ebook img

A New Star-Formation Rate Calibration from Polycyclic Aromatic Hydrocarbon Emission Features and Application to High Redshift Galaxies PDF

0.69 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A New Star-Formation Rate Calibration from Polycyclic Aromatic Hydrocarbon Emission Features and Application to High Redshift Galaxies

ACCEPTEDFORPUBLICATIONINAPJ PreprinttypesetusingLATEXstyleemulateapjv.01/23/15 ANEWSTAR-FORMATIONRATECALIBRATIONFROMPOLYCYCLICAROMATICHYDROCARBONEMISSION FEATURESANDAPPLICATIONTOHIGHREDSHIFTGALAXIES HEATHV.SHIPLEY1,2,CASEYPAPOVICH1,GEORGEH.RIEKE3,MICHAELJ.I.BROWN4,JOHNMOUSTAKAS5 AcceptedforpublicationinApJ ABSTRACT We calibrate the integrated luminosity from the polycyclic aromatic hydrocarbon(PAH) features at 6.2µm, 6 7.7µmand11.3µmingalaxiesasameasureofthestar-formationrate(SFR).Thesefeaturesarestrong(con- 1 tainingasmuchas5-10%ofthetotalinfraredluminosity)andsufferminimalextinction. Ourcalibrationuses 0 Spitzer InfraredSpectrograph(IRS) measurementsof 105galaxiesat0<z<0.4, infrared(IR) luminosities 2 of 109- 1012L⊙, combined with other well-calibrated SFR indicators. The PAH luminosity correlates lin- n early with the SFR as measuredby the extinction-correctedHα luminosityover the range of luminositiesin a our calibration sample. The scatter is 0.14 dex comparableto that between SFRs derived from the Paα and J extinction-correctedHαemissionlines,implyingthePAHfeaturesmaybeasaccurateaSFRindicatorashy- 7 drogen recombination lines. The PAH SFR relation depends on gas-phase metallicity, for which we supply anempiricalcorrectionforgalaxieswith0.2<Z<∼0.7Z⊙. WepresentacasestudyinadvanceoftheJames ] A Webb Space Telescope (JWST), which will be capable of measuring SFRs from PAHs in distant galaxies at the peakof the SFRdensity inthe universe(z∼2)with SFRs aslow as∼ 10 M yr- 1. We use Spitzer/IRS G ⊙ observationsofthePAHfeaturesandPaαemissionplusHαmeasurementsinlensedstar-forminggalaxiesat . 1<z<3todemonstratetheabilityofthePAHs toderiveaccurateSFRs. We also demonstratethatbecause h thePAHfeaturesdominatethemid-IRfluxes,broad-bandmid-IRphotometricmeasurementsfromJWST will p - traceboththeSFRandprovideawaytoexcludegalaxiesdominatedbyanAGN. o Keywords:galaxies:active—galaxies:evolution—galaxies:high-redshift—infrared:galaxies r t s a 1. INTRODUCTION their spectra generally show no [OII] emission beyond that [ Star-formationisafundamentalpropertyofgalaxyforma- expectedfromtheAGN(Ho2005),i.e.,thequasardominates 1 tion and evolution. Understanding the exact rate of star- the excitation and the line cannot be used to probe the host v formation and how it evolves with time and galaxy mass galaxies. UV continuum emission is a more general probe, 8 have deep implications for how galaxies form. Measuring but is also subject to extinction and to ambiguities of inter- 9 pretationingalaxieswithAGN.Restframeopticallines(e.g., accurate star-formation rates (SFRs) through cosmic time is 6 Hα)shiftedintothenear-IRareobservationallyexpensiveand therefore paramount for understanding galaxy evolution it- 1 alsosufferfromambiguitiesifthereisanAGN. self. Much work has been applied to calibrating emission 0 Deep IR surveys with the ISO, Spitzer and Herschel from the UV, nebular emission lines, far-IR, X-ray and ra- . Space Telescopes have proven to be a powerful tool to 1 dioastracersoftheSFRindistantgalaxies(seethereviewby 0 Kennicutt&Evans2012). explore SFRs across this range, and have revealed that 6 The epoch 1<z<3 is particularly interesting as it cor- the majority of star-formation at redshifts of z ∼ 1 - 1 responds to the peak cosmic SFR density in the Universe 3 occurs in dust enshrouded galaxies (e.g., Elbazetal. v: (Madau&Dickinson 2014, and references therein). There i2e0s11(L;IMRGursp,hLyeta=l.12001111- );10a12ndLth)atanludmuilntroaulsumIRinoguaslaIxR- i are different measures of the instantaneous SFR (see, e.g., IR ⊙ X Kennicutt1998), which are usefulfor probingthe SFR den- galaxies (ULIRGs, LIR > 1012 L⊙) are much more preva- r sity evolution,buttheirutilitydependsontheredshiftofthe lent during these earlier epochs than today (Chary&Elbaz a sourceandobservationalwavelengthsavailable. Atlowred- 2001; LeFloc’hetal. 2005; Pérez-Gonzálezetal. 2005; Magnellietal. 2009; Murphyetal. 2011; Elbazetal. 2011; shiftsinthisrange,[OII]λ3727Åisfrequentlyusedtomea- Lutz2014, andreferencestherein). Notonlydofar-IRmea- sure SFRs, but it is subject to large extinction corrections surementsrevealdust-obscuredstar-formation,buteveninlu- (Kennicutt 1998), and hence large uncertainties. Although minousquasars,thisemissionappearstobedominatedbythe the[OII]lineshouldbeexcitedbystar-formation,forgalax- powerfromstar-formationinthehostgalaxies(Rosarioetal. ieswithstrongactivegalacticnuclei(AGN)suchasquasars, 2013;Xuetal.2015). TheAtacamaLargeMillimeterArray 1George P. and Cynthia Woods Mitchell Institute for Fundamental (ALMA)canmeasurerestframefar-IRoutputsforz>∼2,butat PhysicsandAstronomy,andDepartmentofPhysics&Astronomy,Texas lowerredshiftsitbecomesinefficientinthisapplication. Fur- A&MUniversity,CollegeStation,TX77843-4242,USA thermore, no far-IR missions are planned for the immediate 2current address: Department of Physics & Astronomy, Tufts Uni- future, making it difficult to extend this method past the re- versity, 574 Boston Avenue Suites 304, Medford, MA 02155, USA; sultsfromSpitzerandHerschel.TheJamesWebbSpaceTele- [email protected] 3Steward Observatory, University ofArizona, 933North Cherry Av- scope (JWST) is a promising approach for z<∼2 if accurate enue,Tucson,AZ85719,USA SFRscanbederivedfromobservationsatrestwavelengthsof 4SchoolofPhysics&Astronomy,MonashUniversity,Clayton,Victo- ∼8µm(e.g.,Rujopakarnetal.2013). ria3800,Australia It has been argued that estimation of SFRs using the aro- 5DepartmentofPhysics&Astronomy,SienaCollege,Loudonville,NY 12211,USA 2 maticemissionfeatures6 thatdominatethe8µmemissionof ieswereferencethroughoutthisworkpredominantlyusethis star forming galaxies is subject to substantial scatter (e.g., cosmologyandwe adoptit as well to be consistentas much Smithetal. 2007; Bendoetal. 2008). However, these fea- aspossible). We adoptaKroupainitialmassfunction(IMF) turesdotrackthetotalSFRatsomelevel,andiftheycouldbe throughoutthis work, where the IMF has the slope α= 2.3 calibratedaccurately,theywouldhavenumerousadvantages. forstellarmasses0.5- 100M⊙andashallowerslopeα=1.3 For example, Spitzer 24 µm measurements provide perhaps forthemassrange0.1- 0.5M⊙ TheKroupaIMFisconsis- thedeepestprobeavailableofSFRsfor1<z<3(Elbazetal. tentwithobservationsoftheGalacticfieldIMF(e.g.,Chabrier 2011). The luminosity in the mid-IR PAH emission bands 2003;Kroupa&Weidner2003). is very high for galaxies with ongoing star-formation. The totalPAHemissioncancontributeasmuchas20%oftheto- 2. SAMPLEANDDATA tal IR luminosity and the 7.7 µm PAH band may contribute 2.1. CalibrationSample asmuchas50%ofthetotalPAH emission(e.g.,Smithetal. 2007; Wuetal. 2010; Shipleyetal. 2013). In addition, for For proper calibration of the PAH features as a SFR indi- galaxieswith anAGN thePAH featureshavebeenshownto cator,wecarefullyselectedgalaxiesthathadfullcoverageof trace the SFR from the integrated light of the galaxy (if the the Spitzer/IRS spectrum and Spitzer/MIPS 24 µm observa- AGNisnotthedominantsourceoftheintegratedlight; e.g., tions. We required the galaxies in our sample to have com- Shipleyetal. 2013). Furthermore, the 11.3µm PAH feature pleteopticalcoverageoftheimportantemissionlinesneeded evenintheimmediatevicinityofanAGNisnotsignificantly (specifically Hβ, [OIII]λ5007Å, Hα and [NII]λ6583Å) suppressed(Diamond-Stanic&Rieke2010). tomeasureextinction-correctedSFRs fromthe Hα emission Interpreting existing deep Spitzer and future JWST mea- line luminosity (Kennicuttetal. 2009), and to estimate the surements of embedded star-formation depends upon de- ionization state (Kewleyetal. 2001; Kauffmannetal. 2003) veloping confidence in the use of the PAH features for and the gas-phase metallicity (Pettini&Pagel 2004). We this purpose. In this paper, we therefore discuss the util- also requiredthatthe galaxiesbe sufficientlydistantthatthe ity of using the PAH emission to study the SFR in galax- Spitzer/IRS contains the majority of the integrated light in ies over a large range of total IR luminosity and metal- the spectroscopicslit. In effect, this limits us to z>0.01 or licity to determine a robust calibration of the relation be- whererobustaperturecorrectionsareavailable.Aperturecor- tweenPAHemissionandtheSFR.Therearepreviousefforts rectionsforeachsamplewereperformedinthesamegeneral that calibrate the PAH emission as a SFR indicator. Some way. Photometry for the integrated light of the galaxy was of these works focus on high-luminosity objects and cali- obtainedandusedtoestimatethecorrectionfactorsappliedto brateagainstthetotalIRluminosity,whereforthese objects theopticalandIRspectrafromthesmalleraperturesizesused there may be unknown contributions to the emission from forthespectralslits(seebelowformoredetail). AGNand/orunknownopticaldeptheffects(Popeetal.2008; We identifiedthreegalaxysamplesfromtheliteraturethat Lutzetal.2008;Fu&Stockton2009). Otherstudieshavefo- fulfill our selection criteria. We use these three samples as cused on the broadband emission in the mid-IR which con- ourcalibrationsampletoestablishthePAHluminosityasa tains contributionsboth from the continuumand PAH emis- SFRindicator.Thecalibrationsampleincludesabroadrange sion(Calzettietal.2007;Fumagallietal.2014;Battistietal. ofgalaxiesallowingforarobustcalibrationofthePAHlumi- 2015). There is a need for a PAH SFR indicator calibrated nosityforvastlydifferentsystems.Thefullcalibrationsample overarangeofbolometricluminosityusingtheluminosityin includes 286 galaxies with data from O’Dowdetal. (2009), the PAH emission features themselves. Once this has been Shipleyetal. (2013) and Brownetal. (2014) samples (spe- accomplished, it is also possible to understand and improve cificstepstakenfordatareductionofthespectracanbefound measurementsofSFRsbasedonphotometryinthe8µmre- therein).Wediscusseachsamplebrieflyinthefollowingsec- gion. tions. OpticalandIRaperturecorrectionswereperformedby This paper presents one of the first efforts to calibrate the both O’Dowdetal. (2009) and Brownetal. (2014) and can PAH emission itself against robust SFR measures of the in- be found therein. For Shipleyetal. (2013), IR aperture cor- tegrated light for distant galaxies over a large range of total rections were performed and can be found in the reference. IR luminosity (Section 5). To do so, we take advantage of Optical aperture corrections were on average ∼10% for the PAHemissionfeaturemeasurementsusingasampleofgalax- Shipleyetal.(2013)samplefortheopticallinefluxesshown ieswithSpitzer/IRSspectroscopyouttoz<0.4. Theoutline inTable1. AfewsourcesfromBrownetal.(2014)arebelow forthepaperisasfollows.In§2,wedefineourmaincalibra- our redshift requirement of z>0.01. We keep these galax- tionsampleanddescribeahigh-redshiftdemonstrationsam- iesinourprimaryandsecondarycalibrationsamplesbecause ple. In§3,wedescribeouranalysisofthederivedquantities. Brownetal. (2014) achieved very accurate aperture correc- In§4,wepresentourSFRrelationsintermsofthePAH lu- tions to constructtheir spectral energy distributions (SEDs), minosity. In§5,wediscusspreviouscalibrationsofthePAH but this may introduce some bias for a few galaxies as the luminosity as a SFR indicator. In § 6, we demonstrate our aperture corrections may not apply equally between the nu- PAH SFR relations with the demonstration sample of high- clearregionsusedforspectroscopyandthegalaxyoutskirts. redshiftlensed galaxies. In § 7, we presentourconclusions. Weexcludedfromourfullcalibrationsamplethoseobjects TheΛCDMcosmologyweassumeisH =70kms- 1Mpc- 1, withpoordataquality,wheremeasuredline/featurefluxesare 0 Ωm=0.3,andΩλ=0.7throughoutthiswork(previousstud- upper limits in one or more of the required emission fea- tures: Hα, the three brightest PAH features (6.2µm, 7.7µm and11.3µmfeatures)or the MIPS 24µm band. Also, other 6Lyingintherange3-19µm,attributedtopolycyclicaromatichydrocar- reasons made it necessary to exclude galaxies from the full bonsandtermed“PAH"hereafter.CertainPAHbandsaremadeupofseveral calibration sample: not all galaxies in Brownetal. (2014) emissionfeatures(e.g.,7.7µm,8.6µm,11.3µm,12.7µm,and17.0µmPAH bands)andsowewill usethe general term “feature” todescribe thePAH have Spitzer IRS coverage (resulting from passive galaxies emissionbands. withoutsignificantmid-IRdustemission);thesourcesinthe 3 SpitzerFirstLookSurvey(FLS)fromShipleyetal.(2013)do TheBrownetal.(2014)samplealsoincludesclearlymerging nothaveopticalspectroscopycoveringHα. Wediscussthese systems.ThisextendsthestudyofthePAHemissionasaSFR reasons in detail in the following sections for each sample. indicator over a range of activity and metallicity. This sam- Thisreducedourcalibrationsampleto227galaxies. plehascompleteopticalspectraandMIPS24µmphotometry Finally,werestrictedourcalibrationsampletoincludeonly coverageandincludesIRSspectrafor111ofthegalaxiesthat star-forming galaxies with no indications of AGN (which comefromseveralsurveys(seeBrownetal.2014,andrefer- can contribute both to the Hα and 24 µm emission) and we encestherein;galaxieswithoutIRSspectraarepassive). We required all galaxies to have approximately solar gas-phase use these for our calibration sample. 30 galaxies from this metallicity(see§ 3.4below). Theserestrictionsreducedour samplefitourprimarycalibrationsamplecriteria.23galaxies calibrationsampleto105galaxiesfittingalltherequirements. fitthesecondarycalibrationsamplecriteria. This constitutes our primary calibration sample. In what BecausetheredshiftdistributionoftheBrownetal.(2014) follows, we focus the PAH SFR calibration on this primary sampleislowercomparedtotheotherdatasetsusedinthecal- calibrationsampleof105galaxies,whichspanredshift0.0< ibrationsample,theaperturecorrectionsforlightlostoutside z<0.4andIRluminosityof109<LIR/L⊙ <1012. Wealso theslit can be higher. Brownetal. (2014) providedaperture consider a secondary calibration sample of 25 galaxies that corrections at 8µm and 12µm, and caution must be applied satisfyallourselectioncriteria,buthavesub-solarmetallicity when these differ significantly. For the Brownetal. (2014) (see§3.4and§4.3). galaxiesinourprimarycalibrationsample,most(23/30galax- ies)have8µmand12µmaperturecorrectionsconsistentwith 2.1.1. O’Dowdetal.(2009)Sample the overall sample (the aperture corrections are ∼1.37 and The O’Dowdetal. (2009) sample consists of 92 galax- ∼1.34for8µmand12µm,respectively).Theremainingseven ies that cover a range in total IR luminosity of L galaxieshave largerdifferences(the aperturecorrectionsare IR = 109- 1011 L that complements the lower luminosity ∼2.52and∼2.35for8µmand12µm,respectively),butavi- ⊙ sual inspection of the spectra show no obvious discontinu- galaxies in Brownetal. (2014) with a redshift of 0.03 < itiesandnoneofourresultswouldchangeifweexcludethese z < 0.22 and varying AGN activity (from starbursts to galaxies. AGN). Compared to the solar oxygen abundance, 12 + log(O/H) = 8.69 (Asplundetal. 2009), the galaxies in the O’Dowdetal.(2009)samplespananarrowrangearoundso- 2.2. DemonstrationSampleofHighRedshiftGalaxies lar(12+log(O/H)N2=8.6to8.8withonegalaxyat9.0).This To demonstrate the PAH SFR calibration, we use sample has complete coverage of the optical spectra (using Spitzer/IRS data for a sample of high-redshift (1 < z < 3) the emission line fluxes from the SDSS DR7), IRS spectra galaxiesthathave been gravitationallylensed by foreground andMIPS24µmphotometrytakenfromthepublisheddata. massive galaxies and/or galaxy clusters. In many cases the 63galaxiesfromthissamplefitourprimarycalibrationsam- gravitationallensingissubstantial,boostingthefluxfromthe plecriteria.Zerogalaxiesfitthesecondarycalibrationsample backgroundgalaxiesbyfactorsofµ≃3- 30. Becauseofthe criteria. lensingfactorsthesensitivityiswhatcanbeexpectedfor“typ- ical”distantgalaxiesobservedwiththeJWST Mid-IRInstru- 2.1.2. Shipleyetal.(2013)Sample ment(MIRI).JWST/MIRIwillbeabletoobservethe6.2µm The Shipleyetal. (2013) sample consists of 65 galaxies and 7.7µm PAH features for galaxies with SFRs as low as covering a range in total IR luminosity of LIR = 1010- ∼10M⊙ yr- 1 to z<∼2by coveringa wavelengthrangefrom 1012 L with mostly higher IR luminosity compared to the 4.9µm to 28.8µm with greater sensitivity than any previous ⊙ Brownetal. (2014) and O’Dowdetal. (2009) samples. The IRmission7. samplehasaredshiftof0.02<z<0.6withvaryingAGNac- WeusethesampleandresultsreportedinRujopakarnetal. tivity(fromdominationbystarburststoAGN).Comparedto (2012), whichinclude line flux measurements(orlimits) for the solaroxygenabundancethe galaxiesin theShipleyetal. Hα, Paα or Brα and the PAH features. The Paα and Brα (2013)samplespanarangearoundsolar(12+log(O/H) = emission lines are “gold standard" SFR indicators as they N2 8.4to8.8)buthavemetallicitiesthatbridgetheothertwosam- trace the ionization from the same star-forming populations ples. This sample has complete IR coverageof the IRS and as Hα, but Paα and Brα suffer substantially less extinction MIPS24µmphotometryandcompleteopticalspectroscopic owingto their longerwavelengthsin the rest-framenear-IR. data for 26 of the galaxies in the sample. 12 galaxies from Anotherexcellentextinction-freeSFRindicatorisHα+24µm this sample fit our primary calibration sample criteria. Two (Kennicuttetal.2009);Rujopakarnetal.(2012)providethis galaxiesfitthesecondarycalibrationsamplecriteria. metricbasedonrest-frame24µmfluxesestimatedfromspec- tral energy distribution (SED) template fitting. In addition, 2.1.3. Brownetal.(2014)Sample we reprocess the Spitzer/IRS data for the 8 o’clock arc as TheBrownetal. (2014)studyincluded129galaxies, cov- Rujopakarnetal.(2012)didnotreportmeasurementsforthe eringalargerangeintotalIRluminosity(L =109- 1012L ) PAHfeaturesinthemid-IRspectroscopyforthisgalaxy. We IR ⊙ usedtheirvaluesfortheredshiftandlensingmagnificationfor and a diverse range in morphology (from dwarf irregulars eachgalaxy(andreferencestherein),includingthe8o’clock to ellipticals) with a redshift of 0.0 < z < 0.06 and vary- arc to be consistent for the sample8. We define these seven ing AGN activity (from starbursts to AGN), and is largely drawn from the integrated optical spectroscopic samples of Moustakas&Kennicutt (2006) and Moustakasetal. (2010). 7see:http://ircamera.as.arizona.edu/MIRI/performance.htm Because of the lower redshiftand mostly lower IR luminos- 8Theapproximatemagnificationofalensedgalaxyintroducesalargeun- certainty intheestimated SFRastheactual magnification maydifferbya ityrangeoftheBrownetal.(2014)sample,itcontainslower factorofafewtothatofthemeasured. Asaresult,otherstudiesmayusea metallicitygalaxies(7.8<12+log(O/H)N2<8.8)compared differentmagnification; whichcancausetheestimatedSFRstobeover-or totheO’Dowdetal.(2009)andShipleyetal.(2013)samples. underestimatedincomparisontoours. 4 high-redshiftlensedgalaxiesfromRujopakarnetal.(2012)as 3. DERIVEDQUANTITIES ourdemonstrationsample. 3.1. IRSSpectralFitting We focus our comparison of the estimated PAH SFRs to the estimated Paα and Hα+24µm SFRs in our demonstra- To determine flux estimates for the PAH features in the tion of the PAH SFR calibration (see § 6.2). Depending IRS spectra of our calibration sample, we used the PAHFIT on the redshiftand Spitzer/IRS channelsobserved, only one spectraldecompositioncode(Smithetal.2007),designedfor of these SFR indicators was available for each galaxy. In SpitzerIRSdata. PAHFITusesaχ2 minimizationroutineto general, Hα+24µm is available for the entire sample and fit a non-negativecombinationof multiple emission features Paα is available for z > 2 galaxies, where the rest-frame and continua to the one-dimensionalspectra of our sources. 24 µm fluxes come from longer wavelength MIPS (and in The features included in PAHFIT are the dust emission fea- some cases Herschel) data, or extrapolationsfrom observed tures from PAHs (modeled as Drude profiles), thermal dust 24 µm data. The galaxies with measured Hα+24µm fluxes continuum, continuum from starlight, atomic and molecular onlyareA2218b(Rigbyetal.2008,atz=1.034andµ=6.1) emission lines (modeled as Gaussians), and dust extinction. and A2667a (Rigbyetal. 2008, at z = 1.035 and µ = 17). The PAH emission features at (e.g. 7.7µm, 11.3µm, and The galaxies with measured Hα+24µm and Paα fluxes are 17µm)areblendsofmultiplecomponents,butPAHFITtreats the Clone (Hainlineetal. 2009; Linetal. 2009, at z=2.003 themasindividualcomplexes. and µ=27±1), A2218a (Rigbyetal. 2008; Papovichetal. We take the published PAH fluxes from O’Dowdetal. 2009; Finkelsteinetal. 2011, at z= 2.520 and µ = 22±2), (2009) and Shipleyetal. (2013), whichused the same PAH- A1835a(Smailetal.2005;Rigbyetal.2008,atz=2.566and FIT input parameters as we use here for the Brownetal. µ=3.5±0.5),cB58(Seitzetal.1998;Teplitzetal.2000, at (2014) sample (see referencesfor specific parametersused). z = 2.729 and µ ∼ 30), and the 8 o’clock arc (Allametal. We fit the features in the IRS spectrum for each galaxy in 2007;Finkelsteinetal.2009,atz=2.731andµ∼8). Brownetal.(2014)thathadanIRSspectrum(111/129galax- For the 8 o’clock arc, we reprocessed Spitzer data taken ies). fromprogram40443(PI:C.Papovich).Wereducedthespec- Forthedemonstrationsample,thepublishedvaluesforthe troscopic data for this galaxy using the S17.2.0 version of Spitzer/IRSspectrawerefitusingPAHFITwiththesamepa- theprocessingsoftwarefromthebasiccalibrateddata(BCD) rameters as our calibration sample. We use these flux mea- for the IRS SL2 and LL1 modules by following the Spitzer surements of Paα, Hα+24µm and the PAH features to esti- DataAnalysisCookbook,Recipe179.AsinRujopakarnetal. matetheSFRs. (2012),wewereabletode-blendthefluxbyperformingPSF We fit the 8 o’clock arc spectra with the same procedure. photometry to measure the flux of the arc. We reduced the It was important to have the flux measurement fit the same IRACandMIPS24µmdatausingS16.1.0versionofthepro- wayforeachsampletohaveanaccuratecomparisonbetween cessingsoftwarefromtheBCDimagesbyfollowingthedata ourPAH SFRs andthe SFRindicators(PaαandHα+24µm) reduction steps outlined in Papovichetal. (2009). We used availableinRujopakarnetal.(2012). Ourmeasuredfluxval- threeaperturesof1.8′′eachcenteredonthethreecomponents uesforthe8o’clockarcareLPaα =7.4±0.8×10- 16ergs- 1 identifiedbyFinkelsteinetal.(2009)usingtheSpitzerAPEX cm- 2 and L6.2µm = 21.1±1.4×10- 15erg s- 1 cm- 2, L7.7µm sourceextractionsoftwaretoextractthe IRACfluxfromthe = 80.0±11.2×10- 15 erg s- 1 cm- 2. But as suggested in 5.8µm band. We estimate that the aperture corrections are Rujopakarnetal.(2012),theresultingspectrum(fortheLL1) 30- 50%10withthecontaminationfromanearbyLIRGatthe hassignal-to-noise(S/N)toolowforPAHFITtofitaccurately 30- 50%levelandthecorrectionsroughlycanceleachother. the continuum and emission features due to the contamina- To calibrate the absolute flux density of the IRS spectra tionofthenearbysources. We doseethisto someextentas for the 8 o’clock arc, we integrated the spectrum from the PAHFIT failed to converge and yield a more accurate fit to SL2modulewiththeIRAC5.8µmtransmissionfunctionand thePAHfeaturesintheSpitzer/IRSLL1spectrum(Figure1). the spectrum from the LL1 module with the MIPS 24 µm Becauseofthegalaxy’shighredshift,z=2.731,notallPAH transmission function. We took the ratio of the observed featuresareaccessible,butthe6.2µmfeatureindicatesaSFR fluxdensitiesasmeasureddirectlyfromtheIRACandMIPS =302±20.0M⊙ yr- 1andthe7.7µmfeatureindicatesaSFR observations to the flux densities synthesized from the IRS =262±36.7M yr- 1. Incontrast,theSpitzer/IRSSL2spec- ⊙ spectraas an aperturecorrection. We did thisto accountfor trum gives a consistent SFR from Paα, SFR = 265 ± 29.6 contamination from a foreground LIRG or light that is lost M yr- 1. outsidethespectroscopicslits. Figure1showstheextracted, ⊙ flux calibrated IRS SL2 and LL1 spectra for the 8 o’clock 3.2. OpticalSpectralFitting arc. We use these flux-corrected spectra to measure the For the O’Dowdetal. (2009) sample, we used the up- Paα emission line from the IRS/SL2 spectrum and the PAH featuresfromtheIRS/LL1spectrum.Weextractedlinefluxes dated line flux measurements (Hβ, [OIII]λ5007Å, Hα from the IRS data for the 8 o’clock arc and the galaxies in and [NII]λ6583Å) from SDSS DR7 (MPA/JHU value- ourcalibrationsampleusingthemethodsdescribedin§ 3.1. addedgalaxycatalog,Brinchmannetal.2004;Tremontietal. 2004).11 ForShipleyetal.(2013),weusedthelinefluxmea- surements from the AGN Galaxy Evolution Survey (AGES; Kochaneketal. 2012), reported in Table 1 and described in Moustakasetal. (2011) based on the continuum and emission-line fitting technique of Moustakasetal. (2010). For Brownetal. (2014), we fit the emission lines as simple 9see:http://irsa.ipac.caltech.edu/data/SPITZER/docs/ dataanalysistools/cookbook/23/ Gaussiansusinga leastsquaresroutinetoobtainthebestfit. 10see:http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/ iracinstrumenthandbook/ 11seehttp://www.mpa-garching.mpg.de/SDSS/DR7/ 5 0.4 Paα λ1.875µm [N II] + Hα Data 2.5 Fit ) 0.3 1 NGC 6052 (SF) − y) SL2 spectrum Å mJ 2 −2.0 (0.2 m x u c Fl 1−1.5 0.1 s g r e 0.0 13 1.0 1.4 1.6 1.8 2.0 2.2 − [N II] 0 Rest Wavelength (µm) 1 ( λ0.5 F 2.0 6.2µm 7.7µm 8.6µm 6400 6500 6600 6700 6800 1.5 y) LL1 spectrum Rest Wavelength (Å) mJ (1.0 ux 8 [N II] + Hα Data Fl Fit ) 0.5 1− 7 NGC 5256 (AGN) Å 2 −6 [N II] 0.0 m 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 c Rest Wavelength (µm) 1 5 − s Figure1. IRSspectraofthestronglygravitationally lensedgalaxy, the“8 g oÕclockarc".TheToppanelshowstheSL2spectrum,andtheBottompanel r4 e showstheLL1spectrum. Ineachpanel,thedatapointsanderrorbarsshow themeasurementsfromthedata,andthegreencurveshowsthespectralde- 14−3 compositionfromthebestfitPAHFITmodeltothedata. 0 We fit the Hα and [NII] doubletsimultaneously using three 1 ( Gaussians, with the ratio of the central wavelengths fixed. λ2 F Figure 2 shows representativespectra and our fits for a star- forminggalaxyandAGNintheBrownetal.(2014)sample. 1 The relationship between the [NII]λ6583Å/Hα and 6400 6500 6600 6700 6800 [OIII]λ5007Å/Hβ emission line ratios provide a test for Rest Wavelength (Å) ionization from a central AGN using an optical Baldwin, Figure2. Examplesofourfits(greendot-dashedline)totheopticalspectra Phillips and Terlevich (BPT) classification (Kewleyetal. (solidblackline)forBrownetal.(2014)fortheHαand[NII]emissionlines 2001; Kauffmannetal. 2003). We adopted the SDSS DR7 (see§3.2forfittingprocedure). Here,weshowNGC6052(star-forming) measured emission line fluxes for the O’Dowdetal. (2009) andNGC5256(AGN)thatisrepresentativeoftheentireBrownetal.(2014) sample. We note that a few of the galaxy classifications are sampleforeachclassification(see§3.2forclassification). changed from those in O’Dowdetal. (2009), that used the the rest-frame for each galaxy and again estimated the rest SDSSDR4fluxmeasurements. FortheShipleyetal. (2013) sample, we used the measured fluxes in Table 1 for classifi- 24 µm flux densities from the SEDs for each galaxy. This was necessary for these two samples to be consistent with cation. For the Brownetal. (2014) sample, we use their re- eachotherasasignificantamountofthegalaxies’IRSspec- portedopticalBPTclassifications. tra at rest-frame 24 µm are shifted out of the observed IRS 3.3. Extinction-correctedHαEmissionUsingRest-Frame spectrum or dominated by noise due to the redshift of the MIPS24µmFlux galaxies(49/142galaxiesforthecombinedsamples). Forthe O’Dowdetal. (2009) and Shipleyetal. (2013) samples, we We estimate extinction-correctedHα line luminosities us- synthesized MIPS 24 µm broadband flux densities by com- ingthesumofthe observedHαemissionlineanda fraction putingthe(rest-frame)MIPSbandpass-weightedaverageflux of the rest 24 µm monochromatic luminosity as defined by densityfromtheIRSEDthatbestfitthelong-wavelengthpho- Kennicuttetal.(2009), tometry12. LcHorαr (ergs- 1)=LHα+0.020L24µm(ergs- 1) (1) InmostcasestheHαextinctioncorrectionsaresubstantial. Figure 3 showsthe relation between the correctedHα lumi- For the Brownetal. (2014) subsample this was straightfor- nosityandthe ratio of observedHα luminosity(uncorrected wardconsideringtheSEDsfortheirgalaxiesweregiveninthe rest-frame. For the O’Dowdetal. (2009) and Shipleyetal. 12seehttp://irsa.ipac.caltech.edu/data/SPITZER/docs/ (2013) subsamples we used the best fit SEDs (see § 3.5) in dataanalysistools/cookbook/14/ 6 Table1 OpticalFluxesandBPTClassificationforShipleyetal.(2013)Sample ID Hβ [OIII]λ5007Å Hα [NII]λ6583Å BPT (10- 16) (10- 16) (10- 16) (10- 16) Class 1 22.4±0.33 41.8±0.32 89.6±0.44 16.0±0.27 SF 2 ... ... ... ... ... 3 0.99±0.34 ... ... ... ... 4 9.88±0.30 1.22±0.20 63.2±0.37 21.9±0.28 SF 5 60.5±1.18 18.6±1.00 414.±2.29 155.±1.79 SF 6 1.70±0.30 1.49±0.32 11.9±0.51 7.40±0.47 SF/AGN 7 51.7±0.43 10.7±0.33 258.±1.56 98.9±0.62 SF 8 1.83±0.30 1.78±0.26 13.8±0.39 13.8±0.35 AGN 9 0.56±0.12 0.49±0.10 4.32±0.20 3.32±0.19 SF/AGN 10 2.92±0.24 2.38±0.22 22.4±0.51 12.7±0.50 SF/AGN 11 0.36±0.09 0.24±0.12 1.32±0.24 ... ... 12 6.93±0.26 7.52±0.28 40.9±0.75 17.0±0.64 SF/AGN 13 ... ... ... ... ... 14 0.82±0.28 ... 4.33±0.76 2.64±0.49 ... 15 10.0±0.26 5.75±0.25 65.6±1.00 29.4±0.77 SF 16 ... 1.36±0.27 ... ... ... 17 4.52±0.17 3.37±0.16 38.0±0.50 17.5±0.39 SF/AGN 18 21.7±0.35 12.4±0.34 120.±0.72 42.6±0.59 SF 19 2.14±0.13 3.42±0.09 11.0±0.36 2.57±0.27 SF 20 2.42±0.20 0.69±0.18 14.4±0.41 7.04±0.44 SF 21 1.51±0.24 8.42±0.25 7.22±0.62 5.65±0.60 AGN 22 7.71±0.35 13.9±0.37 39.3±1.65 25.4±1.16 SF/AGN 23 10.4±0.75 4.74±0.65 75.6±2.34 30.5±2.04 SF 24 0.94±0.26 12.3±0.24 ... ... ... 25 5.66±0.38 4.95±0.40 28.1±1.10 18.1±1.19 SF/AGN 26 ... 4.77±0.42 ... ... ... 27 1.46±0.25 4.45±0.27 7.11±1.15 6.72±0.95 AGN 28 3.43±0.13 1.66±0.15 22.5±0.82 6.31±0.71 SF 29 2.01±0.28 5.83±0.31 ... ... ... 30 2.42±0.24 2.01±0.18 ... ... ... 31 4.92±0.21 1.83±0.16 ... ... ... 32 1.76±0.10 0.58±0.10 ... ... ... 33 1.21±0.29 ... 7.17±0.64 2.78±0.44 ... 34 1.81±0.14 0.92±0.11 ... ... ... 35 2.00±0.47 ... ... ... ... 36 1.01±0.16 ... ... ... ... 37 0.47±0.08 1.53±0.09 2.97±0.29 1.67±0.19 AGN 38 ... 0.81±0.13 ... ... ... 39 ... ... ... ... ... 40 0.51±0.14 ... 6.08±0.62 5.79±0.54 ... 41 ... 0.71±0.20 3.08±0.33 5.53±0.36 ... 42 1.16±0.19 1.27±0.21 10.3±0.81 9.67±0.73 AGN 43 ... ... ... ... ... 44 1.58±0.27 9.40±0.34 ... ... ... 45 1.22±0.22 2.93±0.26 ... ... ... 46 2.75±0.26 3.15±0.20 12.1±0.32 2.55±0.21 SF 47 7.01±0.29 3.68±0.22 40.5±0.51 14.9±0.55 SF 48 5.45±0.17 1.62±0.19 59.2±2.79 26.0±2.99 SF 49 4.16±0.71 18.0±1.29 20.9±4.05 13.4±4.39 AGN 50 ... ... ... ... ... Note. — Column 1is the galaxy identification defined in Shipleyetal. (2013). Columns2- 5arethemeasuredfluxesfortheemissionlinesHβ,[OIII]λ5007Å,Hα and[NII]λ6583Å, respectively (in units oferg s- 1 cm- 2). Column 6is the BPT classificationfromthemeasuredfluxes. fordustextinction)totheextinction-correctedHαluminosity. the results are consistent. But, there is a sample of highly Mostofthegalaxiesinourprimaryandafewinthesecondary attenuated objects, AHα >1 mag, where we see big devia- calibrationsampleshavecorrectionsofmorethanafactorof tions (at the higherextinction-correctedHα luminositiesthe 2 to the Hα luminosity. The median correctionfactor is 4.2 Balmer decrementcorrectionssaturate). Thelikely explana- andtheinterquartilerange(25- 75percentiles)is2.5- 5.9. tionforthisattenuationisthattheinterstellarmedium(ISM) InFigure4,wecompareourextinctioncorrectionsfromthe atHβisopticallythick,soweareonlyseeingthe“skin"ofthe monochromatic24µmluminositytoextinction-correctedHα star-formingregion(down to where τ ∼1 for Hβ), whereas luminositiesfromtheBalmer decrement,measuredfromthe wecanseedeeperintothestar-formingregionforHα.Balmer ratiooftheHαandHβ emissionlines. Mostofourprimary absorption could be another issue. Figure 4 suggests it is a calibrationsampleconsistsofdustystar-forminggalaxies(i.e. significant contributor, since there are many galaxies where LIRGs) thatheavily attenuate the Hβ emission line and to a correctingwiththeBalmerdecrementovercorrectsHα. Only lesserextenttheHαemissionline. Weindicategalaxieswith about half the sources in the primary calibration sample for AHα>1magthat,inessence,resultsinanattenuationfactor AHα>1magallowustoextinctioncorrectusingtheBalmer of>∼2.5forHαandafactor>∼3.6forHβ. Formanysources decrementand ∼10%of the samplehave unreliablecorrec- 7 30 25% of SF galaxies 60 low metallicity cutoff 50% of SF galaxies solar metallicity 75% of SF galaxies O'Dowd et al. (2009) O'Dowd et al. (2009) 25 α30 Brown et al. (2014) Brown et al. (2014) H Shipley et al. (2013) L Shipley et al. (2013) / ) 20 4 2 L * 10 20 gal15 0 N . 0 + 10 α 3 H L ( 5 1 0 40 41 42 43 7.8 8.0 8.2 8.4 8.6 8.8 9.0 log L + 0.020*L (erg/s) 12 + log(O/H) Hα 24 N2 Figure3. Therelationbetweentheextinction-correctedHαluminosityand Figure5. Histogramofthemetallicities forallthestar-forminggalaxiesin thedustcorrectionfactor,definedastheratiooftheextinction-correctedHα thecalibrationsample,wherethemetallicitiesare12+log(O/H)N2. Forthe toobserved(uncorrected)Hα.Thefilledsymbolsshowtheprimarycalibra- calibrationoftheSFRrelationsusingPAHluminosityweusedgalaxieswith tionsample. Thehorizontallinesshowthe25,50,and75percentilesofthe 12+log(O/H)N2≥8.5(reddashedline)forourprimarycalibrationsample. distribution. Themediancorrectionfactoris4.2andtheinterquartilerange Theresultingcutbeing0.65ofthesolarabundance(12+log(O/H)=8.69, (25- 75percentiles) is2.5- 5.9. Theopenorange symbols show thesec- Asplundetal.2009,orangedashedline). ondarycalibrationsampleoflowmetallicitygalaxiesasdefinedin§3.4.The bluepointenclosedbyablackcircledenotesIIZw096,see§4.4. stratedthisdependenceusing8µm-to-24µmratiosofgalax- ies above and below a metallicity of 12 + log(O/H) = 8.2, 1045 wheretheyattributedthesmallerratiosforgalaxieswithlow unity metallicity to a decrease in the mid-IR emission bands (at- linear, AHα ≤ 1 mag tributedtoPAHs). Calzettietal.(2007)showedstar-forming 1044 AHα > 1 mag galaxieswith low metallicities have less than expected mid- Brown IRdustemission(presumablyfromPAHemission)basedon O'Dowd )⊙ Shipley a linear fit to their calibrationof extinctioncorrectedPaα to (L 1043 the8µmdustemission.Thistrendisnotseenintheircalibra- m tionofextinctioncorrectedPaαtoHα+24µmluminosities, µ L24 illustratingthePAHemissiondependenceonmetallicity. 0 1042 We calibrate the relation between metallicity, PAH emis- 2 0 sion,andSFRsusingthedatainoursamples. Forallgalaxies 0. + α1041 ianbuthnedacnaclieburastiinognthsaemNp2lei,nwdeex,esNti2m≡atelotghe[NgaIIs]-pλh6a5s8e3oÅxy/Hgeαn, H L usingtherelationfromPettini&Pagel(2004), 1040 12+log(O/H)=8.90+0.57×N2 (2) We use 12+log(O/H) because the N2 index is available N2 1039 forallgalaxiesinourcalibrationsample. Figure5showsthe 1039 1040 1041 1042 1043 1044 1045 distributionofoxygenabundanceforthe galaxiesin ourpri- Extinction-Corrected Hα (L ) mary and secondary calibration samples. Most sources fall ⊙ Figure4. Extinction-corrected HαluminositiescorrectedfromtheBalmer inatightdistribution(±0.2dex)aroundthesolarabundance decrement(ratioofHα/Hβ)comparedtotheextinction-correctedHαlumi- (12+log(O/H)=8.69,Asplundetal.2009)withalongtailto nositiescorrectedfromthe24µmluminosityfortheprimarycalibrationsam- lowerabundances. This is unsurprisingbecauseof the well- ple. WedenotegalaxieswithAHα>1mag(opencircles). Weperformed knownmass-metallicityrelation(Tremontietal. 2004).Most unity(blackdashed-line) andlinear(greendashed-line) fitstothegalaxies withAHα≤1mag. Formanysourcestheresultsareconsistent. But,there sources in the calibration samples have LIR >1010 L⊙, and isasampleofhighlyattenuatedobjects, AHα>1mag,whereweseebig likely have higher stellar mass, and therefore higher abun- deviations (see§3.3forfurtherexplanation). Threegalaxies fromthepri- dance(e.g.,basedonTremontietal.2004,galaxieswithstel- marycalibrationsampledonotappearinthefigureduetounreliableHβflux measurements. larmass>109M⊙haveabundances>0.5Z⊙). Weusestar- tionsduetoHβ beingheavilyattenuated. Forthisreason,we forminggalaxieswith12+log(O/H)N2≥8.5fortheprimary adopttheLHα+0.020×L24µm methodasthebestestimator calibrationsample. forthetotalHαemissionforourprimarycalibrationsample. 3.5. TotalIRluminosity 3.4. Gas-PhaseMetallicities WeestimatethetotalIRluminosity(LIR =L8- 1000µm)us- The PAH emission from a galaxy is known to depend on ingtheMIPS24µmfluxdensities(also70µmand160µm, the gas-phase metallicity. Engelbrachtetal. (2005) demon- where available in Shipleyetal. 2013) and the method in 8 Shipleyetal.(2013). WeusetheRiekeetal.(2009)IRSEDs fortheunityrelationand becauseforstar-forminggalaxiesthetotalIRluminositiesde- rivedfromthesetemplatesusingthe24µmfluxdensityonly logLPAH =(1.30±0.03)+ areclosesttotheIRluminositiesderivedwhenmoreIRpho- (1.00±0.03)log(LHα+0.020×L24µm) (6) tometricbandsareavailable.Theseresultshelpusunderstand forthelinearrelation. WenotethattheformsofEquations5 therangeoftotalIRluminosityoverwhichourPAHSFRsare and 6 are essentially identical, and this is because the linear calibrated;ourcalibrationmaynotextendtohigherIRlumi- fityieldsaslopeconsistentwithunitytofivesignificantdigits nosities, where the PAH featurestend to be suppressed. We were able to determine the contributing total IR luminosity (1.0003±0.03). Using Equation3, thisyieldsthefollowing calibrationsforthetotalPAHluminosityasaSFRindicator, rangefortheBrownetal.(2014)samplebyusingthevalues reportedinHaanetal.(2013)forthemajorityofthegalaxies. logSFR(M yr- 1)= ⊙ 4. THEPAHSFRCALIBRATION (- 42.56±0.03)+logL (ergs- 1) (7) PAH Previous studies have shown that the Hα luminosity is a andusingthelinearfitwefind, robust indicator of the SFR once corrected for dust extinc- tion but this correction is non-trivial (e.g., Kennicutt 1998). logSFR(M yr- 1)=(- 42.56±0.03)+ ⊙ MorerecentworkhasshownthattheHαluminositysummed with a fraction of the monochromatic 24 µm light provides (1.00±0.03)logLPAH(ergs- 1) (8) alinearfitagainstextinctioncorrectedHαandPaαemission showingthereisstatisticaluncertaintyof≈0.03dexandscat- (Calzettietal.2007;Kennicuttetal.2007,2009;Treyeretal. ter of ≈0.135 dex on the total PAH luminosity unity SFR 2010). Here we use the extinction-corrected Hα from the relationship (where we remind the reader that this applies 24µmmonochromaticemissionasourSFRcalibrator,using for galaxies of roughly solar metallicity and luminosities of Kennicuttetal.(2009), 109<LIR/L⊙<1012). SFR(M yr- 1)= Weobservesmalloffsetsfromtheextinction-correctedLHα ⊙ and L calibration between the different calibration sub- PAH 5.5×10- 42[L(Hα)+0.020L(24µm)](ergs- 1) (3) samples. We measure average offsets of LPAH/Lfit = 0.06, 0.06,-0.10fortheO’Dowdetal.(2009),Shipleyetal.(2013) where the constant of proportionality is appropriate for the and Brownetal. (2014) subsamples, respectively. This may KroupaIMFwehaveadopted. implythereisanadditionalsystematicuncertaintyof0.1dex (i.e., 20%) on the PAH SFR calibration from differences in aperturecorrectionsordataprocessingandanalysis. 4.1. PAHSFRRelations The scatter about this relation for the primary calibration WecomparetherelationbetweentheluminosityinthePAH sample is very small, 0.14 dex, at least over the luminosity features to the extinction-correctedHα luminosity. Because rangeofoursample.ThisimpliesthatthetotalPAHemission differentPAHfeaturesareaccessibleatdifferentwavelengths correlateslinearlywiththeSFR.Thescatterissimilartothat dependingontheredshiftofthesourceandwavelengthcapa- measuredforotherstar-formationindicatorsmeasuredagainst bilitiesofthetelescope/instrument,wecalibrateboththeindi- each other (Kennicuttetal. 2009), indicating that the total vidualfeaturesat6.2µm,7.7µmand11.3µm,aswellassums PAHemissionisofsimilaraccuracyindeterminingSFRs. ofthesefeatures. ItisalsoworthnotingthatHαprobesvery Figure 6 shows that it was necessary to remove the low youngstar-formationfromOBstars, whereasitislikelythat metallicity(andlowS/N;S/N<5)galaxiesfromourprimary thePAH featurescovera broaderrangeof ages(presumably calibrationsample. Thelowmetallicity(andlowS/N)galax- includingcontributionsfromAandearlyFstars)andthatdif- ieshavelowL /L ratios(Figure6, bottom),whereL is PAH fit fit ferentSFRindicatorsaresensitivetoslightlydifferenteffects definedastheunityrelationfittotheprimarycalibrationsam- fromthestar-formationagerangemeasured. ple for the expected luminosity of the PAH luminosity for a noFsiitgyu1r3e6showsthecorrelationbetweenthetotalPAHlumi- givenLHα+0.020×L24µm luminosity. We markthegalaxy IIZw096asitisanoutlierinthefigures(Figures6,7and9) butdonotomititasitdoesnotsignificantlyaffectourcalibra- LPAH=L6.2µm +L7.7µm +L11.3µm (4) tionofthePAHfeatures(wediscussthisinterestinggalaxyin §4.4). andtheextinction-correctedHαluminosityforthe227galax- We also calibrate the luminosity from the individualPAH iesinourcalibrationsample. Forstar-forminggalaxieswith features and combinations of them as SFR indicators as in high metallicity (primary calibration sample), the total PAH somecasesonlyoneortwoPAH featuresmaybeuseableto luminosity correlates linearly with the extinction-corrected getaSFR,suchasforhighredshiftgalaxies(see§6.2). Fig- Hαluminosity. Ourderivedrelationsbetweentheextinction- ure7showstherelationsbetweentheextinction-correctedHα correctedHαluminosityandthetotalPAHluminosityare luminosityandtheindividualPAHfeaturesandthetotalPAH luminosityfortheprimarycalibrationsample.Figure8shows logL = PAH thedistributionofresidualsbetweenthePAHluminosityand (1.30±0.03)+log(LHα+0.020×L24µm) (5) thefit,andshowsboththescattercomputedfromthemedian absolute deviation(MAD, Beersetal. 1990) and a Gaussian fit,bothofwhichareconsistent.Thescatterissmallest,σ 13LPAHweusetodenotethePAHluminosityforthetotalluminosityofthe =0.14dex(i.e.,40%)wheneverthe7.7µmfeatureisinvolMvAeDd 6.2µm,7.7µmand11.3µmfeatures. AllotherinstancesofPAHluminosity willbedenoted bytheincluded PAHfeatures (e.g. L6.2µm). Howeverin in the fit. This implies this feature may provide the most figures,welabelexplicitlywhichfeaturesareused. robust measure of the SFR. The relation against the 6.2µm 9 1 SFR (M yr ) − Hα 0.1 1 ⊙ 10 100 45 PAH 6.2µm + 7.7µm + 11.3µm 100 low Z or S/N ) 44 unclassified ) 1 s AGN − / 10 r g composite y r 43 star-forming e ⊙ ( 1 M 3 . ( 1 42 1 3 + . 0.1 1 7 1 . + 7 + 41 7 . 2 7 . 0.01 + 6 L Brown et al. (2014) 2 g 40 O'Dowd et al. (2009) R6. o Shipley et al. (2013) F l S unity fit SF only 39 linear fit SF only it 10 Lf 1040 1041 1042 1043 / 3 1.0 . 1 1 + 0.1 7 . 7 + 0.01 2 . 6 L 40 41 42 43 log L + 0.020 L (erg/s) Hα 24 × Figure6. Thetoppanelistheextinction-corrected Hαluminosity(LHα+0.020×L24µm)versustotalPAHluminosity(L6.2µm +L7.7µm +L11.3µm PAH features).Wefitaunityrelation(dashedblackline)totheprimarycalibrationsample(filledbluepoints)andusethisline(thatwedefineasLfit)toshowtheratio ofthetotalPAHluminosity,foreachgalaxy,totheunityrelationshipasafunctionofextinction-correctedHαluminosity(bottompanel). Weclassifygalaxies asstar-forming(filledbluepoints),composite(unfilledgreenpoints)oranAGN(unfilledredpoints)basedonthelocationoftheiremissionlineratiosonaBPT diagram. Unclassifiedgalaxies(unfilledpurplepoints)didnothavealllinesrequiredforBPTclassificationandthestar-forminggalaxieswithlowmetallicity orS/N(unfilledorangepoints)arenotusedforthePAHSFRcalibration(filledbluepoints;seetextformoredetail). Thebluepointenclosedbyablackcircle denotesIIZw096,see§4.4. feature has the highest scatter, σ = 0.21 dex (i.e., 60%), fortheunityrelationsandthelinearrelationsare MAD which may indicate more variation in galaxies between the luminosityinthisfeatureandtheSFR. logL6.2µm=(- 1.20±0.09)+ Ourderivedrelationsbetweentheextinction-correctedHα (1.04±0.04)log(LHα+0.020×L24µm) luminosityandtheindividualPAHluminositiesare logL7.7µm=(1.12±0.06)+ (10) logL6.2µm= (1.00±0.03)log(LHα+0.020×L24µm) (0.47±0.08)+log(LHα+0.020×L24µm) logL11.3µm=(2.87±0.08)+ logL7.7µm= (0.94±0.03)log(LHα+0.020×L24µm) (9) (1.11±0.05)+log(LHα+0.020×L24µm) In every instance, the linear relations are consistent with logL11.3µm= a unity slope between the PAH luminosities and the SFR (within 2σ of unity). Again, using the relation from (0.54±0.07)+log(LHα+0.020×L24µm) 10 SFR (M yr 1) SFR (M yr 1) Hα − Hα − 0.1 1 ⊙ 10 100 0.1 1 ⊙ 10 100 45 45 PAH 6.2µm + 7.7µm + 11.3µm 100 PAH 6.2µm ) s) 44 1− 44 g/ 10 yr 100) er 43 ⊙ s) 43 1− ( M g/ yr g L6.2+7.7+11.3444012 BOr'Dowown de te at la. l(.2 (021040)9) 01.1 R (6.2+7.7+11.3 log L (er6.2444012 BOr'Dowown de te at la. l(.2 (021040)9) 011.01 SFR (M 6.2⊙ o Shipley et al. (2013) F Shipley et al. (2013) l unity fit SF only S unity fit SF only 39 39 linear fit SF only linear fit SF only Lfit 10 1040 1041 1042 1043 10 1040 1041 1042 1043 / 11.31.0 Lfit 1.0 +7.7+ L/6.20.00.11 20.1 6. L 40 41 42 43 40 41 42 43 log L + 0.020 L (erg/s) log L + 0.020 L (erg/s) Hα × 24 Hα × 24 SFR (M yr 1) SFR (M yr 1) Hα − Hα − 0.1 1 ⊙ 10 100 0.1 1 ⊙ 10 100 45 45 PAH 7.7µm PAH 11.3µm 100 44 44 100 ) ) s) 43 10 1− s) 43 1− g L (erg/7.74412 01.1 R (M yr7.7⊙ g L (erg/11.34412 110 R (M yr11.3⊙ lo 40 BOr'Dowown de te at la. l(.2 (021040)9) SF lo 40 BOr'Dowown de te at la. l(.2 (021040)9) 0.1 SF Shipley et al. (2013) Shipley et al. (2013) unity fit SF only unity fit SF only 39 39 linear fit SF only linear fit SF only 10 10 1040 1041 1042 1043 1040 1041 1042 1043 L/L7.7fit1.0 L/L11.3fit1.0 0.1 0.1 40 41 42 43 40 41 42 43 log L + 0.020 L (erg/s) log L + 0.020 L (erg/s) Hα × 24 Hα × 24 Figure7. Theextinction-corrected Hαluminosity(LHα+0.020×L24µm,Kennicuttetal.2009)versusLPAH(topleft)andforthe6.2µm(topright),7.7µm (bottomleft)and11.3µm(bottomright)PAHfeaturesseparately.ThisillustratesthatthesmallscatterpersistsfortheindividualPAHfeatures(σMAD<∼0.2dex). Wefitaunityrelationtotheprimarycalibrationsample(solidblackline)andusethislineasLfittodetermineresidualsofexpectedLPAHvalues(bottomforeach panel). WeusedthisfittodetermineaSFRrelationforLPAHandeachPAHfeatureshownindividually(see§4.1). Thebluepointenclosedbyablackcircle denotesIIZw096,see§4.4. Kennicuttetal. (2009) given in Equation 3, this yields the followingcalibrationsfortheindividualPAHluminositiesas SFRindicators, logSFR(M yr- 1)= ⊙ (- 41.73±0.08)+logL6.2µm (ergs- 1) logSFR(M yr- 1)= ⊙ (11) (- 42.37±0.05)+logL7.7µm (ergs- 1) logSFR(M yr- 1)= ⊙ (- 41.80±0.07)+logL11.3µm (ergs- 1)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.