ebook img

A Generalized Multinomial Distribution from Dependent Categorical Random Variables PDF

0.33 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Generalized Multinomial Distribution from Dependent Categorical Random Variables

DellEMCTechnicalReports,Vol. 1,2017 OriginalResearcharticle A Generalized Multinomial Distribution from Dependent Categorical Random Variables Rachel Traylor , Ph.D. ∗ 7 Abstract 1 Categoricalrandomvariablesareacommonstapleinmachinelearningmethodsandotherapplications 0 2 across disciplines. Many times, correlation within categorical predictors exists, and has been noted to n have an effect on various algorithm effectiveness, such as feature ranking and random forests. We a present a mathematical construction of a sequence of identically distributed but dependent categorical J random variables, and give a generalized multinomial distribution to model the probability of counts of 4 such variables. 2 Keywords ] R categorical variables — correlation — multinomial distribution — probability theory P . h Contents t a m Introduction 1 [ 1 Background 2 1 2 ConstructionofDependentCategoricalVariables 3 v 5 2.1Example construction ............................................................ 5 5 2.2Properties ..................................................................... 5 9 6 IdenticallyDistributedbutDependent•PairwiseCross-CovarianceMatrix 0 3 GeneralizedMultinomialDistribution 9 . 1 4 Properties 10 0 7 4.1Marginal Distributions ........................................................... 10 1 4.2Moment Generating Function ..................................................... 11 : v 4.3Moments of the Generalized Multinomial Distribution .................................. 11 i X 5 GeneratingaSequenceofCorrelatedCategoricalRandomVariables 12 r a 5.1Probability Distribution of a DCRV Sequence ........................................ 12 5.2Algorithm ..................................................................... 12 ExampleDCRVSequenceGeneration 6 Conclusion 14 Acknowledgments 14 References 14 Introduction Bernoullirandomvariablesareinvaluableinstatisticalanalysisofphenomenahavingbinaryoutcomes, however,manyothervariablescannotbemodeledbyonlytwocategories. Manytopicsinstatisticsand OfficeoftheCTO,DellEMC ∗ AGeneralizedMultinomialDistributionfromDependentCategoricalRandomVariables—2/15 b q p 0 1 ǫ b b 1 q+ p− q− p+ ǫ 0 1 0 1 2 b b b b q+ p− q+ p− q− p+ q− p+ 0 1 0 10 1 0 1 ǫ 3 b b b b b b b b b b b Figure1. First-DependenceTreeStructure machinelearningrelyoncategoricalrandomvariables,suchasrandomforestsandvariousclustering algorithms.[6,7]. Manydatasetsexhibitcorrelationordependencyamongpredictorsaswellaswithin predictors,whichcanimpactthemodelused.[6,9]. Thiscanresultinunreliablefeatureranking[9],and inaccuraterandomforests[6]. SomeattemptstoremedytheseeffectsinvolveBayesianmodeling[2]andvariouscomputationaland simulationmethods[8]. Inparticular,simulationofcorrelatedcategoricalvariableshasbeendiscussedin theliteratureforsometime.[1,3,5]. Littleresearchhasbeendonetocreatemathematicalframeworkof correlatedordependentcategoricalvariablesandtheresultingdistributionsoffunctionsofsuchvariables. Korzeniowski [4] studied dependent Bernoulli variables, formalizing the notion of identically dis- tributedbutdependentBernoullivariablesandderivingthedistributionofthesumofsuchdependent variables,yieldingaGeneralizedBinomialDistribution. In this paper, we generalize the work of Korzeniowski [4] and formalize the notion of a sequence of identically distributed but dependent categorical random variables. We then derive a Generalized MultinomialDistributionforsuchvariablesandprovidesomepropertiesofsaiddistribution. Wealso giveanalgorithmtogenerateasequenceofcorrelatedcategoricalrandomvariables. 1. Background Korzeniowskidefinedthenotionofdependenceinawaywewillrefertohereasdependenceofthefirst kind(FKdependence). Suppose(ε ,...,ε )isasequenceofBernoullirandomvariables,and P(ε =1)= p. 1 N 1 Then,forε ,i 2,weweighttheprobabilityofeachbinaryoutcometowardtheoutcomeofε ,adjusting i 1 ≥ theprobabilitiesoftheremainingoutcomesaccordingly. Formally,let0 δ 1,andq=1 p. Thendefinethefollowingquantities ≤ ≤ − p+ :=P(εi =1 ε1 =1)= p+δq p− :=P(εi =0 ε1 =1)=q δq | | − (1) q+ :=P(εi =1 ε1 =0)= p δp q− :=P(εi =0 ε1 =0)=q+δp | − | Giventheoutcomeiofε ,theprobabilityofoutcomeioccurringinthesubsequentBernoullivariables 1 ε ,ε ,...ε is p+,i=1orq+,i=0. Theprobabilityoftheoppositeoutcomeisthendecreasedtoq and p , 2 3 n − − respectively. Figure 1 illustrates the possible outcomes of a sequence of such dependent Bernoulli variables. Korzeniowskishowedthat,despitethisconditionaldependency, P(ε =1)= p i. Thatis,thesequence i ∀ ofBernoullivariablesisidenticallydistributed,withcorrelationshowntobe δ, i=1 Cor(ε ,ε )= i j (cid:40)δ2, i = j,i,j 2 (cid:54) ≥ AGeneralizedMultinomialDistributionfromDependentCategoricalRandomVariables—3/15 TheseidenticallydistributedbutcorrelatedBernoullirandomvariablesyieldaGeneralizedBinomial distribution with a similar form to the standard binomial distribution. In our generalization, we use the same form of FK dependence, but for categorical random variables. We will construct a sequence ofidenticallydistributedbutdependentcategoricalvariablesfromwhichwewillbuildageneralized multinomial distribution. When the number of categories K =2, the distribution reverts back to the generalized binomial distribution of Korzeniowski [4]. When the sequence is fully independent, the distributionrevertsbacktotheindependentcategoricalmodelandthestandardmultinomialdistribution, andwhenthesequenceisindependentandK=2,werecoverthestandardbinomialdistribution. Thus, thisnewdistributionrepresentsamuchlargergeneralizationthanpriormodels. 2. Construction of Dependent Categorical Variables b p p p 1 2 3 ǫ 1 2 3 1 b b b p+1 p−2 p−3 p−1 p+2 p−3 p−1 p−2 p+3 ǫ 1 2 3 1 2 3 1 2 3 2 b b b b b b b b b p+1 p−2 p−3p+1 p−2p−3 p+1 p−2 p−3 p−1 p+2 p−3p−1 p+2p−3 p−1 p+2 p−3p−1 p−2 p+3p−1 p−2p+3 p−1 p−2 p+3 ǫ 3 1b 2b 3b 1b 2b 3b 1b 2b 3b 1b 2b 3b 1b 2b 3b 1b 2b 3b 1b 2b 3b 1b 2b 3b 1b 2b 3b Figure2. Probabilitydistributionat N =3forK=3 Suppose each categorical variable has K possible categories, so the sample space S = 1,...,K 1 The { } construction of the correlated categorical variables is based on a probability mass distribution over K adicpartitionsof[0,1]. Wewillfollowgraphterminologyinourconstruction,asthislendsavisual − representation of the construction. We begin with a parent node and build a K-nary tree, where the endnodesarelabeledbytherepeatingsequence(1,...,K). Thus,after N steps,thegraphhasKN nodes, with each node labeled 1,...,K repeating in the natural order and assigned injectively to the intervals 0, 1 , 1 , 2 ,..., KN 1,1 . Define KN Kn KN K−n (cid:16) (cid:105) (cid:0) (cid:3) (cid:0) (cid:3) ε =i on Kj,Kj+i N KN KN (2) εN =K on(cid:16) K(j+K1N)−1(cid:105),K(Kj+N1) (cid:16) (cid:105) wherei=1,...,K 1,and j=0,1,...,KN 1 1. Analternateexpressionfor(2)is − − − ε =ion l 1, l , i l modK, i=1,...,K 1 N K−N KN ≡ − (3) (cid:16) (cid:105) ε =K on l 1, l , 0 l modK N K−N KN ≡ (cid:16) (cid:105) 1Theseintegersshouldnotbetakenasorderedorsequential,butratherascharactertitlesofcategories. AGeneralizedMultinomialDistributionfromDependentCategoricalRandomVariables—4/15 Toeachofthebranchesofthetree,andbytransitivitytoeachoftheKN partitionsof[0,1],weassigna probabilitymasstoeachnodesuchthatthetotalmassis1ateachlevelofthetreeinasimilarmanner to[4]. Let0< p <1,i=1,...,K suchthat∑K p =1,andlet0 δ 1bethedependencycoefficient. Define i i=1 i ≤ ≤ p+ := p +δ∑ p , p = p δp foiri=1i,...,K.lT(cid:54)=hieslepi−robabii−litiesisatisfytwoimportantcriteria: Lemma1. ∑K p = p++∑ p =1 • i=1 i i l(cid:54)=i −l p p++p ∑ p = p • i i i− l(cid:54)=i l i Proof. Thefirstisobviousfromthedefinitionsof pi+/− above. Thesecondstatementfollowsclearlyfrom algebraicmanipulationofthedefinitions: p p++p ∑ p = p2+p (1 p )= p i i i− l(cid:54)=i l i i − i i WenowgivetheconstructioninstepsdowneachleveloftheK-narytree. LEVEL1: Parentnodehasmass1, withmasssplit1 ∏K p[ε1=i], where [ ] isanIversonbracket. Thislevelcorre- · i=1 i · spondstoasequenceεofdependentcategoricalvariablesoflength1. ε /Branch Path MassatNode Interval 1 1 parent 1 p (0,1/K] 1 → 2 parent 2 p (1/K,2/K] 2 → . . . . . . . . . . . . i parent i p ((i 1)/K,i/K] i → − . . . . . . . . . . . . K parent K Mass p ((K 1)/K,1] K → − Table1. ProbabilitymassdistributionatLevel1 LEVEL2: Level2hasKnodes,withKbranchesstemmingfromeachnode. Thiscorrespondstoasequenceoflength 2: ε=(ε ,ε ). Denotei.1asnodeifromlevel1. Fori=1,...,K, 1 2 Nodei.1hasmass p ,withmasssplit p p+ [ε2=i] ∏K p [ε2=j] i i i −j j=1,j=i (cid:54) (cid:16) (cid:17) (cid:0) (cid:1) ε /Branch Path MassatNode Interval 2 (i 1)K (i 1)K+1 1 i.1→1 pip1− −K2 , −K2 2 i.1→2 pip2− (cid:16)(i−1K)2K+1,(i−1K)2K+(cid:105)2 .. .. .. (cid:16) .. (cid:105) . . . . i i.1→i pipi+ (i−1)KK+2(i−1),(i−1K)2K+i .. .. .. (cid:16) .. (cid:105) . . . . K i.1 K p p iK 1,iK → i −K K−2 K2 Table2. ProbabilitymassdistributionatLevelII,Nodei (cid:0) (cid:3) AGeneralizedMultinomialDistributionfromDependentCategoricalRandomVariables—5/15 In this fashion, we distribute the total mass 1 across level 2. In general, at any level r, there are K streamsofprobabilityflowatLevelr. Forε =i,theprobabilityflowisgivenby 1 r pi∏ pi+ [εj=i]∏ p−l [εj=l] ,i=1,...,K (4) j=2(cid:34) l=i (cid:35) (cid:0) (cid:1) (cid:54) (cid:0) (cid:1) WeusethisflowtoassignmasstotheKr intervalsof[0,1]atlevelrinthesamewayasabove. Wemay alsoverifyviaalgebraicmanipulationthat r 1 − r pi = pi pi++∑pi− = pi ∑ ∏ pi+ [εj=i]∏ p−l [εj=l] (5) (cid:32) l=i (cid:33) ε2,...,εrj=2(cid:34) l=i (cid:35) (cid:54) (cid:0) (cid:1) (cid:54) (cid:0) (cid:1) wherethefirstequalityisduetothefirststatementofLemma1,andthesecondisdueto(4). 2.1 Example construction For an illustration, refer to Figure 2. In this example, we construct a sequence of length N = 3 of categorical variables with K = 3 categories. At each level r, there are 3r nodes corresponding to 3r partitionsoftheinterval [0,1]. Notethateachtimethenodesplitsinto3children,thesumofthesplit probabilitiesis1. Despitetheoutcomeofthepreviousrandomvariable,thenextonealwayshasthree possibilities. Thesamplespaceofcategoricalvariablesequencesoflength3has33=27possibilities. Some example sequences are (1,3,2) with probability p p p , (2,1,2) with probability p p p+, and (3,1,1) 1 3− 2− 2 1− 2 withprobability p p p . TheseprobabilitiescanbedeterminedbytracingdownthetreeinFigure2. 3 1− 1− 2.2 Properties 2.2.1 IdenticallyDistributedbutDependent We now show the most important property of this class of sequences– that they remain identically distributeddespitelosingindependence. Lemma2. P(ε =i)= p ;i=1,...,K,r N. r i ∈ Proof. Theproofproceedsviainduction. r=1isclearbydefinition,soweillustrateanadditionalbase case. Forr=2,fromLemma1,andfori=1,...,K, P(ε2 =i)=PK2−1 KK2j,KjK+2 1 = pipi++pi−∑pj = pi j(cid:91)=1 (cid:18) (cid:21) j(cid:54)=i   Thenatlevelr,inkeepingwiththealternativeexpression(3),weexpressε intermsofthespecific r nodesatlevelr: ε = ∑Kr εl1 , whereεl = l modK, 0(cid:54)≡l modK (6) r l=1 r lK−r1,Klr r (cid:40)K, 0≡l modK (cid:18) (cid:21) Letml betheprobabilitymassforεl. Then,forl =1,...,Kr andi=1,...,K 1, r r − P(εl =i), i l modK ml = r ≡ (7) r (cid:40)P(εr =K), 0 l modK ≡ AGeneralizedMultinomialDistributionfromDependentCategoricalRandomVariables—6/15 Astheinductivehypothesis,assumethatfori=1,...,K 1, − p =P(ε =i)=P Kr−1 εl =i = K∑r−1 P εl =i = K∑r−1 ml i r−1  l(cid:91)=1 { r−1 } l=1 (cid:16) r−1 (cid:17) l=1 r−1 i≡l modK  i≡l modK i≡l modK   Eachmassml issplitintoK piecesinthefollowingway r 1 − ml p++∑K p , l =1,...,K r 1 1 j=2 i− − ml (cid:16)p++∑ p (cid:17), l =K+1,...,2K  r 1 2 j=2 i−  − (cid:54) mrl−1 =mrl−1(cid:16)(cid:16)p3++∑j(cid:54)=3pi−(cid:17)(cid:17), ..l =2K+1,...,3K (8) . mrl−1 p+K +∑j(cid:54)=Kpi− , l =Kr−1−K+1,...,Kr−1  (cid:16) (cid:17)   whichmaybewrittenas P(ε =1)+P(εl =1)=ml +P(εl =1), l =1,...,K r r (cid:54) r r (cid:54) P(εr =1)+P(εlr (cid:54)=1)=mrl +P(εlr (cid:54)=1), l =K+1,...,2K mrl 1 =P(εr =1)+P(εlr (cid:54)=1)=mrl +P(εlr (cid:54)=1), l =2K+1,...,3K (9) −  ... P(εr =1)+P(εlr (cid:54)=1)=mrl +P(εlr (cid:54)=1), l =Kr−1−K+1,...,Kr−1      Then P(εr =1)= ∑Kr mrξ = ∑K mrl 1p1++ K∑r−1 mrl 1p1− (10) ξ=1 l=1 − l=K+1 − 1 ξ modK ≡ When1 l modK, ≡ K 1 K p1+ ∑− mrl+ξ1 =mrl 1p1++mrl 1 ∑p−j =mrl 1 (11) (cid:32)ξ=0 − (cid:33) − − (cid:32)j=2 (cid:33) − Equation11holdsbecauseml+ξ = p−l+ξ,ξ =0,...,K 1,andbyofLemma1. Thus, r 1 p+ − − 1 P(εr =1)= ∑Kr mrξ = ∑K mrl 1p1++ K∑r−1 mrl 1p1− = ∑K mrl 1+ K∑r−1 mrl 1 =K∑r−1mrl 1 = p1 ξ=1 l=1 − l=K+1 − l=1 − l=K+1 − l=1 − 1 ξ modK 1 l modK ≡ ≡ (12) Asimilarprocedurefori=2,...,K followsandtheproofiscomplete. AGeneralizedMultinomialDistributionfromDependentCategoricalRandomVariables—7/15 2.2.2 PairwiseCross-CovarianceMatrix Wenowgivethepairwisecross-covariancematrixfordependentcategoricalrandomvariables. Theorem 1 (Cross-Covariance of Dependent Categorical Random Variables). Denote Λι,τ be the K K × cross-covariancematrixofε andε ,ι,τ=1,...,n,definedasΛι,τ =E[(ε E[ε ])(ε E[ε ])]. Thentheentries ι τ ι ι τ τ − − δp (1 p ), i= j δ2p (1 p ), i= j ofthematrixaregivenbyΛ1,τ = i − i ,τ 2,andΛι,τ = i − i ,τ>ι,ι=1. ij (cid:40) δpipj, i = j ≥ ij (cid:40) δ2pipj, i = j (cid:54) − (cid:54) − (cid:54) Proof. TheijthentryofΛι,τ isgivenby Cov([ε =i],[ε =j])=E[[ε =i][ε =j]] E[[ε =i]]E[[ε =j]]=P(ε =i,ε =j) P(ε =i)P(ε =j) (13) ι τ ι τ ι τ ι τ ι τ − − Letι=1. For j=i,andτ=2, Cov([ε =i],[ε =i])=P(ε =i,ε =i) p2 = p p+ p2 =δp (1 p ) (14) 1 2 1 2 − i i i − i i − i For j=iandτ=2, (cid:54) Cov([ε1 =i],[ε2 = j])=P(ε1 =i,ε2 = j)−pipj = pip−j −pipj =−δpipj (15) p p+, j=i Forτ =2,itsufficestoshowthat P(ε =i,ε = j)= i i . 1 τ (cid:54) (cid:40)pip−j , j(cid:54)=i Startingfromε ,thetreeissplitintoK largebranchesgovernedbytheresultsofε . Thenatlevelr, 1 1 thereareKr nodesindexedbyl. EachoftheKlargebranchescontainsKr 1 ofthesenodes. Thatis, − ε1 =1branchcontainsnodesl =1,...,Kr−1 ε1 =2branchcontainsnodesl =Kr−1+1,...,2Kr−1 . . . ε =K branchcontainsnodesl =Kr K+1,...,Kr 1 − Then P(ε =1,εl =i)=ml; i l modK,l =1,...,Kr 1. Wehavealreadyshownthebasecaseforr=2. 1 r r ≡ − So,asaninductivehypothesis,assume p p+, i=1 P(ε =1,ε =i)= 1 1 1 r 1 − (cid:40)p1pi−, i(cid:54)=1 Thenwehavethatfori=1, p p+ =P(ε =1,ε =1)= K∑r−2 ml 1 1 1 r 1 r 1 − l=1 − 1 l modK ≡ andfori =1, (cid:54) p1pi− =P(ε1 =1,εr 1 =i)= K∑r−2 mrl 1 − l=1 − i l modK ≡ Movingonestepdownthetree(stillnotingthatε =1),wehaveseenthattheeachmassml splitsas 1 r 1 − K K mrl 1 = p1+mrl 1+mrl 1∑p−j =P(ε1 =1,εr =1)+mrl 1∑p−j − − − j=2 − j=2 AGeneralizedMultinomialDistributionfromDependentCategoricalRandomVariables—8/15 Therefore, P(ε =1,ε =1)= K∑r−1 ml 1 r r l=1 1 l modK ≡ = K∑r−2 ml p++ ∑K K∑r−2 ml p r 1 1 r 1 −j l=1 − j=2 l=1 − 1 l modK 1 l modK ≡ (cid:54)≡ K = p p+p++p p+∑p 1 1 1 1 1 −j j=2 = p p+ 1 1 p p+, j=i Asimilarstrategyshowsthat P(ε =1,ε =i)= p p andthat P(ε =i,ε = j)= i i . 1 r 1 i− 1 r (cid:40)pip−j , j(cid:54)=i Next,wewillcomputetheijthentryofΛι,τ,ι>1,τ>ι. Forι=2,τ=3, p p+ 2+(p )2∑ p , i= j i i i− j=i j P(ε2 =i,ε3 = j)=pip(cid:0)i+p−(cid:1)j +pjpi−p+j +(cid:54) ∑ll(cid:54)==ijplpi−p−j , i(cid:54)= j (16) (cid:54) This can be seen bytracing the tree construction from level 2 to level 3, with an example given in Figure2. Next,wewillshowthat(16)holdsforτ>3. First, note that P(ε =1,εl =1) = ml for 1 l modK, and l = (ξ 1)Lτ 1+ j, where ξ =1,...,K, 2 τ τ ≡ − − j=1,...,Kτ 2. Wehaveshownthebasecasewhereτ=3. Fortheinductivehypothesis,assumethat − K P(ε2 =1,ετ 1 =1)= p1 p1+ 2+(p1−)2∑p−j − j=2 (cid:0) (cid:1) Thenwehavethat p 2∑K p =∑ ml forthel definedabove. Then,ateachml ,wehave 1− j=2 −j 1 l modK τ 1 τ 1 ≡ − − thefollowingmasssplits: (cid:0) (cid:1) K mlτ 1 =mlτ 1p1++mlτ 1∑p−j , ξ =1 − − − j=2 (17) mlτ 1 =mlτ 1pi++mlτ 1∑mlτ 1p−j , ξ =i, i=2,...,K − − − j=i − (cid:54) Then K P(ε =1,ε =1)= ∑ ∑ ml (18) 2 τ τ ξ=1 l,ξ 1 l modK ≡ Usingthesametacticas(11),weseethatusing(17),addingthecomponents,andcombiningtheterms correctly,theproofiscompleteforanyτ. Theprooffor P(ε =i,ε = j)foranyi,jfollowssimilarly,and 2 τ theprooffor P(ε =i,ε = j)followsfromreducingtotheaboveprovenclaims. ι τ Inthenextsection,weexploitthedesirableidenticaldistributionofthecategoricalsequenceinorder toprovideageneralizedmultinomialdistributionforthecountsineachcategory. AGeneralizedMultinomialDistributionfromDependentCategoricalRandomVariables—9/15 3. Generalized Multinomial Distribution FromtheconstructioninSection2,wederiveageneralizedmultinomialdistributioninwhichallcategor- icalvariablesareidenticallydistributedbutnolongerindependent. Theorem2(GeneralizedMultinomialDistribution). Let ε ,...,ε becategoricalrandomvariableswithcat- 1 N egories 1,...,K, constructed as in Section 2. Let X = ∑N [ε =i],i =1,...,K, where [ ] is the Iverson bracket. i j=1 j · DenoteX=(X ,...,X ),withobservedvaluesx=(x ,...,x ). Then 1 K 1 K P(X=x)= ∑K pi(x (N1)−!∏1)! x ! pi+ xi−1∏ p−j xj i=1 i− j(cid:54)=i j (cid:0) (cid:1) j(cid:54)=i(cid:16) (cid:17) Proof. Forbrevity,letε =(ε ,...,ε )denotethesequenceofncategoricalrandomvariableswiththe ( 1) 2 n − firstvariableremoved. Conditioningonε , 1 K ∑ P(X=x)= P(X=x ε =i) 1 | i=1 K N K N = ∑p ∑ ∏ p+ [εj=i]∏∏ p [εl=k] i i −l i=1 ε (1)j=1 k=1l=1 X−=x (cid:0) (cid:1) k=i (cid:0) (cid:1) (cid:54) K = ∑p ∑ p+ ∑Nj=1[εj=i]∏ p ∑Nj=1[εj=l] i i −l  i=1 ε2,...,εN l=i X=x (cid:0) (cid:1) (cid:54) (cid:0) (cid:1)   Ntoorwes,iwdehienncεa1te=go1r,yth1e,r(eNa−r1e−x2(xx1N−1−−111))wcoaymsbtihneatrieomnsaionfinthgeNre−m1ai−nixn1g−N1−ca1tecgaotergicoarlicvaalrviaabrlieasblceasn{rεeis}iiNd=e2 incategory2,andsoforth. Finally,thereare(N−1−x1x−K1∑iK=−21xi)waysthefinalunallocated{εi}canbein categoryK. Thus, P(X=x ε =1) 1 | = p1 xN−11 N−1−x x1−1 ··· N−1−x1x−1−∑Kj=−21xj p1+ x1−1∏K p−j xj (cid:18) 1− (cid:19)(cid:18) 2 (cid:19) (cid:18) K (cid:19) j=2(cid:16) (cid:17) (cid:0) (cid:1) = p1(x (N1)−!∏1)K! x ! p1+ x1−1∏K p−j xj (19) 1− j=2 j j=2(cid:16) (cid:17) (cid:0) (cid:1) Similarly,fori=2,...,K P(X=x ε =i) 1 | = pi Nx−1 ··· N−1x−∑ij−=11 ··· N−1−xi−x1−∑Kj(cid:54)=−i,1j=1xj p1+ x1−1∏K p−j xj (cid:18) 1 (cid:19) (cid:18) i (cid:19) (cid:18) K (cid:19) j=2 (cid:16) (cid:17) (cid:0) (cid:1) = pi(x (N1)−!∏1)! x ! pi+ xi−1∏ p−j xj (20) i− j(cid:54)=i j (cid:0) (cid:1) j(cid:54)=i(cid:16) (cid:17) Summingcompletestheproof. AGeneralizedMultinomialDistributionfromDependentCategoricalRandomVariables—10/15 4. Properties ThissectiondetailssomeusefulpropertiesoftheGeneralizedMultinomialDistributionandthedependent categoricalrandomvariables. 4.1 Marginal Distributions Theorem 3 (Univariate Marginal Distribution). The univariate marginal distribution of the Generalized MultinomialDistributionistheGeneralizedBinomialDistribution. Thatis, P(Xi =xi)=q Nx−1 pi− xi q− N−1−xi +pi Nx −11 pi+ xi−1 q+ N−1−(xi−1) (21) (cid:18) i (cid:19) (cid:18) i− (cid:19) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) whereq=∑ p ,q+ =q+δp ,andq =q δq j=i j i − (cid:54) − Proof. First,weclaimthefollowing: q+ =q+δp = p++∑ p ,l =2,...,K. Thismaybejustifiedviaa i l j=l −j (cid:54) j=i (cid:54) simplemanipulationofdefinitions: p++∑p = p +δ∑(p δp )+∑(p δp )= p +∑p +δp =q+δp l −j l j− j j− j l j i i j=l j=l j=l j=l (cid:54) (cid:54) (cid:54) (cid:54) j=i j=i (cid:54) (cid:54) Similarly,q =q δq. Thus,wemaycollapsethenumberofcategoriesto2: Categoryi,andeverything − else. Now,notice−thatforl (cid:54)=i, p+l xl−1 ∏ p−j xj =(q+)N−xi−1 forl =1,...,K andl (cid:54)=i. Fixk(cid:54)=i. Then j=l (cid:54) (cid:16) (cid:17) (cid:0) (cid:1) j i ≤ pk(x (N1)−!∏1)! x !(pk)xk−1∏ p−j xj = pk pi− xi q+ N−xi−1 x !(x (N1−)!1∏)! x ! k− j(cid:54)=k j j(cid:54)=k(cid:16) (cid:17) (cid:0) (cid:1) (cid:0) (cid:1) i k− jj(cid:54)==ki j (cid:54) N 1 = pk x− pi− xi q+ N−xi−1 (22) (cid:18) i (cid:19) (cid:0) (cid:1) (cid:0) (cid:1) Then ∑K pi(x (N1)−!∏1)! x ! pi+ xi−1∏ p−j xj = pi(x (N1)−!∏1)! x ! pi+ xi−1 q− N−1−(xi−1) i=1 i− j(cid:54)=i j (cid:0) (cid:1) j(cid:54)=i(cid:16) (cid:17) i− j(cid:54)=i j (cid:0) (cid:1) (cid:0) (cid:1) +∑pk(x (N1)−!∏1)! x ! p+k xk−1∏ p−j xj k(cid:54)=i k− j(cid:54)=k j (cid:0) (cid:1) j(cid:54)=k(cid:16) (cid:17) = pi Nx −11 pi+ xi−1 q− N−1−(xi−1) (cid:18) i− (cid:19) +∑pk N(cid:0) x−(cid:1)1 p(cid:0)i− (cid:1)xi q+ N−xi−1 k=i (cid:18) i (cid:19) (cid:54) (cid:0) (cid:1) (cid:0) (cid:1) = pi Nx −11 pi+ xi−1 q− N−1−(xi−1) (cid:18) i− (cid:19) N (cid:0)1 (cid:1) (cid:0) (cid:1) +q x− pi− xi q+ N−xi−1 (cid:18) i (cid:19) (cid:0) (cid:1) (cid:0) (cid:1) Theabovetheoremshowsanotherwaythegeneralizedmultinomialdistributionisanextensionof thegeneralizedbinomialdistribution.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.