A GENERAL RENORMALIZATION PROCEDURE ON THE ONE-DIMENSIONAL LATTICE AND DECAY OF CORRELATIONS A.O.LOPES 7 1 0 Inst. deMatema´tica,UFRGS-PortoAlegre,Brasil 2 n a J 6 2 ABSTRACT. WepresentageneralformofRenormalizationoperatorRactingonpotentialsV: 0,1 N R. WeexhibittheanalyticalexpressionofthefixedpointpotentialV forsuchoperatorR. Thispo{tentia}lc→anbe ] expressedinanaturallywayintermsofacertainintegralovertheHausdorffprobabilityonaCantortypeset S ontheinterval[0,1]. ThisresultgeneralizesapreviousonebyA.Baraviera,R.LeplaideurandA.Lopes(see D [2])wherethefixedpointpotentialV wasofHofbauertype(see[16]). h. ForthepotentialsofHofbauertype(awellknowncaseofphasetransition)thedecayisliken−g,g >0(see [22][23],[14]or[10]) t a Amongotherthingswepresenttheestimationofthedecayofcorrelation oftheequilibrium probability m associatedtothefixedpotentialVofourgeneralrenormalizationprocedure.Insomecaseswegetpolynomial [ decaTyhleikpeotne−ngti,agls>g0w,eancdonisnidoethrehresreaadreecaeylefmasetnetrstohfanthnees−o√canl,lwedhfeanmnil→yo¥f.Walterspotentialson 0,1 N(see { } 1 [27])whichgeneralizes thepotentials consideredinitiallybyF.Hofbauerin[16]. Forthesepotentialssome v explicitexpressionsfortheeigenfunctionsareknown. 6 Inafinalsectionwealsoshowthatgivenanychoicedn 0ofrealnumbersvaryingwithn Nthere → ∈ 5 existapotentialgontheclassdefinedbyWalterswhichhasainvariantprobabilitywithsuchnumbersasthe 6 coefficientsofcorrelation(foracertainexplicitobservablefunction). 7 0 1. INTRODUCTION . 1 ItisaclassicalprobleminStatisticalMechanicsthestudyofphasetransitions(see[12],[13],[1],[15], 0 7 [28]and[29])forgeneralpotentials. Inseveralexamplesitisknownthatonthepointofphasetransition 1 one gets polynomialdecay of correlationfor the associated equilibriumprobability. As far as we know, : thereisnounifiedwayforunderstandingallkindsofphasetransitions. v i One important technique on the analysis of such class of problems is the use of the renormalization X operator (see for instance [5], [18], [4] and [8]). The potential which is fixed for the renormalization r operatorinmostofthecasesisquiterelevantfortheunderstandingoftheproblem. a PhasetransitionsinthesettingofThermodynamicFormalismhasbeenconsideredfromdifferentpoints ofview(seeforinstance[2],[14],[19],[20],[21],[7],[6],[22],[23],[9],[10],[11]and[17]). In[2]itwasintroducedarenormalizationoperator(actingonpotentials)ontheone-dimensionallattice N 0,1 andthefixedpointonegetsisthewellknownHofbauerpotential. Theequilibriumprobabilityfor { } suchpotentialexhibitpolynomialdecayofcorrelationforacertainclassofobservables. Here we consider a more general procedure of renormalization of potentials defined on the lattice N 0,1 . We want to exhibit a fixed point potential for such procedure. The fixed point potential will { } beonaclassoffunctionspreviouslyconsideredbyP.Waltersin[27](whichincludestheHofbauerpoten- tial). Weareparticularyinterestedinthedecayofcorrelation(foracertainnaturalfunction)associatedto theequilibriumprobabilityforsuchpotential. In some cases (first type) the fixed point will produce polynomialdecay of correlation and in others cases(secondtype)notofpolynomialtype(someofthemfasterthanne √n,whenn ¥ ). − → Inordertogiveanideatothereaderofthekindofresultswewillgetherewepresentanexample: in aparticularcasetherenormalizationoperatorR actsoncontinuouspotentialsU, suchthatU isconstant Date:January27,2017. 1 2 A.O.LOPES oncylindersetsoftheform0...01and1...10,forallQ N.ForeachfixedQthevaluesarethesameon ∈ Q Q bothcylindersets WedefineU =R(U )in|t{hze}followi|ng{zw}ay: supposexisoftheformx=(0...0,1,...),then 2 1 Q U (x) = R(U )(x)=U (0...0,1)+U (0...0,1).|{z} 2 1 1 1 3Q 3Q 2 − InthiscasethefixedpointpotentialV fortherenor|m{azli}zationoper|a{tozr}R isthefunction 1 V(x)= dn (t) − K (Q t)a Z − when x=(0...0,1,...), Q N, and where n is the Hausdorff probability on the classical Cantor set (a ∈ Q subsetoftheinterval[0,1])andwhichhasHausdorffdimensiona = log2. |{z} log3 Inseveraldistinctclassesofproblemsthefixedpointpotentialfortherenormalizationoperatorcanbe expressed on an integral form associated to a fractal probability (see for instance [5], [3], [18], [4] and [24]).Herewewillalsogetasimilarkindofexpression. We will present now the main definitions giving more details on the specific problems we want to analyze. We will consider a subclass of potentials g: 0,1 N R which were described in [27]. Using the notationofthatpaper,considerarealsequencea{, n } N→, andassumethata 0, whenn ¥ . Inour n n ∈ → → modela=0=c. Givena ,a ,...,a ,...<0defineh , j 1,insuchwaythat(a +a +...+a )=logh , j 1. 2 3 n j 2 3 j+1 j+1 Forthesequence1 h >0,n N,n≥ 1,h =1,weassumethat,h 0,and(cid:229) ¥ h g =W(≥b )>1 foranyb >1. ≥ n ∈ ≥ 1 n→ n=1 n log2 Particularcaseswhichweareinterestedarewhenh =e n1/2,h =e n1−log5 orh =n g,g >2. n − n − n − Considerthetwoinfinitecollectionsofcylindersetsgivenby L =000...01 and R =111...10, foralln 1. n n ≥ n n Usingtheseparametersweca|n{dzefi}neacontinuous|po{teznt}ialg=gb :W R, whichissimplydenote byg,inthefollowingway:foranyx W andb 1 → ∈ ≥ b a , ifx L , forsomen 2; n n ∈ ≥ b an, ifx Rn, forsomen 2; g(x)=−llooggWW((bb )),, iiffxx∈∈LR1;; ≥ 1 − ∈ ¥ ¥ Intheabovewearetakingcn=an0,,foralln. ifx∈{1 ,0 }. WearemainlyinterestedinpotentialsgwhicharenotofHo¨ldertype. Definition 1. Given A:W = 0,1 N R, the Ruelle operator L acts on functions y :W R in the A { } → → followingway d j (x)=L (y )(x)= (cid:229) eA(ax)y (ax). A a=1 BythiswemeanL (y )=j . A From the generalresult described in page 1341in [27] applied to our particular case, we get that the eigenfunctionj b oftheRuelleoperatorforA=b g,forb 1,issuchthat,foranyn 1 ≤ ≥ AGENERALRENORMALIZATIONPROCEDUREONTHEONE-DIMENSIONALLATTICEANDDECAYOFCORRELATIONS 3 ¥ h b j b (0n1...)=a 1+h1nb j(cid:229)=1l (nb+)jj!, (1) ¥ h b j b (1n0...)=b(b ) 1+h1nb j(cid:229)=1l (nb+)jj!, (2) j b (0¥ )=a and j b (1¥ )=b(b ). Theeigenfunctionisunique. Weassumethatforb =1wegetl (b )=1=a =b(b ) Whenb =1,itiseasytoseethatifitiswelldefinedtheprobabilityr ontheBoreliansofW ,suchthat, foranynaturalnumberq 1,wehavethat ≥ r 0q1 =h and r 1q0 =h . (3) q q then,r isaneigenprobabilityforthedualoftheRuelleoperatorforg. (cid:0) (cid:1) (cid:0) (cid:1) Therefore,fromageneralprocedure(see[25])onegetsthattheprobabilitym ,suchthat, ¥ ¥ m 0q1 =h j (0n1...)= (cid:229) h and m 1q0 =h j (1n0...)= (cid:229) h (4) q n+j q n+j j=0 j=0 (cid:0) (cid:1) (cid:0) (cid:1) istheequilibriumprobabilityforg. We will show in Theorem 6 that decay of correlation d , as a function of q N, of the equilibrium q ∈ probabilitym forthepotentialgandfortheindicatorofthecylinder0isoforder ¥ ¥ (cid:229) (cid:229) h . (k+q+s) s=1k=0 Given a certain sequence d 0, there exists (under mild conditions) a choice of h such that d = q n q (cid:229) ¥ (cid:229) ¥ h . Indeed, firs→t for the given sequence d , q N, take inductively c such that c = ds=1d k=0,n(k+Nq+.sI)nthisway(cid:229) ¥ c =d . q ∈ n n n−Nown+,1give∈nsuchsequencecj,=nq jN,taqkeanewsequenceh ,suchthat,h =c c ,r N.Inthis n r r r r+1 case(cid:229) ¥ h =c . ∈ − ∈ i=p i p Itfollowsthatforallqwegetd =(cid:229) ¥ (cid:229) ¥ h . q s=1 k=0 (k+q+s) Partoftheresultspresentedherewerea consequenceoffruitfuldiscussionswithA. BaravieraandR. Leplaideurwhichcontributedinanontrivialwaytoourreasoning.Ourthankstothem. Insections2and3wepresentresultsaboutthefixedpointpotentialforacertainrenormalizationopera- tor. Onsections4and5weestimatethedecayofcorrelationsfortheclassopotentialsofWalterstypeand weshowthatalargeclassoftypesofdecayofcorrelationsareattainedbysuchfamily. Ontheappendix weuseresultsoftheprevioussectionstoshowthatforsomeofthesefixedpointpotentialsthedecayisnot ofpurelypolynomialtype. 2. A GENERAL RENORMALIZATION- FIRST TYPE Thepotentials f whichweareinterestedareontheclass f(0n1z)=a , f(0¥ )=a, f(10n1z)=d , f(10¥ )=d, n n f(01n0z)=b , f(01¥ )=b, f(1n0z)=c , f(1¥ )=c, n n andisassumedthata a,b b,c candd d. n n n n → → → → Wewillassumethatb =d =b=d. n n Therenormalizationoperatorwillactonsuchsetoffunctions. Fixanaturalnumberk 2.Wewillgeneralizethekindofrenormalizationdescribedin[2]wherek=2. ≥ Nowtakeforn>1 H (0n1x)=0kn (k 2)1x k − − H (1n0y)=1kn (k 2)0y k − − and H (01mx)=01mx k 4 A.O.LOPES H (10my)=10my k ¥ ¥ ¥ ¥ andalsoH (0 )=0 ,H (1 )=1 . k k Nowdefinetherenormalizationoperatoras Rk(V)(x)=V(Hk(x))+V(s Hk(x))+V(s 2Hk(x))+...+V(s k−1Hk(x)). WewillshowthatitispossibletoexhibitafixedpointV fortherenormalizationoperatorR . k Theclassoffunctionsweconsiderhereinthesection1islargeenoughtobeabletogetfixedpointsV. Thismeanswewillbeabletofindasequencea ,n N,whichwilldefinesuchV n ∈ An interesting question is to estimate the decay of correlation of the equilibrium probability for the fixedpointpotentialV. Onecanshow(seesection5)thatforthecaseofrenormalizationoffirsttypethe potentialV issuchthatwegetpolynomialdecayofcorrelation. ¥ ¥ IfV isfixedfortherenormalizationoperatorR ,thenV(1 )=V(0 )=0=a=c. k Moreover, ¥ ¥ ¥ ¥ V(01 )=V(01 )+V(1 )+V(1 )=b and ¥ ¥ ¥ ¥ a =V(001 )=V(00...0001 )+V(00...0001 )+...+V(0001 )=a +a +...+a . 2 3 4 k+2 k+2 k+1 | {z } | {z } ¥ ¥ ¥ ¥ a =V(0001 )=V(00...0001 )+V(00...0001 )+...+V(00...0001 )=a +a +...+a . 3 k+3 k+4 2k+2 2k+2 2k+1 k+3 Aswewillseoncew|efi{zxth}evalueof|a2{azdb}thepotentialV|w{ilzlb}edetermined. TheWalterspotentialV whichisthefixedpointforR shouldsatisfyforn 2: k ≥ a =a +a +...+a n k(n 1)+2 k(n 1)+1 k(n 2)+3 − − − a =c =c +c +...+c n n k(n 1)+2 k(n 1)+1 k(n 2)+3 − − − and d =b =b=d n n areconstant. Nowwesolvea (2)asthesolutionof 2+a (2) a = log . 2 − 2+a (2) 1 − Now,a (n)isdefinedbyinductionforn 2, ≥ a =a =...=a , k(n 1)+2 k(n 1)+1 k(n 2)+3 − − − and a =ka (n)+(k 2). k(n 1)+2 − − Takinga =d ,n 2,oftheform n n ≥ n+a (n) a = log <0 n − n+a (n) 1 − onecanshowthatwegetthefixedpointsolutionoftheRenormalizationoperator. Wepointoutthata andbarefree. 2 OnecanshowthatinthiscaseforsuchV thereexistsg suchthatlogh g logn,n 1.Ifg >2,one n getspolynomialdecayofcorrelationoftheformn2 g similartotheHofba∼ue−rcase. This≥kindofquestion − waspreviouslyconsiderin[22][23][14][10]. Thiscanbealsoobtainedfromthegeneralproofofsection 5. AGENERALRENORMALIZATIONPROCEDUREONTHEONE-DIMENSIONALLATTICEANDDECAYOFCORRELATIONS 5 3. A GENERALRENORMALIZATION -SECOND TYPE We consider in this section a far more general generalization of the renormalization operator and we exhibitthefixedpointpotentialV. Wepointoutthatinmanyexamplesthefixedpointpotentialofarenormalizationoperatorisdescribed byan expressionobtainedbythe integralofa kernelwith respectto a certainfractalprobability(see for instance[5],[3],[18],[4]and[24]). Herewewillgetasimilarkindofresult. Let us denote L the cylinders[00...01] (with n zeros) and R the cylinders[11...10] (with n ones). n n Letsusdefineapotentialthatisa onL andb onR . n n n n Inordertodefinethesecondtyperenormalizationoperator,wefirstintroducethemapH. Letk bean integerlargerorequalthan2;takeh(0)=00...0andh(1)=11...1;hencewedefine k k H(x1,x2,x|3,{.z..)}=(h(x1)h(x2|)h{(zx3})...). Itiseasytoseethats kH=Hs . Hence H(00...01...)=00...01... say,ifx L thenH(x) L n kn ∈ ∈ n kn and | {z } | {z } H(11...10...)=11...10... say,ifx R thenH(x) R n kn ∈ ∈ n kn Wenowdefinetherenormalizationoperatorasthemaponfunctionsdefinedasfollows: fixl suchthat | {z } | {z } 2 l kandtheconstants0 c <c <...<c k. Then 1 2 l ≤ ≤ ≤ ≤ RV(x):=V(s c1H(x))+V(s c2H(x))+ +V(s clH(x)) ··· OnecanseethattheRenormalizationoperatoroflastsection(thecasel=k)isaparticularcaseofthis newone. TheequationaboveforthepotentialVcanberewritten,analogouslytotheexpressionsintheprevious section,as Ra =a +a + +a n kn−c1 kn−c2 ··· kn−cl (andasimilarexpressionholdstoc ). n WeareinterestedonfindingafixedpotentialV forsuchrenormalizationoperator.Forapotentialonthe classofWaltersthefixedpointequationis a =a +a + +a n kn−c1 kn−c2 ··· kn−cl Thenwegetthefollowingresult: Lemma2. GivenN 1then ≥ RNV(x)=(cid:229) V(s jHN(x)) j where jisoftheform j=b k0+b k1+b k2+ +b kN 1 0 1 2 N 1 − ··· − forb chosenontheset c ,c ,...,c . i 1 2 l { } Proof. Indeed,theexpressionitobviouslyvalidforN =1(bydefinitionoftheoperatorR). Now,admit thatitholdsforN;weneedtoshowthatthisimpliestheexpressionforRN+1V. But RN+1V =R(RNV)=RNs c1H+RNs c2H+ +RNs clH= ··· (cid:229) V(s jHNs c1H)+... j Nowitiseasytosee(alsobyinduction)that Hs PH =s PkH2 and HPs H=s kPH2(?)= s kPHP+1 6 A.O.LOPES Withthistwoexpressionsweget HNs cH=s ckNHN+1 ThenwecanshowthatRN+1V is (cid:229) V(s jHNs c1H)+...= j (cid:229) V(s js c1kNHN+1)+...=(cid:229) V(s j+c1kNHN+1)+... j j where j=b k0+b k1+b k2+ +b kN 1;hencetheexpressionaboveisindeed 0 1 2 N 1 − ··· − (cid:229) V(s JHN+1)+... J whereJ=d k0+d k1+d k2+ +d kN 1+d kN,showingthatRN+1 isasclaimed. (cid:3) 0 1 2 N 1 − N ··· − NowwewanttoshowthatwehaveafixedpointofR thatintheneighborhoodof0¥ behaveslike 1 V(00...01...) ∼− logl n nlogk Aswewillseeinamomentitwillbenaturaltoconsiderthe(Cantorlike)setK = K(l,k)whichisthe | {z } closureoftheset x= (cid:229) aik−i forai c1,...,cl ,n Z { ∈{ } ∈ } n 1 ≥ Notethatwhenk=lthesetKwillbetheinterval[0,1]. Example3. Considerthefollowingparticularcase. DefineH :W = 0,1 N W by: 3 { } → H ((0,...,0,1,...,10,...,0,1,...))=(0,...,0,1,...,10,...,0,1,...), 3 c1 c2 c3 3c1 c2 c3 and | {z } | {z }| {z } | {z } | {z }| {z } H ((1,...,1,0,...,01,...,1,1,...))=(1,...,1,0,...,01,...,1,1,...). 3 c1 c2 c3 3c1 c2 c3 Inthiscasetherenormalizationoperatoris | {z } | {z }| {z } | {z } | {z }| {z } R (V)(x)=V(H (x))+V(s H (x))+V(s 2H (x)) 3 3 3 3 Ifx=(0,...,0,1,..)orx=(1,...,1,0,..)denoteV(x)=log c1 .Notethatforeachc wegetthat c1−1 1 c1 c1 3c 3c 1 3c 2 c | {z } | {z1 } 1 1 1 log +log − +log − =log . 3c 1 3c 2 3c 3 c 1 1 1 1 1 − − − − InthiscaseV isafixedpointfortherenormalizationoperator. WecanchoosethesignalofV andthen,wetakeV intheform 1 1 c 1 V(1,...,1,0,..) =V(0,...,0,1,..)= dt= log c1 c1 −Z0 c1−t − c1−1 | {z } | {z } Inordertofindagoodguess(inthegeneralcase)forthefixedpointpotentialconsider 1 U(x)= , foranyQ Qa when,x=0,...,0,1,..),or,x=1,...,1,0,..). Q Q Then,byiterationofU weget: | {z } | {z } RNU(x)=(cid:229) 1 =(cid:229) 1 1 (QkN j)a kNa (Q j )a j − j −kN AGENERALRENORMALIZATIONPROCEDUREONTHEONE-DIMENSIONALLATTICEANDDECAYOFCORRELATIONS 7 for j=b k0+b k1+b k2+ +b kN 1 (andb c ,...,c ). 0 1 2 N 1 − i 1 l Fromtheaboveseemsnatu··r·altotr−ytofindafixed∈p{ointV oft}heform 1 V(x)= dn (t), − K (Q t)a Z − when(0...0,1,..),forsomeprobabilityn ontheinterval. Q Examp|le{z4.}Letusfixk=3,l=2andc =0,c =2. InthiscasetheCantorsetK wegenerateisindeed 1 2 theclassicalCantorset. WecanwriteK=K K whereK [0,1/3]andK [2/3,1]. 0 2 0 2 ∪ ⊂ ⊂ NotethatthetransformationT(x)=3x(mod1)istwotoonewhenrestrictedtoK. Moreover,T[0,1/3]=[0,1]=T[2/3,1]. Letn bethemeasuresupportedonK andconsidera =log2/log3,thatistheHausdorffdimensionof K. Note that the Radon-Nykodin derivative of n in each injective branch of T restricted to [0,1/3] and [2/3,1]isequalto2. Wewanttoshowthatthefunction 1 V(0...01)= dn (t) − K (Q t)a Q Z − isafixedpointoftherenormalizationo|p{ezra}tor,i.e., V(x)=V(H(x))+V(s 2H(x)) Ifx=0...01thiscorrespondstoshowthat Q |{z} 1 1 1 dn (t)= dn (t)+ dn (t) K (Q t)a K (3Q t)a K (3Q 2 t)a Z − Z − Z − − Notethatthesecondexpressionis 1 1 1 dn (t)+ dn (t) = 3a K (Q t/3)a K (Q 2/3 t/3)a (cid:18)Z − Z − − (cid:19) 1 1 1 dn (t)+ dn (t) 2 K (Q t/3)a K (Q 2/3 t/3)a (cid:18)Z − Z − − (cid:19) Weremindthat 32a =1. Inthefirstintegralwecanusethechangeofvariablesx=t/3,thenweget 1 1 dn (t)= 2dn (x) ZK (Q−t/3)a ZK0 (Q−x)a Inthesecondweusex=2/3+t/3andweget 1 1 dn (t)= 2dn (x). ZK (Q−2/3−t/3)a ZK2 (Q−x)a Therefore, 1 1 1 dn (t)+ dn (t) = 3a K (Q t/3)a K (Q 2/3 t/3)a (cid:18)Z − Z − − (cid:19) 1 1 1 2 dn (x)+ dn (x) = 3a (cid:18)ZK0 (Q−x)a ZK2 (Q−x)a (cid:19) 1 1 dn (x)= dn (x) ZK0∪K2 (Q−x)a ZK (Q−x)a asclaimed. 8 A.O.LOPES Theorem5. Letxoftheform: x=00...01...,orx=11...10...,thentheoperator Q Q RV(x):=V|(s{zc1H}(x))+V(s c2|H{(zx))}+ +V(s clH(x)) ··· hasafixedpointV oftheform 1 V(x)= dn (t) − K (Q t)a Z − where a = logl, and where n is the measure over K that maximizes the entropy for the transformation logk T(x)=kx(mod1)actingonK . Proof. Thereasoningissimilartothelastexample.Considera = logl. logk ThetransformationT(x)=kx(mod1)actingonK isl toone. Themaximalentropyprobabilityn has entropylogl. There exists l sets K1,K2,...,Kl [0,1] such that T(Kj K)=K, and by consideringT restricted to Kj=[c /k,(c +1)/k], j=1,2,...,l⊂,wegetaninjectivemap∩.Considertheinducedprobabilityn =T (n ) j j j ∗ onK . TheRadon-Nykodinderivativeofn withrespectton ineachsetKj isequaltol. j j Ifx=(0...0,1,...)(or,x=(1...1,0,...))wewanttoshowthat Q Q |{z}V(x)= |1{z}dn (t)= (cid:229) l 1 dn (t)=RV(x). −ZK (Q−t)a − j=1ZK ((kQ−cj)−t)a Foreach jwehavethat 1 1 1 dn (t)= dn (t)= dn (t). ZK ((kQ−cj)−t)a ZK ka (Q−cjk+t)a ZK l(Q−ckj −kt )a Foreach jweconsiderthechangeofcoordinatet t/konthesetKj. → Then,wegetthat 1 1 dn (t)= ldn (y). K (Q cj+t)a Kj (Q y)a Z − k Z − As 1 dn (t)= (cid:229) l 1 dn (t) ZK (Q−t)a j=1ZKj (Q−t)a wegettheclaim. (cid:3) Notethat 1 dn (t) Q a − K (Q t)a ∼− − Z − forlargeQ. Inthiscaseh n willbeofordere−n1−a .Whenk=5andl=2wewillgetthattheequilibrium stateforfixedpointV hasadecayfasterthanne √n (seeAppendix). − 4. THEASSOCIATED JACOBIAN Nowweareinterestedontheestimationofthedecayofcorrelationassociatedtoequilibriumprobabili- tiesassociatedtothefixedpointpotentialswegetviatherenormalizationoperator. Wewillshowthatitis notalwaysofpolynomialtype. Infact,wewillpresentthedecayofcorrelationforageneralpotentialof Walterstype. Supposeg is of Walter type. If we add a constantto a potentialits equilibriumstate will notchange. Then,wecanassumewithoutlostofgeneralitythatthepotentialghaspressurezero. Theassociated JacobianJ forthe potentialdefinedby g atthe inversetemperatureb =1 is suchthat logJ=g+logj log(j s ),wherej istheeigenfunctionoftheRuelleoperatorforg(see(2). − ◦ Wewilldefiner(q)forq 1. ≥ WesplittheexpressionoflogJ(x)insixcases: AGENERALRENORMALIZATIONPROCEDUREONTHEONE-DIMENSIONALLATTICEANDDECAYOFCORRELATIONS 9 a) forq 2andx L orx R wehave q q ≥ ∈ ∈ ¥ logJ(x)=b a +log 1+h (cid:229) h q q (n+q 1) n=2 − ! ¥ log 1+h (cid:229) h (q 1) (n+q 2) − − n=2 − ! :=b a +logr(q) logr(q 1). k − − q b) forx=0111...10... L wehave 1 ∈ ¥ z }| { logJ(x)= log 1+h (cid:229) h = log(r(q)). q (n+q 1) − n=2 − ! − q c) forx=1000...01... R wehave 1 ∈ ¥ z }| { logJ(x)= log 1+h (cid:229) h = log(r(q)). q (n+q 1) − n=2 − ! − ¥ ¥ d) forx=0 orx=1 wehaveJ(x)=1. ¥ ¥ e) forx=10 orx=01 wehaveJ(x)=0. Notethatr(1)h =W. 1 Theequilibriumprobabilitym forghasJacobianJand Ll∗ogJ(m )=m . 5. DECAY OF CORRELATION In this section we want to estimate the decay of correlation of the observable I for the equilibrium [0] probabilitym atthecriticalinversetemperatureT whereb =1= 1. T Weassumefromnowonthatb =1. Thatis,wewillestimatetheasymptoticbehaviorwithkofthedecayofcorrelationoftheobservableI 0 (I s q)[I m [0]]dm a (q), [0] [0] 1 W ◦ − ∼ Z wherem istheequilibriumprobabilityforg,whenb =1. Wewillshow,asaparticularcase,thatifh q g,withg >2,then,a (q)goestozerolikeq2 g. The q − − ∼ nextresultisquitegeneral. Theorem6. Thedecayofcorrelationasafunctionofqfortheequilibriumprobabilitym (forthepotential g)fortheindicatorofthecylinder0is ¥ ¥ (cid:229) (cid:229) h (k+q+s) s=1k=0 inthecaseiswelldefined. Proof:Thetechniqueissimilartotheoneemployedin[14]and[10]. Firstweneedtoestimatetheasymptoticlimit m [0] Lq (I )(01..). 1 − logJ [0] Weclaimthat q ¥ m [0] Lq (I )(01..) (cid:229) (cid:229) h . (5) 1 − logJ [0] ∼ j n=1 j=q+1 Wewillpresenttheproofofthisfactlater. 10 A.O.LOPES Now,forafixedqandanys 2weneedtoevaluatethedifference ≥ m [0] Lq (I )(00...01..). 1 − logJ [0] s s |{z} For fixed q and variable s, let Bs =Lq (I )(00...01..), A(t)=Lt (I )(01...) and finally denote q logJ [0] logJ [0] psn= r(sr+(sn))hhss+n,n=1,..,q−2,s∈N. z}|{ Wedenotea (q,s)= h (s+q)r(s+q). h sr(s) Onecanshow(seefigure3page1092andexpressioninthebottomofpage1090[14]whereasimilar caseisdescribed)thatforanys,q 2 ≥ r(s+1) r(s+2) r(s+q 2) Bs =A +eas+1 A +eas+1+as+2 A +...+eas+1+as+2+...+aq+s 2 − A + q q−1 r(s) q−2 r(s) q−3 − r(s) 1 r(s+q) eas+1+as+2+...+aq+s 1+aq+s = − r(s) Aq−1+r(s+r(1s))hh s(s+1)Aq−2+ r(sr+(s2))hhss+2Aq−3+...+r(s+qr−(s2))hhs(s+q−2)A1+r(s+r(qs))hh (ss+q) = Aq−1+r(s+r(1s))hh s(s+1)Aq−2+ r(sr+(s2))hhss+2Aq−3+...+r(s+qr−(s2))hhs(s+q−2)A1+a (n,s). (6) Thisisnotakindofrenewalequation. Letusnowconsiderforn 1fixed,ands 2thesequenceVs=m [0] Bs. Wealsointroduce,forn ≥1,thesequence≥sV =m [0] A ,annd 1 − n n 1 n ≥ − Uns=−m [0](r(s+r(1s))hh s(s+1) + r(sr+(s2))hhss+2+...+r(s+qr−(s2))hhs(s+q−2))−a (n,s). Fromtheequation(6)wededucethatforqfixed m [0] Lq I (00...01..) =m [0] Bs =Vs=V +V ps+V ps+...+V ps +Us. (7) 1 − logJ [0] − q q q−1 q−2 1 q−3 2 1 q−2 q s Rememberthat(4)|c{lazim}s m 0s1 =h j (0s1...)=h r(s). (8) s 1 s Foreachfixedqwewillhavetoest(cid:0)imat(cid:1)elaterforeachsthevalue m (0s1) Lq I (00...01..) m [0] = h r(s) Lq I (00...01..) m [0] = logJ [0] − s logJ [0] − s s (cid:2) (cid:3) (cid:2) (cid:3) |{z} |{z} V h r(s)+V r(1+s)h +V r(2+s)h +...+V r(s+q 2)h r(s+q)h . (9) q 1 s q 2 1+s q 3 2+s 1 s+q 2 s+q − − − − − − AsmentionedbeforetheRuelleoperatorL isthedual(intheL2(W ,B,m )sense)oftheKoopman logJ 1 operatorK (j )=j s ,usingthisduality,expressions(9)and(15)wegetthatforfixedqthat ◦