A comparison study of CORSIKA and COSMOS simulations for extensive air showers SoonyoungRoha,b,JiheeKima,DongsuRyua,∗,HyesungKangc,KatsuakiKasaharad,Eiji Kidod,AkimichiTaketae aDepartmentofAstronomyandSpaceScience,ChungnamNationalUniversity,Daejeon305-764,SouthKorea 3 bDepartmentofPhysics,GraduateSchoolofScience,NagoyaUniversity,Nagoya464-8602,Japan 1 cDepartmentofEarthSciences,PusanNationalUniversity,Pusan609-735,SouthKorea 0 dInstituteforCosmicRayResearch,UniversityofTokyo,Chiba277-8582,Japan 2 eCenterforHighEnergyGeophysicsResearch,EarthquakeResearchInstitute,UniversityofTokyo,Tokyo113-0032, Japan n a J 2 2 Abstract ] E Cosmicrayswithenergyexceeding∼ 1018 eVarereferredtoasultra-highenergycosmicrays H (UHECRs). Monte Carlo codes for extensive air shower (EAS) simulate the development of . EASs initiated by UHECRs in the Earth’s atmosphere. Experiments to detect UHECRs uti- h lizeEASsimulationstoestimatetheirenergy,arrivaldirection,andcomposition. Inthispaper, p - we compare EAS simulations with two different codes, CORSIKA and COSMOS, presenting o quantitiesincludingthelongitudinaldistributionofparticles,depthofshowermaximum,kinetic r t energy distribution of particle at the ground, and energy deposited to the air. We then discuss s implicationsofourresultstoUHECRexperiments. a [ Keywords: extensiveairshower,MonteCarlosimulation,ultra-highenergycosmicrays 1 v 0 6 0 1. Introduction 5 . Thenatureandoriginofultra-highenergycosmicrays(UHECRs)withenergyabove∼1018 1 eVareoutstandingproblemsofmodernphysics. Manystudieshavebeenperformedtounravel 0 3 the problems: where do UHECRs come from, what is the composition of UHECRs, and how 1 are UHECRs accelerated to such extreme energies? UHECRs are believed to be the result of : extremely powerful cosmic phenomena [1]; the most powerful astrophysical events, such as v i activegalacticnuclei(AGNs)[2],gammaraybursts(GRBs)[3],andshockwavesaroundclusters X ofgalaxies[4],havebeensuggestedaspossiblesourcesofUHECRs. Yet,thenatureandorigin r ofUHECRsremainunsolved(see[5,6]forreview). a Cosmicrays(CRs),whichareelectricallychargedparticles,donottravelinstraightlinesin space. Theirtrajectoriesarebentbyintergalacticandinterstellarmagneticfieldsthatareknown ∗Correspondingauthor. Emailaddresses:[email protected](SoonyoungRoh),[email protected](JiheeKim), [email protected](DongsuRyu),[email protected](HyesungKang), [email protected](KatsuakiKasahara),[email protected](EijiKido), [email protected](AkimichiTaketa) PreprintsubmittedtoAstroparticlePhysics January23,2013 to existbetweengalaxiesandbetweenstars[7, 8]. Forthisreason, eventhoughwe mayguess theirarrivaldirectionsat the Earth, we do notknow exactly where theycome from. However, thisproblemmayberesolvedifenougheventsofUHECRsareobserved. Directly detecting UHECRs at the top of the Earth’s atmosphere is practically impossible owing to the rarityof UHECR events. On average, only a few particleshit a square kilometer oftheatmospherepercentury. SuchlowfluxofUHECRsdemandsexperimentscoveringhuge areastoincreaseopportunitiesfortheirdetection. Inthe lastfewdecades,UHECRshavebeen observedbyAkenoGiantAirShowerArray(AGASA)[9], HighResolutionFly’sEyeExperi- ment(HiRes)[10],PierreAugerObservatory(AUGER)[11],TelescopeArray(TA)[12]andso on. Theseexperimentsdetectextensiveairshowers(EASs)createdbyUHECRs. WhenUHECRsentertheEarth’satmosphere,theyfirstcollidewithairmoleculesofoxygen ornitrogen;subsequentlythroughcomplexinteractionsandcascades,EASs,whicharemadeof uptohundredsofbillionsofsecondaryparticles(SeeTable1forthecaseof1019.5eVprimary), are generated [13, 14]. By detecting the photons produced by secondary particles and/or the secondaryparticlesarrivingattheground,thepropertiesofprimaryparticlessuchastheenergy, arrivaldirection,andcompositionareinferred. To observe UHECRs, AGASA used a ground array of scintillation detectors, HiRes used fluorescence telescopes, AUGER uses a hybrid facility of water Cherenkov tanks and fluores- cence telescopes, and TA also uses a hybrid facility of scintillation detectorsand fluorescence telescopes. Fluorescencetelescopes measurethe ultra-violet(UV) fluorescencelightproduced throughinteractionsbetweenairmoleculesandsecondaryparticlesinEASs,andarraysofscintil- lationdetectorsandwaterCherenkovtanksrecodethesecondaryparticlesarrivingattheground. Fromthese,AGASAreported58eventsabove40EeV[15].HiResobserved13eventsabove56 EeV[16]. AUGERandTAhavesofarreported69events[17]and15events[18]above55EeV and57EeV,respectively. Along with observationsof UHECRs, EASs need to be investigated by performingMonte Carlo(MC)simulations. EASsimulationsformanessentialpartofUHECRexperiments. The TA experimentemploys two existing MC codes for the simulations, CORSIKA (COsmic Ray SImulationsforKAscade) [19] and COSMOS [20, 21]. In this paper, we reporta comparison study ofCORSIKA andCOSMOS simulationsforTA, presentingthe longitudinaldistribution ofparticle,depthofshowermaximum,kineticenergydistributionofparticleattheground,and energydepositedtotheair. WethendiscussimplicationsofourresultstotheTAexperiment. 2. EASsimulation CORSIKAandCOSMOSfollowthedevelopmentandevolutionofEASsintheatmosphere; theydescribethespatial,temporal,andenergydistributionsofsecondaryparticles. Tocompare CORSIKA and COSMOS, we generated 50 EAS simulations with CORSIKA for each set of parameters(seebelow)andanother50EASsimulationswithCOSMOSforeachsetofparam- eters. Primary energiesof E = 1018.5eV, 1018.75eV, 1019eV, 1019.25eV, 1019.5eV, 1019.75eV and 0 1020eVwereconsidered. Andzenithanglesofθ=0◦,18.2◦,25.8◦,31.75◦,45◦,70◦ forproton andironprimarieswereemployedassumingthefatEarth. All togetherabout8,400EASswere generated. Eventswith θ ≤45◦ havebeenanalyzedintheTAexperiment[18], sowefocuson thecaseswithθ ≤45◦. Simulationswithθ=70◦ areusedtoestimatetheenergydepositedinto the air in Section 3.4. Version 6.960 was used for CORSIKA simulations with θ = 0◦, 18.2◦, 25.8◦,31.75◦,and45◦,andversion6.980wasusedforθ=70◦. InCOSMOS,forθ=0◦,18.2◦, 25.8◦,31.75◦,and45◦,30simulationsweregeneratedwithversion7.54and20simulationswith 2 version7.581;thedifferencebetweenversions7.54and7.581issmall,sotheyweremixed. For θ=70◦,version7.581wasused. 2.1. InteractionmodelsofCORSIKAandCOSMOS Forhigh-energy(E > 80 GeV), the hadronicinteractiongeneratorQGSJETII-03[22] was used forbothCORSIKA and COSMOS. QGSJETII-03is one of most widely used interaction generatorsforUHECREASsimulations. Forlow-energy(E < 80GeV),thehadronicinteractiongeneratorCORSIKA-FLUKA[23] wasusedinCORSIKA,whiletheBertiniandJQMDinteractionmodelsincludedinthePHITS code(E <2GeV)[24]andJAM(v1.150)(2GeV< E <80GeV)[25]wereusedinCOSMOS. Wesimplyusetheterm“PHITS”forthetwogeneratorsandthenelstroutinemanagingtheelastic scattering. In CORSIKA, the interactions of electro-magnetic (EM) particles (i.e., photons and elec- trons)werecalculatedwiththeEGS4model[26]. Ontheotherhand,inCOSMOS,theinterac- tionswerecalculatedwiththeTsai’sformula[27]andNelson’sformula[26]whicharebasedon thebasiccross-sectionsofparticles. 2.2. Simulationset-up Weemployedthefollowingsimulationparameters,tryingto compareCORSIKAandCOS- MOSsimulationsinparallel.First,inbothCORSIKAandCOSMOS,theEarth’smagneticfield attheTAobservationsite(39.1◦Nand112.9◦W,justwestofDelta,Utah)wasused.Theground was fixed at the heightof the TA site, 1430 m above the sea level, correspondingto the verti- cal atmospheric depth x = 875 g/cm2. Second, in both CORSIKA and COSMOS, the same v thresholdenergies,E ,wereappliedtosecondaryparticles. Particleshavingenergybelow threshold E werenottrackedinsimulations. E =500keVwasusedforEMparticles,while threshold threshold E =50MeVformuonsandhadrons. Mostparticlesreachthegroundwithenergylarger threshold thanthe E (seeFigures4and5forthecaseofironprimarywith E = 1019.5eVandθ = threshold 0 0◦).Third,theLandau-Pomeranchuk-Migdal(LPM)effect[28,29,30]isincludedinbothCOR- SIKAandCOSMOS.TheLPMeffectcausesareductionofbremsstrahlungandpairproduction crosssectionsathighenergies. Inprinciple,allsecondaryparticlescanbetrackedalongtheirtrajectoriesandtheirphysical propertiescanbestoreduntiltheyreachtheground. Then,thenumberofparticlescanbecome toolargetobecomfortablyaccommodatedwithavailablecomputationalresources. Toalleviate thisproblem,mostEASsimulationsintroducetheHillasthinningalgorithm[31].Thealgorithm picks up only a small fraction for secondary particles with energy smaller than the productof theprimaryenergy(E )andathinninglevel(L ),i.e.,forparticleswith E ≤ E ×L . Ateach 0 th 0 th vertexofinteraction,onesecondaryparticleisselectedinawaythatmoreenergeticparticlesare pickedupwithhigherprobabilities,andfurthertracked. A weight,whichisdefinedastheratio oftheenergyoftheselectedparticletothatofallsecondaryparticlesatthevertex,isassignedto theselectedparticletorepresentuntrackedparticles. Eventually,thetotalnumberofsecondary particlesarerecoveredbycountingtrackedparticlesmultipliedbytheirweights[32]. InCORSIKA,itisrecommendedtotakeavaluebetween10−3 and10−7 for L . We chose th L = 10−7. Onthe otherhand,inCOSMOS, itisrecommendedto use L = A×10−7, where th th Aisthemassnumber. Hence,forprotonprimary, L = 1×10−7 wasusedforbothCORSIKA th andCOSMOS;forironprimary, L = 1×10−7 andL = 5.6×10−6 wereusedforCORSIKA th th andCOSMOS,respectively.Inaddition,COSMOSappliesasmallerthinning,L′ =10−2×L , th th 3 where a higher accuracy is required. At the upper atmosphere of x < 400 g/cm2 or near the v showercoreofr <20m,L isused,whileL′ isappliedtotheregionof x = 400−875g/cm2 th th v andr≥20m. CORSIKA and COSMOS both have an upperlimit on the weight, theso-called maximum weightvalue, W . As anEASdevelops,throughinteractionsofparticles, weightsoftracked max particles are continuously accumulated. When accumulated weights reach W , the thinning max algorithmisnolongerapplied,andparticlesaretrackedwithoutfurtherthinning.WeusedW max which is differentlyfor CORSIKA and COSMOS: W = L ×(E [eV]/109) forCORSIKA max th 0 [14]andW = E [eV]/1015forCOSMOS[20]. max 0 Withourchoicesofthinningandweighting,overallmoreparticlesaretrackedinCOSMOS thaninCORSIKA.Thecomputationtimeisroughlyproportionaltothenumberoftrackedparti- cles,soforthesameprimaryCOSMOSsimulationspresentedheretooklongerthanCORSIKA simulations. WealsonotethatthedatadumpingisdifferentbetweenCORSIKAandCOSMOS.InCOR- SIKA, the grid points of the vertical atmosphericdepth have a spacing of ∆x = 1 g/cm2. On v the other hand, in COSMOS, the grid points are defined at x = 0, 100, 200 g/cm2, and after v 200g/cm2theyhaveaspacingof∆x =25g/cm2. SothedatafromCORSIKAsimulationsare v dumpedinevery∆x =1g/cm2,whilethedatafromCOSMOSaredumpedinevery∆x =100 v v g/cm2forx ≤200g/cm2andinevery∆x =25g/cm2forx >200g/cm2. v v v 3. ComparisonofCORSIKAandCOSMOSsimulationresults 3.1. Longitudinaldistributionofparticles When UHECRs strike the atmosphere, most of the particles initially generated are neutral and charged-pions. Neutral-pions quickly decay into two photons. Charged-pions(positively ornegativelycharged)survivelonger,andeithercollidewithotherparticlesordecaytomuons and muonneutrinos. Those particles producethe so-called EM and hadronicshowers. In EM showers, photons create electrons and positrons by pair-production, and in turn electrons and positronscreatephotonsviabremsstrahlung,andsoon. EMshowerscontinueuntiltheaverage energyperparticledropsto ∼80MeV.Belowthisenergy,thedominantenergylossmechanism is ionization rather than bremsstrahlung. Then, EM particles are not efficiently producedany- more,andEASsreachthemaximum(seethenextsubsection). Inhadronicshowers,muonsand hadronsareproducedthroughhadronicinteractionsanddecays.Here,hadronsincludenucleons (neutronsandprotons),pions,andkaons. Thenumberof secondaryparticlescreatedbyEM andhadronic showersinitially increases and then decreases, as an EAS developsthroughthe atmosphere. The distribution of particles alongtheatmosphericdepthiscalledthelongitudinaldistribution[33,34]. Here,wefirstcom- parethelongitudinaldistributionsfromCORSIKAandCOSMOSsimulations,andanalyzethe differencesinphoton,electron,muon,andhadrondistributions. Figures1and2showthetypicallongitudinaldistributionsasafunctionofslantatmospheric depth,x = x /cosθ. Linesrepresentthenumbersofparticlesaveragedfor50EASsimulations, s v hNi,anderrorbarsmarkthestandarddeviations,σ,definedas 1 nsim σ= (N −hNi)2. (1) vtn i sim Xi=1 4 Here, n = 50 is the number of EAS simulations for each set of parameters and N is the sim i numberofparticlesat x ineachsimulation.TheEASsshownareforprotonandironprimaries, s respectively,withE =1019.5eVandθ=0◦and45◦. Numbersforphotons,electrons,muons,and 0 hadronsareshown. Table1showsthenumbersofparticlesatpeaks,whichareagainaverages of 50 EAS simulations. If the peaksare located beyondthe maximumdepth, the valuesat the maximumdepthareshown.Notethatdifferencespecieshavepeaksatdifferentx ’s. s In the cases shown, COSMOS predicts slightly more particles in the early stage of EASs (exceptforphotonsintheupper-leftpanelofFigure1),whileCORSIKApredictsslightlymore particles in the late stage. But the difference is within the fluctuation (that is, less than σ in Equation (1)). Quantitatively, the difference between CORSIKA and COSMOS results in the peaknumbersofparticlesisatmost7−8%,asshowninTable1. 3.2. Depthofshowermaximum Thedepthofshowermaximum,denotedby X , isdefinedastheslantatmosphericdepth max atwhichthenumberofsecondaryelectronsreachesthemaximuminEASs. X isa function max oftheprimaryenergy,butithasdifferentvaluesanddispersionsfordifferentprimaryparticles. Foragivenprimaryenergy,protonprimaryhaslargervalues anddispersionsof X thaniron max primary. The average and standard deviation of X , hX i and σ , are known as the key max max Xmax quantitiesthatdiscriminatethecompositionofprimaryparticlesinUHECRexperiments. IncalculatingX ,thelongitudinaldistributionofelectronsalongtheshoweraxiswasfitted max totheGaisser-Hillasfunction(GHF)[35], Xmax−xs0 x −x λ X −x N (x )= N s s0 exp max s , (2) electron s electron,max Xmax−xs0! (cid:18) λ (cid:19) where N isthemaximumnumberofelectronsat X . WesoughtX bytreating x electron,max max max s0 andλaswellasX andN asfittingparameters.Wenotethatoriginallyx wasmeant max electron,max s0 tobethedepthatwhichthefirstinteractionoccursand λtobetheprotoninteractionmeanfree path. Butin practice,theywereregardedasfittingparameters. Itwasshownthatthe resulting X isnotsensitivetowhetherλisusedasafreeparameterorsettoafixedvalue[36,37]. max Figure3andTable2showhX iandσ inoursimulationsforprotonandironprimaries max Xmax with different E ’s. hX i and σ in Table 2 were calculated for250 simulationsincluding 0 max Xmax those of fivedifferentzenithangles(θ ≤ 45◦). Solid anddashedlinesin Figure 3 arethe least chi-squarefitsofhX iandσ inTable2. TheresultofWahlbergetal. withCORSIKA[38] max Xmax isincludedwithdot-dashedlinesforcomparison. Wenotethatinsomesimulationstheshowermaximumoccurredbeyondthemaximumdepth. In suchcases, X ’s fromfitsto the GHFmayhavelargererrors. AndforCORSIKA results, max thedatadumpedinevery∆x =1g/cm2wereused,whileforCOSMOSresults,thedatainevery v ∆x =25g/cm2wereused.SoalargersystematicerrormayexistinCOSMOSresults. v The resultsfor hX i andσ in Figure3 and Table 2 are summarizedas follows. First, max Xmax the difference between CORSIKA and COSMOS results in hX i is at most ∼ 16 g/cm2 for max bothprotonandironprimaries. Itissmallerthanthefluctuation,σ . Second,thedifference Xmax between hX i’s forprotonand iron primariesis typically ∼ 70−80 g/cm2, which is beyond max thefluctuationsbothinCORSIKAandCOSMOSsimulationsaswellasthedifferencebetween CORSIKAandCOSMOSresults.Third,σ is∼40−60g/cm2inforprotonprimary,whileitis Xmax ∼20−25g/cm2forironprimary. σ issomewhatlargerinCORSIKAthaninCOSMOS,asis Xmax clearinFigure3;thedifferenceislargerforprotonprimary.Fourth,ourCORSIKAresultsagree 5 withthoseofWahlbergetal. Yetoursaresmallerbyupto ∼ 10g/cm2. Anumberofpossible causes can be conjectured. Our simulations performedwith versions, models, and parameters differentfrom those of Wahlberg et al. In ourwork hX i is defined as the depth of the peak max inthenumberofelectronsabove500keV,whileinWahlberget al. itwasdefinedasthedepth ofthepeakinoverallenergydeposit. Alsotheerrorinthefittingcouldbein thelevelof∼ 10 g/cm2. Althoughnotshownhere,wefoundthathX ifordifferentzenithanglesvariesbyupto max ∼10g/cm2. 3.3. Kineticenergydistributionofparticlesattheground In EASs, a fractionof secondaryparticlesreachthe ground. Thoseparticlesdeposita part oftheirenergytogrounddetectors,suchasscintillationdetectorsorwaterCherenkovtanks. In experiments,bymeasuringtheamountandspatialdistributionofthedepositedenergy,thepri- maryenergyandarrivaldirectionofUHECRsareestimated[39]. Here, wepresentthekinetic energy(i.e.,thetotalenergysubtractedbytherest-massenergy)distributionsofsecondarypar- ticles overtheentire ground;the amountofenergydepositedto detectorsisdeterminedbythe kineticenergy. Figure 4 shows the typical kinetic energy distributions of photons, electrons, muons, and hadrons,includingparticlesintheshowercore;heretheEASisforironprimarywithE =1019.5 0 eVandθ = 0◦. Linesaretheaveragesof50EASsimulations,anderrorbars markthestandard deviations, σ, definedsimilarlyas in Equation(1). Tables3, 4, 5, and 6show thetotalkinetic energies(E)andnumbers(N)ofparticlesreachingthegroundforeachparticlespecies. Again, theyaretheaveragesof50EASsimulations. Tofurtheranalyzethekineticenergydistributions ofdifferentcomponents,hadronswereseparatedintonucleons,pions,andkaons,andFigure5 showstheirdistributions. We first point that although N ≫ N ≫ N ≫ N for all the cases we photon electron muon hadron simulatedasshowninTables5and6, theenergypartitioningdependsonEASparametersand variessignificantlyas shownin Tables3 and4. Forinstance, in the EASof ironprimarywith E = 1019.5 eV and θ = 0◦ which is shown in Figures 4 and 5, the partitioning of the kinetic 0 energiesofparticlesreachingthegroundis E : E : E ∼1:0.18:0.11. Ontheother EM muon hadron hand,intheEASofprotonprimarywithE =1018.5eVandθ=45◦,E :E :E ∼1: 0 EM muon hadron 1.1:0.11. WefoundthatthedifferencebetweenCORSIKAandCOSMOSresultsinFigures4and5is up to 30%, butyetthe differenceis withinthe fluctuationat mostenergybins. Tables3, 4, 5, and6 indicatedifferencesofupto 30%inthe integratedkineticenergiesandnumbers. There arefollowinggeneraltends: 1)Formostcases, CORSIKApredictslargerenergiesforphotons and electrons, while COSMOS predicts largerenergies for muons. 2) The difference is larger forprotonprimarythanforironprimary. 3)Thedifferenceislargerforlarger E andforlarger 0 θ. Wenotethatlargernumbersofparticlesdonotnecessarily meanlargerenergies;thispointis particularlyclearformuons. 3.4. Energydepositedtotheair Interactions between air molecules and secondary particles yield UV fluorescence light, which is observed with fluorescence telescopes in UHECR experiments [40, 41]. The energy estimatedthroughobservationofUVfluorescencelightiscalledthecalorimetricenergy,andit is used to inferthe primary energyof UHECRs [42]. The energy released as the fluorescence lightisdeterminedbytheenergydepositedtotheair, E . Soinorderfortheprimaryenergyto air beaccuratelyestimatedinUHECRexperiments,E needstobepreciselyknown[43]. air 6 We compare the energy deposited to the air due to EM particles, muons, and hadrons in CORSIKAandCOSMOSsimulations. BothCORSIKAandCOSMOSfollowE bytheparti- air cleswithE > E alongtheatmosphericdepthinsimulations. Butthecodesdoesnottrack threshold particlesandtheircontributionanymore, if theirenergydropsbelowthe thresholdenergy. So we compare E byparticleswith E > E . Figure6shows E asa functionofthe slant air threshold air atmosphericdepth, x ,forprotonprimarywith E = 1019.5eVandθ = 0◦,31.75◦,45◦ and70◦. s 0 Linesaretheaveragesof50EASsimulations. Table7showstheaverageofthefractionofthe energy,hE i/E ,andtherelativestandarddeviation,σ /hE i,forprotonandironprimaries air 0 Eair air with different primary energies and θ = 70◦ at the ground; for θ = 70◦ the slant atmospheric depth at the ground is large enough that E has reached the maximum (see Figure 6). The air valuesinTable7werecalculatedwith50EASsimulationsforeachsetofparameters. ThereisacleartrendinFigure6thatCOSMOSpredictslarger E (x )thanCORSIKA.The air s energydepositedtotheairbytheparticleswithE > E inTable7ishE i/E =0.66−0.71 threshold air 0 inCORSIKAsimulations,whilehE i/E =0.77−0.82inCOSMOSsimulations.Thedifference air 0 is ∼ 15 %, which is largerthan the fluctuation. The relative standard deviation, σ /hE i, is Eair air smallandtypically∼1%bothinCORSIKAandCOSMOSsimulations. For the total energy deposited to the air, the contribution due to the particles with E < E ,aswellasthatbytheparticleswithE > E ,shouldbecounted.Yet,thedifference threshold threshold of∼ 15%issubstantial. ItmeansthattheUVfluorescencelightassessedwithCORSIKAand COSMOSsimulationscoulddifferbyasimilaramount,sodoestheprimaryenergyofUHECR eventsestimatedwithCORSIKAandCOSMOSsimulations. 4. Summary EASsimulationsformanessentialpartofexperimentstodetectUHECRs; theyareusedto estimatetheenergy,arrivaldirection,andcompositionof primaryparticles. TheTAexperiment employstwocodes,CORSIKAandCOSMOS,forthesimulations. Inthispaper,wecompared CORSIKAandCOSMOSsimulationsbyquantifyingthedifferencesinthelongitudinaldistribu- tionofparticles,depthofshowermaximum,kineticenergydistributionofparticleattheground, andenergydepositedtotheair. Mostof all, we shouldpointthatthe simulation resultsof CORSIKA andCOSMOS agree wellwitheachother,despiteofallthecomplexitiesanddifferencesinthemodelsandelements involvedinthecodes. Suchagreementshouldbequiteanachievement. Nevertheless,thereare non-negligibledifferencesinthequantitieswepresented. Thosemayberegardedassystematic uncertaintiesintheEASsimulationpartofUHECRexperiments. 1)ThedifferencebetweenCORSIKAandCOSMOSresultsinthelongitudinaldistributionof particlesislessthan∼10%formostcases,whichiswithinthefluctuation.Thedifferenceinthe peaknumbersofparticlesisatmost7−8%(Table1). COSMOStendstopredictslightlymore particlesintheearlystageofEASs,whileCORSIKAtendstopredictslightlymoreparticlesin thelatestage. 2)CORSIKAandCOSMOSpredictthedepthsofshowermaximum,hX i,whicharecon- max sistent with each other. The differencebetween hX i’s fromCORSIKA and COSMOS is up max to ∼ 16 g/cm2, which is noticeable but smaller than the fluctuation, σ . The difference be- Xmax tweenhX i’sforprotonandironprimaries,whichistypically ∼ 70−80g/cm2,isbeyondthe max fluctuationsbothinCORSIKAandCOSMOSsimulationsaswellasthedifferencebetweenthe CORSIKA and COSMOS results. σ is ∼ 40−60 g/cm2 in for proton primary, while it is Xmax 7 ∼20−25g/cm2forironprimary. σ issomewhatlargerinCORSIKAthaninCOSMOS;the Xmax differenceislargerforironprimary. 3) There are differences of up to 30 % between CORSIKA and COSMOS results in the numbers and energies of the particles reaching the ground; the difference is larger for proton primary with larger E ’s and larger θ’s. It implies that the amount of the energy deposited to 0 grounddetectorscouldbe differentupto30%orso inCORSIKA andCOSMOS simulations. The exactresponseto the particlespassing throughgrounddetectors, however,dependsonthe details of detectors, and need simulations, for instance, with the GEANT code. We leave this issueforafollow-upstudy. 4)Theenergydepositedtotheair,E ,bytheparticleswithE >E islargerby∼15% air threshold inCOSMOSsimulationsthaninCORSIKAsimulations. ThisimpliesthattheUVfluorescence lightassessedwithCORSIKAandCOSMOSsimulationscoulddifferbyasimilaramount. Acknowledgments We thanktherefereeforcriticalreadingofthemanuscriptandconstructivecomments. We thanks the CORSIKA user supportteam for help in using CORSIKA. KK thanks K. Niita for courtesy and help in implementing the PHITS code. The work of SR, JK, DR, and HK was supported by the National Research Foundation of Korea through grant 2007-0093860. The work of KK, EK, and AT was supported by Grant-in-Aid for Scientific Research on Priority Areas(HighestEnergyCosmicRays: 15077205). References [1] A.M.Hillas,Ann.Rev.Astron.Astrophys.22(1984)425-444. [2] P.L.BiermannandP.A.Strittmatter,Astrophys.J.322(1987)643-649 [3] E.Waxman,Phys.Rev.Lett.75,(1995)386-389. [4] H.Kang,D.Ryu,andT.W.Jones,Astrophys.J.456(1996)422-427. [5] V.Berezinsky,A.Gazizov,andS.I.Grigor’eva,Phys.Rev.D.74(2006)043005 [6] K.KoteraandA.Olinto,Ann.Rev.Astro.Astrophys.49(2011)119-153. [7] S.Das,H.Kang,D.Ryu,andJ.Cho,Astrophys.J.682(2008)29-38. [8] H.TakamiandK.Sato,Astrophys.J.681(2008)1279-1286. [9] M. Teshima et al., Nucl. Instr. Methods A247 (1986) 399-411. See also http://www-akeno.icrr.u-tokyo.ac.jp/AGASA [10] R.Abbasietal.,fortheHighResolution Fly’sEyeCollaboration, Phys.Rev.Lett.92(2004)151101.Seealso http://www.cosmic-ray.org [11] J. Abraham et al., for the Pierre Auger Collaboration, Nucl. Instr. Methods A523 (2004) 50-95. See also http://www.auger.org [12] H. Sagawa et al., for the Telescope Array Collaboration, Proc. 31th ICRC (2009) 207-214. See also http://www.telescopearray.org [13] B.RossiandK.Greisen,Rev.Mod.Phys.13(1941)240-309. [14] J.Knappetal.,Astropart.Phys.19(2003)77-99. [15] K.ShinozakiandM.Teshima,fortheAGASACollaboration,Nucl.Phys.B(Proc.Suppl.)136(2004)18-27. [16] R.U.Abbasietal.,fortheHighResolutionFly’sEyeCollaboration,Phys.Rev.Lett.100(2008)101101. [17] P.Abreuetal.,forthePierreAugerCollaboration,Astropart.Phys.34(2010)314-326. [18] P.Tinyakovetal.,fortheTelescopeArrayCollaboration,Proc.32thICRC(2011). [19] D.Hecketal.,ForschungszentrumKarlsruheReportNo.FZKA6019(1998). [20] F.CohenandK.Kasahara,Proc.30thICRC4(2008)585-588. [21] E.Kidoetal.,fortheTelescopeArrayCollaboration,Proc.31thICRC(2009). [22] S.Ostapchenko,Nucl.Phys.B(Proc.Suppl.)151(2006)143-147. [23] G.Battistonietal.,AIPConf.Proc.896(2007)31-49. [24] K.Niitaetal.,Radiat.Meas.41(2006)1080-1090. 8 [25] Y.Naraetal.,Phys.Rev.C61(1999)024901.Seealsohttp://www.aiu.ac.jp/∼ynara/jam/ [26] W.R.Nelson,H.Hirayama,andD.W.O.Rogers,ReportNo.265,SLAC(1985). [27] Y.S.Tsai,Rev.Mod.Phys.46(1974)815-851. [28] L.D.Landau,I.Ya.Pomeranchuk,Dokl.Akad.NaukSSSR92(1953)535-735. [29] A.B.Migdal,Phys.Rev.103(1956)1811-1820. [30] J.Alvarez-MunizandE.Zas,Phys.Lett.B,434(1998)396-406. [31] A.M.Hillas,Nucl.Phys.B(Proc.Suppl.)52(1997)29-42. [32] M.Kobal,forthePierreAugerCollaboration,Astropart.Phys.15(2001)259-273. [33] R.K.Bock,T.Hansl-Kozanecka,andT.P.Shah,Nucl.Instr.Methods186(1981)533-539. [34] C.L.Pryke,Astropart.Phys.14(2001)319-328. [35] T.K.GaisserandA.M.Hillas,Proc.15thICRC8(1977)353-357. [36] C.Song,Astropart.Phys.22(2004)151-158. [37] R.U.Abbasietal.,fortheHighResolutionFly’sEyeCollaboration,Astropart.Phys.23(2005)157-174. [38] H.Wahlbergetal.,forthePierreAugerCollaboration,Proc.31thICRC(2009). [39] A.M.Hillasetal.,Proc.12thICRC3(1971)1001-1006. [40] C.Songetal.,Astropart.Phys.14(2000)7-13. [41] C.W.FabjanandF.Gianotti,Rev.Mod.Phys.75(2003)1243-1286. [42] H.M.J.Barbosaetal.,Astropart.Phys.22(2004)159-166. [43] M.RisseandD.Heck,Astropart.Phys.20(2004)661-667. 9 0 degree 45 degree 1.5•1011 1.0•1011 > Nphoton < 5.0•1010 0 2.0•1010 N>electron 11..05••11001100 < 5.0•109 0 1.5•108 > muon 1.0•108 N < 5.0•107 0 CORSIKA 8•107 COSMOS N>hadron 46••110077 < 2•107 0 0 200 400 600 800 200 400 600 800 1000 1200 Atmospheric slant depth [g/cm2] Figure1: Longitudinaldistributionofphotons,electrons, muons,andhadronsforEASsofprotonprimarywith E0 = 1019.5eVandθ=0◦(leftpanels)and45◦(rightpanels). Linesrepresenttheaveragesof50simulations,anderrorbars markthestandarddeviations.Forclarity,onlytheerrorbarsofCORSIKAresultsareshown. 10