofthedissimilaritybetweenBBAsinthisexample. Fig1.Differentdissimilaritymeasurements. https://doi.org/10.1371/journal.pone.0177695.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0177695 May25,2017 6/20 Anewweightingfactorincombiningbelieffunction SinceDismPconsidersnotonlythedistancebutalsotheconflictbetweenBBAs,themea- surementbasedontheHamacherT-conormfusionrulesprovidesageneralmethodofthedis- similarity.However,ithasdificiencyasshowninExample3. Example3.Letm andm betwoBBAsonthesameframeofdiscernmentΘ={A ,A ,..., 1 2 1 2 A }.Fornotationconciseness1,2,andsoforthhavebeenusedtodenoteA ,A ,andsoforth 20 1 2 intheframe.ThetwopairsofBBAsareshownas 1stPair: m : m ð2;3;4Þ¼0:05;m ð7Þ¼0:05;m ðYÞ¼0:1;m ðDÞ¼0:8 1 1 1 1 1 m m ð1;2;3;4;5Þ¼1 2: 2 2ndPair: m : m ð2;3;4Þ¼0:05;m ð7Þ¼0:05;m ðYÞ¼0:1;m ðDÞ¼0:8 1 1 1 1 1 m : m ð1;2;3;4;5Þ¼0:5; m ð6;7;8;9;10Þ¼0:5 2 2 2 wheretheΔisasubsetofΘ.Thisexampleconsiders20casesofthesubsetΔ,whichincreases byaddinganewelementateachcasefromΔ={1}toΔ={1,2,...,20}.Thecomparisonofthe dissimilaritymeasurementsbetweenm andm ofthetwopairsareshowninFigs2and3 1 2 respectively. FromFigs2and3,itcanbeseenthatthedistPandDismPareverycloseandfollowthe sametrend,sincetheDismParemainlydecidedbythedistPandConfP.AscalculatedinEq (15),themaximalpignisticprobabilitiesinbothm andm alwayshaveintersection.SoConfP 1 2 issmallwhentheΔincreasesfrom{1}to{1,2,...,20}.However,itisquitedistinctsituationof thetwopairsofBBAs.Inthe1stpair,bothBBAsdistributetheirmajorbelieftothesameele- mentswhenthecasesfrom1to6,whichcausethattheConfPkeeps0.Thisisreasonableasthe m onlyhasonefocalelementm (1,2,3,4,5)=1whichcorrespondstoclassicalconflictcoeffi- 2 2 cientk.Inthe2ndpair,m hastwoequalfocalelementsm (1,2,3,4,5)=0.5andm (6,7,8,9,10)= 2 2 2 0.5.Asthecasefrom1to5,thereshouldbeanotabledissimilaritybetweenm andm ,which 1 2 isshownaskinFig3.Nevertheless,thepignisticprobabilitytransformationdividesthebelief equallytoeachsinglepropositionasBetP ð1Þ¼BetP ð2Þ¼(cid:1)(cid:1)(cid:1)¼BetP ð10Þ¼0:1,indi- m2 m2 m2 catingthattheConfPconsidersthedissimilarityas0.Therefore,thedissimilaritymeasuresof ConfPandDismPareillogicalinthissituation.Althoughtheclassicalconflictcoefficientkcould depictsthedissimilarityfromcases1to5,itcannotreflectthevarietyofdivergencedegreeas thecaseincreases.NeitherdoesthedifBetP. Combiningbelieffunctionwithanewweightingfactor 4.1Amodifieddissimilaritymeasure Inthissection,amodifieddissimilaritymeasureisproposedwhichisbasedontheHamacher T-conormfusionrulestodescribethedissimilaritybetweenBBAs.Thedissimilaritymeasure- mentbasedonHamacherT-conormrulessatisfytwoimportantpropertiesofcommutativity andmonotonicity.Thecommutativitycouldensurethatthedissimilaritymatrixissymmetri- calandnomatterthefusionorderoftwoevidencesis,theirdissimilarityiscoincident.The monotonicityprovidesthatdissimilaritymeasurementhassinglevariationtrendinaspecific interval,whichiseasytocomparethedissimilaritybetweenevidences. PLOSONE|https://doi.org/10.1371/journal.pone.0177695 May25,2017 7/20 Anewweightingfactorincombiningbelieffunction Fig2.Comparisonofdissimilaritymeasuresofthe1stpairevidence. https://doi.org/10.1371/journal.pone.0177695.g002 Definition11.Letm andm betwoBBAsonthesameframeΘ.Themodifieddissimilarity 1 2 measureisdefinedas (cid:16) (cid:17) distPm2 þkm2 MDismPm2≜T distPm2;km2 ¼ m1 m1 ð18Þ m1 m1 m1 1þdistPm2 (cid:1)km2 m1 m1 wherekm2 istheclassicalconflictcoefficient. m1 P km2 ¼ m ðAÞm ðAÞ ð19Þ m1 Ai\Aj¼; 1 i 2 j Themodifieddissimilaritystillsatisfiesthebasicpropertiesofcommutativityand monotonicity: (1)Commutativity: MDismPðx;yÞ¼MDismPðy;xÞ ð20Þ (2)Monotonicity: 0(cid:20)MDismPðx;yÞ(cid:20)MDismPðx0;yÞ(cid:20)MDismPðx0;y0Þ(cid:20)1 ð21Þ where0(cid:20)x(cid:20)x0(cid:20)1and0(cid:20)y(cid:20)y0(cid:20)1. PLOSONE|https://doi.org/10.1371/journal.pone.0177695 May25,2017 8/20 Anewweightingfactorincombiningbelieffunction Fig3.Comparisonofdissimilaritymeasuresofthe2ndpairevidence. https://doi.org/10.1371/journal.pone.0177695.g003 Themodifieddissimilaritymeasurementconsistsofadistancecoefficientandaconflict coefficientbetweentwoevidences.Asboththedistancecoefficientandtheconflictcoefficient liein[0,1],themodifiedmeasurementislargerthanitseithercomponents.Theevidences havelargedistanceandhighconflictwiththemajorityofotherevidenceswouldhavealarger dissimilaritymeasurementandviceversa. Itisobviousthatthemodifieddissimilaritymeasurereplacestheconflictcoefficient ConfPm2 withkm2.TheConfPm2 impliesthatthemainconflictresultsfromdiscordantproposi- m1 m1 m1 tionswhicharestronglysupportedbytwoBBAsrespectively.However,theConfPm2 cannot m1 handlethesituationthatoneBBAhasseveralpropositionswithequalbelief.Asweseeit,the conflictcoefficientshouldinvolveallconflictsexistedbetweenBBAsnomatterhowsmallthe extentofconflictsis.Furthermore,theMDismPnotonlymaintainsgoodfeaturesbutalso makesupforshortcomingsofDismP. Example4.ConsideringtwopairsofBBAsfromExample3withtheproposeddissimilarity measureofMDismP,theresultsareplottedinFigs4and5. Fortheresultsofthe1stpairillustratedinFig4,thedistP,DismPandMDismPareidentical. ThelinesshowavariationtendencyfromahighdissimilaritywhenΔ={1}totheminimum dissimilaritywhenΔ={1,2,3,4,5}andincreaseagainasΔincludesmoreelements.Thisis becausethem onlyhasonepropositionandwhenΔ={1,2,3,4,5},thepropositionswiththe 2 PLOSONE|https://doi.org/10.1371/journal.pone.0177695 May25,2017 9/20 Anewweightingfactorincombiningbelieffunction Fig4.Comparisonofdissimilarityofthe1stpairevidence. https://doi.org/10.1371/journal.pone.0177695.g004 maximumbeliefoftwoBBAsareaccordant.InFig5,whenm hastwopropositionswith 2 equalbeliefvalue,theresultsaredifferent.TheMDismPhasabiggervaluethanthedistPand DismPwhenΔfrom{1}to{1,2,3,4,5}.ThedissimilarityvalueofMDismPisnear0.8before cases6,whichmeansthetwoBBAsareincompatiblewitheachother.Butthedissimilarityval- uesofdistPandDismParelessthan0.6,whichseemsunreasonable.Basedontheanalysisof theaboveexamples,aconclusioncanbedrawnthatthemodifieddissimilaritymeasure MDismPcanefficientlyreflectsthedegreeofdissimilaritybetweenBBAs. 4.2Weightingfactors Inthissection,weproposeanovelmethodtodeterminetheweightingfactorsamongBBAs basedonthemodifieddissimilaritymeasureandDengentropy. Theweightdeterminationsarebasedontheprinciplethatifanevidenceissupportedby greaternumberofevidences,thispieceofevidenceshouldbemoreimportantandhavelarge effectonthefinalcombinationresults.Moreover,ifanevidencehasconsiderableinformation, italsoshouldbeweightedmore[37]. SupposeNevidences{m ,m ,...,m }areinthesameframeofdiscernmentΘandthe 1 2 N weightofeachevidenceismadeupofthedegreeofsimilarityandinformationvolume.The PLOSONE|https://doi.org/10.1371/journal.pone.0177695 May25,2017 10/20

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.