ebook img

A Compact X-ray Source in the Radio Pulsar-Wind Nebula G141.2+5.0 PDF

0.17 MB·
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Compact X-ray Source in the Radio Pulsar-Wind Nebula G141.2+5.0

DRAFTVERSIONJANUARY6,2016 PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 ACOMPACTX-RAYSOURCEINTHERADIOPULSAR-WINDNEBULAG141.2+5.0 STEPHENP.REYNOLDS1&KAZIMIERZJ.BORKOWSKI1 DraftversionJanuary6,2016 ABSTRACT We report the results of a 50 ksChandraobservation of the recently discovered radio object G141.2+5.0, presumedtobeapulsar-windnebula.WefindamoderatelybrightunresolvedX-raysourcewhichwedesignate 6 CXOU J033712.8615302coincidentwiththecentralpeakradioemission. Anabsorbedpower-lawfittothe 1 241 countsdescribesthe data well, with absorbingcolumnN =6.7(4.0,9.7)×1021cm- 2 and photonindex 0 H Γ=1.8(1.4,2.2). Foradistanceof4kpc,theunabsorbedluminositybetween0.5and8keVis1.7+0.4×1032 2 - 0.3 ergs- 1(90%confidenceintervals).BothLX andΓarequitetypicalofpulsarsinPWNe. Noextendedemission n isseen;weestimateaconservative3σ upperlimittothesurfacebrightnessofanyX-rayPWNnearthepoint a sourcetobe3×10- 17ergcm- 2 s- 1 arcsec- 2 between0.5and8keV,assumingthesamespectrumasthepoint J source; for a nebula of diameter 13′′, the flux limit is 6% of the flux of the point source. The steep radio 4 spectrumofthePWN (α∼- 0.7),ifcontinuedtotheX-raywithouta break,predictsL (nebula)∼1×1033 X ] ergs- 1,soadditionalspectralsteepeningbetweenradioandX-raysisrequired,asistrueofallknownPWNe. E ThehighGalacticlatitudegivesaz-distanceof350pcabovetheGalacticplane,quiteunusualforaPopulation H Iobject. . Subjectheadings: ISM:individualobjects(G141.2+5.0)—ISM:jetsandoutflows—pulsars:general h p o- 1. INTRODUCTION are transporteddownstreaminto the nebula by some combi- nationofadvectionanddiffusion,untiltheouteredgeofthe r Pulsar-wind nebulae, the bubbles of relativistic particles t PWN where the wind interacts either with the interior of a s andmagneticfieldblownbypulsars, performseveralimpor- a tant astrophysicalfunctions. Most simply, they can serve as more-or-less“normal”shellSNR,or,ifitismucholder,with [ undisturbed ISM. However, none of those processes is well calorimetersfortheenergylossfrompulsars,allowingthein- 1 ferenceofunseenpulsarsbeamedawayfromus.Buttheyalso understood. Thewindleavingthe pulsarisalmostcertainlydominated v serve as laboratories for the study of the behavior of highly byPoyntingflux,butprobablyneedstobeparticle-dominated 0 relativisticflowsatshockwaves,soareusefulinthestudyof at the termination shock, to allow there to be a shock at all 6 extragalacticjets andgamma-rayburstsources. Pulsar-wind (Kennel&Coroniti1984a). Theratioofmagnetictoparticle 6 nebulae(PWNe)wereoriginallydefinedbyradioproperties: 0 center-filled morphology, flat radio spectrum (α∼- 0.3- 0, energyflux,the“magnetization”σ, apparentlymustdropby 0 withSν ∝να) and(relatively)highpolarization–properties orders of magnitude in the dark zone. However, the spheri- . originallyfoundinonlyahandfulofobjects(anearlycatalog, calKennel&Coroniti(1984a)hydrodynamicmodeldoesnot 1 takeaccountofthe“stripedwind”featureofanobliquerotat- Weiler1985,listseight“pure”PWNeandanotherfive“well- 0 ingneutronstar,inwhichtheazimuthalmagneticfieldbeyond established”PWNeinsideradioshells). However,thelaunch 6 thelightcylinderchangesdirectionwiththepulsar’srotation. 1 ofChandra,andtoalesserextentXMM-Newton,usheredin Thus magnetic reconnection is highly likely, and will affect : a new era in the discovery of pulsars and PWNe. Finally, v theadventofTeVandGeVstudies,primarilywithH.E.S.S., the magnetizationin the darkzone. Additionally,it is likely i thatthemagnetizationattheterminationshockisafunctionof X MAGIC,andVERITASatTeVenergies,andFermiandAg- latitude.Theseeffectscanbeseeninrecent3DMHDsimula- ile in GeV, has revealed a trove of hard-spectrum, center- r tions(Porthetal.2013),inwhichsolutionsexistwithvarying a brightenedsources,manyofwhichturnouttoharborpulsars, σandsignificantlyhigheraveragevalues. and(almost)allofwhicharethereforepresumedtobePWNe At the shock, the outgoing kinetic energy is somehow –manyatamucholderagethanpreviousobjects,oldenough turned into random particle energy. The spectrum of parti- to have long outlived their natal supernova remnant (SNR) clesreleasedintothenebula,asinferredfromthesynchrotron shell. Kargaltsev,Rangelov,& Pavlov(2013)list 76 pulsars spectral-energydistribution(SED),appearsinitiallyquiteflat containingX-ray and/or TeV PWNe. See Gaensler & Slane (N(E)∝E- s withs≡1- 2α∼1- 2forradio-emittingparti- (2006)forageneralreviewofPWNe. cles), but all PWNe show steepening at higher photon ener- There are now enough PWNe known that general proper- gies. The extent to which this is due to intrinsic physics of ties of the class are fairly well understood– or at least have the thermalizationinstead of post-shockevolutionaryeffects becomefamiliar. Theinitialpulsarwindseemstobe“dark,” is not known. The initial particle acceleration is probably thatis,coldinthefluidframeandradiatinginefficiently. The not traditional diffusive shock acceleration, since the shock wind is thermalized in some fashion in a termination shock is both relativistic and probably almost exactly perpendicu- markingtheinneredgeoftheobservedPWN(Rees&Gunn lar, as the wind is expected to contain a very tightly wound 1974), where the characteristic bright synchrotron emission Parkerspiralofmagneticfield. Particleaccelerationbymag- (rangingfromradiotoX-raywavelengths)appears. Particles neticreconnectionisanattractivepossibility,butquantitative 1DepartmentofPhysics,NorthCarolinaStateUniversity,Raleigh,NC predictionsaredifficult.Inanycase,thedetailednatureofthe 27695-8202;reynolds@ncsu.edu particleenergizationprocessremainsobscure. 2 One major problemin understandingparticle energization atPWNshocksconcernstherelationofradioemissiontothat athigherenergies. Kennel&Coroniti(1984b)simplythrew uptheirhandsattheproblemoftheCrabNebula’sradioemis- sion, as it could not easily be accommodatedin their other- wiseverysuccessfulschemeofanidealsteadyMHDoutflow insphericalgeometry.Suggestedsolutionstypicallyinvokea totallyseparateparticlepopulationproducedthroughasepa- rateprocess;e.g.,Atoyan(1999),whoproposesthattheradio- emittingelectronswereinjectedearlyinthelifeofthenebula and have simply aged since. (This picturerequiresthe Crab pulsartohavebeenbornwithaninitialrotationperiodof3–5 ms,astrikingassertion.)Additionally,steepeningofthespec- trumbetweenradioandX-raysbyanamountgreaterthanthe increase in power-lawindexof 0.5expectedforsynchrotron lossesinhomogeneoussourcesisalmostuniversallyobserved (e.g.,datainChevalier2005). Isthisanintrinsicpropertyof the particle acceleration mechanism? If so, in the wind, at the terminationshock, or elsewhere? Advectionmodelscan reproducethissteepeningpurelyfromevolutionaryeffectson an initialstraightpower-law(Reynolds2009)atthe expense ofinvokingad-hocgradientsin sourceproperties. Thecom- parisonofX-rayandradiopropertiesisthemosteffectiveway Figure1. DRAO image in polarized intensity at 1420 MHz of toaddresstheseimportantquestions;ideally,X-rayobserva- G141.2+5.0(Kothesetal.2014).Theresolutionis56′′×48′′.Total- tions can also reveal the powering neutron star, even if it is intensitycontoursareshowninwhite. Thebulgeinthelowestcon- notdetectableinradiopulsations. tour isanunrelated point sourceThepoint-source position isindi- catedbytheredcross(muchlargerthanthepositionaluncertainty). 2. G141.2+5.0 The discoveryof additional PWNe has occurred in recent While the radiospectrumofG141.2+5.0is anomalousfor yearsprimarilyatveryhighphotonenergies. However,those a PWN, K14 cite two other PWNe with steep radio spectra: objects have turned out mostly to be far older and interact- G76.9+1.0 (Landecker et al. 1993) and DA 495 (Kothes et ing directly with ISM, introducing additional complications al. 2008). G76.9+1.0shows a fairly circular envelopeof di- in modeling. An alternative approach is to start with ob- ameterabout7′ enclosingtwomaximainradio(Fig.2;Lan- jects of known radio properties, the original defining char- deckeret al. 1993),and a knownpulsarbetweenthem: with acteristicsof PWNe. Onesuch object, onlyrecentlydiscov- aperiodof24msandarotationalenergy-lossE˙ =1.2×1038 ered, is G141.2+5.0, found in Canadian Galactic Plane Sur- erg s- 1, it is the second most energetic pulsar in the Galaxy vey (CGPS; Taylor et al. 2003) observations using the Do- (Arzoumanianetal.2011).(Thisconfirmsthatunprepossess- minion Radio Astronomy Observatory (DRAO) at 1.4 GHz ingnebulae maycontainunusualpulsars.) Italso containsa (Kothes et al. 2014, hereafter K14). This object, the first tiny (16′′×10′′) X-ray nebula, shown as the faint contours radio-discoveredPWNin17years(seeFig.1),hasa1.4GHz nearthecenterinFig.2. ThesmallsizeandlowfluxofitsX- flux density of 0.14 Jy, and center-brightened morphology rayPWNmaybetypicalforPWNewithsteepradiospectra; withhighradiopolarization(15%integratedoverthesource, J2022+3842hasaverylowefficiencyη ofturningspindown but reaching40% at peak). It thus has all the earmarksof a powerintoPWNX-rayluminosity:L (PWN)∼6×1032erg normalradioPWN–exceptforthespectrum,whichismuch X steeper: α= - 0.69±0.05, more characteristic of an extra- s- 1 for a distance of 10 kpc (Arzoumanianet al. 2011), and galacticsource(evenalittletoosteepfortypicalshellSNRs). η∼2×10- 5. (Itsmagnetosphericefficiencyisabout10times K14 review alternate possible interpretations of the source, larger, that is, LX(PWN)∼0.1LX(pulsar)). DA 495, with a butthecompleteabsenceofobviouscounterpartsininfrared, radio extent of about 20′, also has a very small X-ray neb- optical,orsoftX-raysurveysrulesoutHIIregionsornearby ula (about 40′′), with a central point source thought to be a radio galaxies. Cluster halos normally have too steep spec- pulsar,thoughpulsationshavenotbeendetected(Karpovaet tra (α<∼- 1.0)while cluster relicshavesimilarlysteep spec- al.2015). trabutalsomuchlesssphericalmorphologies.Thediscovery we report here of an X-ray point source coincident with the 3. OBSERVATIONSANDANALYSIS intensity peak of G141.2+5.0 essentially confirms the PWN We observedG141.2+5.0withChandrafor 17.5 ks on 16 interpretation. November 2014, and for 32 ks on 28 November 2014 (ob- G141.2+5.0 shows the center-brightened morphology and sIDs16758and17551,respectively),withtheACISS3CCD substantial (also center-brightened) linear polarization char- chip.AlldatawerereprocessedwithCIAOv4.7andCALDB acteristicoftheclass. HIobservationsgiveakinematicdis- v4.6.8,andscreenedforperiodsofhighparticlebackground. tance of 4±0.5 kpc, but also reveal a surrounding shell of The absence of bright X-ray sources from the ROSAT All- H I with a radius of about 6′, expandingat 6 km s- 1 (K14). Sky Survey in the vicinity of G141.2+5.0 ensured that any Faraday rotation observationsimply a substantial amountof emissionwouldbeoflowsurfacebrightness,soweusedVery internal Faraday rotation, indicating significant thermal ion- Faint mode for more efficient background rejection. Spec- ized gas. These latter properties, along with the steep radio tral analysis was done with XSPEC v12.8.2 (Arnaud 1996). spectrum,makeG141.2+5.0ahighlyunusualPWN. Backgroundwas extractedfroma largeareaon the S3 CCD X-raySourceinRadioPWNG141.2+5.0 3 0−3 1 × 3 eV−1 0−3 k 1 nts s −1 2× u o c d e maliz 10−3 or n Figure2. DRAOimageintotalintensityat1420MHzofG76.9+1.0 0 (Landeckeretal.1993). Theresolutionis15′′×14′′.Contoursnear 1 2 5 Energy (keV) thecentershowtheX-rayPWN(Arzoumanianetal. 2011). Figure3. SpectrumofX-raypointsource,withthebest-fitpowerlawmodel shown. chip away from G141.2+5.0. The backgroundwas modeled instead of subtracted in order to allow the use of Markov chain Monte Carlo (MCMC) methods that is necessary for thecountsatthisfluxlevel(Lehmeretal.2012). theunbiasedestimationofspectralmodelparametersforfaint Withthisnumberofcounts,onlysimplespectralfittingwas X-ray sources(e.g., vanDyketal. 2001). We assumed non- possible. We made MCMC fits with power-law and black- informativepriorsin spectralfits, either uniformor logarith- bodyspectraldistributionsintheenergyrangefrom0.5keV mic,withthelatterusedonlyfor(absorbed)fluxes. Nospec- to 8 keV (all detected source counts are within this energy tralbinningwasused,expectwhenplottingspectraandmodel range), allowingfor absorptionif necessary. The power-law andblackbodyfitsareequallyacceptable,butthetemperature fits. We detected a moderately bright source at the loca- of the blackbody (0.93-+00..0180 keV) is unreasonably high for a tion (α, δ) = (3h37m12.86s, 61◦53′1.9′′), containing 241 putativeneutronstarwithnoevidenceofyouth.Furthermore, nointerstellarabsorptionisrequiredforthebest-fitblackbody counts, which we designate CXOU J033712.8 615302. These coordinates are the average of positions in individ- (95%upperlimittoNH is2.0×1021 cm- 2). Thereissignif- ualpointings,3h37m12.892s(3h37m12.824s)and61◦53′2.01′′ icant extinction (E(B- V)= 0.64-+00..003353) within 1 kpc in this (61◦53′1.77′′) for observations 17551 (16758). They cor- directiononthesky(Greenetal.2015), sothe blackbodyfit respond to source centroids estimated with help of the is inconsistent with the 4 kpc distance derived from the HI srcextent tool in CIAO. The source size estimated with absorptionmeasurementstowardG141.2+5.0. srcextent is consistent with an unresolved point source. The power-law fit, shown in Figure 3, gives an absorbing ThepositionaluncertaintyisalmostentirelyduetotheChan- columnNH =6.7(4.0,9.7)×1021cm- 2(usingtheGrevesse& dra external astrometric errors (mean error of 0.′′16; Rots Sauval[1998]abundanceset),reasonableifthepointsourceis 2009). Statisticalerrorsaresignificantlysmaller,andequalto atthe4kpcdistanceoftheradioPWN.Thepower-lawindex 0.′′07 (0.′′09) for observations17551(16758). These errors isΓ=1.8(1.4,2.2),quitetypicalforX-raypulsars(see, e.g., were estimated from equation (14) of Kimetal. (2007). As thecataloginKargaltsevetal.2013).The(absorbed)fluxbe- therearenoopticalorradiocounterpartstothisX-raysource tween0.5and8keVis6.1(5.2,7.1)×10- 14ergcm- 2s- 1. Af- (or to other X-ray sources sufficiently close to the Chandra tercalculatingunabsorbedfluxesforeachMCMCdraw(i.e., opticalaxistoallowforreliablemeasurementsoftheirposi- atripleconsistingofN ,Γ,andtheabsorbedflux),wearrived H tions),amoreaccuratedeterminationofthesourcepositionis at an unabsorbedflux of 9.0(7.6,11.1)×10- 14erg cm- 2 s- 1, currentlynotpossible. givinganunabsorbedluminositywithinthisenergyrangeof Thesourcelocationisnearthepeakbrightnessoftheradio L =1.7(1.4,2.1)×1032ergs- 1at4kpc. X image(Fig.1). Threeothermuchfainterpointsourcescanbe The timing analysis was performed on observations that seenwithintheextentoftheradionebula. Eachhasabout20 were corrected to barycenter using the CIAOtask axbary cts;iftheyhavethesamespectralshapeasG141.2+5.0,their (with the source coordinateslisted above). We searched for fluxes are about 8×10- 15 erg cm- 2 s- 1 (see below). At this pulsationsinphotonarrivaltimesinthefrequencyrangefrom level, the number of sources per square degree found in the aboutν =0.08Hz to ν =0.159Hz. Theminimumfre- min max ChandraDeepFieldSouthisabout400(Lehmeretal.2012), quency corresponds to a rotation period of 12.5 s. This is orabout0.1arcmin- 2. SincetheradioextentofG141.2+5.0is slowerthantherotationperiodofallknownisolatedneutron over8arcmin- 2,wecanbereasonablysuretheseareunasso- stars, including magnetars. The 3.141 s time resolution of ciated backgroundsources, probablyAGNs which dominate ourobservationssetsthehighest(1/6.282s=0.159Hz)fre- 4 quency to be searched. It also restricts our search to purely Weseenotraceofextendedemissionthatcouldbeapulsar- sinusoidal signals. We used the well-known Rayleigh (Z2) windnebula.Foranassumeddiameterof13′′(about1/20the 1 testinstead ofphasefoldingbecauseofits highersensitivity radiosize),our3σupperlimitontheluminosityisabout1031 (e.g.,seeLeahyetal.1983). Thenumberofindependentfre- erg s- 1 (assuming the same spectrum as the pulsar), making quencysearchesis3T(ν - ν ),whereT =301histhetotal anyPWNthatsizefainterthanallbut5ofthe59PWNecat- max min time elapsed betweenthe beginningandend ofChandraob- aloguedinKargaltsev&Pavlov(2010). TheratioofX-rayto servations of G141.2+5.0(the factor of 3 accounts for over- radio flux SX/Sr for PWNe varies overa wide range, with a sampling in frequency for the Z2-test; DeJageretal. 1989). typical value being about 10 (e.g., Gaensler & Slane 2006), 1 The maximum Z2 power found, Z2 =19.8, is not statis- butrangingto100ormore(e.g.,600forthePWNinG11.2– 1 1,max 0.3; Tam et al. 2002, Kargaltsev et al. 2013). A small early ticallysignificantinviewofthelargenumberoffrequencies collectionofradio-selectedPWNehasS /S rangingfrom10 searched.ThisZ2 ,incombinationwiththetotalnumberof X r 1,max to 1000 and above (Reynolds & Chevalier 1984), while the countsinthesourceextractionregion,correspondstoanup- steep-spectrumPWN DA 495 has S /S ∼15. Roughly es- per limit of 0.54for the pulsed fraction (at 95%confidence; X r forthisestimate,weusedthemethodofBrazier1994). gtiimveastiSng∼th2e×in1te0g- 1r5ateerdgrcamdi-o2sfl-u1.xTShrenofSG1∼411.02S+0w.5oualsdνimSν- There is no apparent extended emission near the point r X r ply an X-ray flux of order 2×10- 14 erg cm- 2 s- 1, about1/5 source. In an annulus with inner and outer radii of 2.5 pix- els (1.23′′) and 13 pixels (6.4′′), respectively, there are 27 ofthefluxinthepointsource,andthreetimestheupperlimit wefindforapresumedPWNdiameterof26′′. Alternatively, counts in the 0.5–8 keV energy range. We used the CIAO an extrapolationof the radio flux of 120 mJy at 1.4 GHz to task arfcorr to generate simple synthetic PSFs at several 1 keV (2.4×1017 Hz) with α=- 0.69 would imply a spec- photon energieswhich were then combinedto make predic- tralfluxofabout35nJythere, oranintegratedfluxbetween tions for ratios of counts in this annulus relative to an aper- turewithradiusequaltotheinnerradiusoftheannulus. The 0.5and8keV(withthesamespectralindex)of3×10- 13erg measured counts within this aperture plus background esti- cm- 2 s- 1, or about20 times the flux in our point source and matesfarfromthesourceservedasinputtoatwo-component fargreaterthananyPWNflux.Weinferthat,aswithallother modelconsistingofa uniformbackgroundanda PSF model knownPWNewithradiotoX-rayspectra,thespectrummust for the point source. This model predicts 23 counts within steepen,evenfromitsalreadysteepradiovalue.Whetherthis thisannulus,sothereisnoevidencefordiffuseemissionfrom isduetoradiativelossesorintrinsicspectralstructurecannot a PWN. Based on this model and assuming the same spec- bedeterminedatthistime. tralshapeforthePWNandthepointsource,a3σupperlimit InbothDA495andG76.9+1.0,theX-raynebulaissmaller tothe(absorbed)0.5-8keVPWNsurfacebrightnessnearthe thantheradionebulabylargefactors(about30ineachcase). pointsourceis3×10- 17 ergcm- 2 s- 1 arcsec- 2, or6%ofthe The same ratio in G141.2+5.0 would mean an X-ray neb- measuredfluxfromthepointsourcewhenintegratedoverthe ula with radius about 4′′. We see no evidence for extended annulus. emission beyond the PSF. Any X-ray PWN could be either smaller than 1/30 of the radio size, or considerably fainter 4. DISCUSSION than 10 times the radio flux. Either possibility would make Our discovery of the X-ray point source in G141.2+5.0 G141.2+5.0auniquepulsar/PWNcombinationintheGalaxy, essentially confirms its identification as a PWN, in the rare whosefurtherstudymightprovideimportantcluestothelate- class of steep-radio-spectrum PWNe. These objects also timePWNphenomenon. share properties of a point source (pulsar in one case) near This work was supported by NASA through the Chandra the geometric center of the radio nebula, and very small X- GeneralObserverProgramgrantGO5-16055X.Thescientific ray nebulae (or, in the case of G141.2+5.0, only an upper resultsreportedinthisarticlearebasedonobservationsmade limit). The point sources in DA 495 and G76.9+1.0 differ by theChandraX-ray Observatory. This research has made considerably in properties: in the former, the point source useofsoftwareprovidedbytheChandraX-rayCenter(CXC) does not show pulsations (pulsed fraction <∼40%; Karpova intheapplicationspackagesCIAOandChIPS. et al. 2015), but is well fit by thermal models: a blackbody with kT ∼215eV, or a magnetizedneutron-staratmosphere REFERENCES modelwithkT ∼80- 90eV.Theupperlimittoapower-law contribution is LX <∼5×1031 erg s- 1. In G76.9+1.0, the X- Arnaud,K.A.1996,inAstronomicalDataAnalysisandSystemsV,eds. G.Jacoby&J.Barnes,ASPConf.Series,v.101,17 raypointsourceisobservedtobeapulsar,withanonthermal Arzoumanian,Z.,Gotthelf,E.V.,Ransom,S.M.,etal.2011,ApJ,739,39 spectrumwithΓ=1.0andL (2- 10keV)=7×1033 ergs- 1 Atoyan,A.M.1999,A&A,346,L49 X (Arzoumanianetal. 2011). The point source in G141.2+5.0 Brazier,K.T.S.1994,MNRAS,268,709 Chevalier,R.A.2005,ApJ,619,839 morecloselyresemblesthepulsarinG76.9+1.0,thoughmuch DeJager,O.C.,Swanepoel,J.W.H.,&Raubenheimer,B.C.1989,A&A, lessluminousandwithaslightlysteeperspectrum. 221,180 Gaensler,B.M.,&Slane,P.O.2006,ARA&A,44,17 All evidence is consistent with our pointsource being the Green,G.M.,Schlafly,E.F.,Finkbeiner,D.P.,etal.2015,ApJ,810:25 pulsar powering the radio PWN. (A search for radio pulsa- Grevesse,N.,&Sauval,A.J.1998,SSRv,85,161 tions has been performed [D. Lorimer, PI] but nothing has Kargaltsev,O.,&Pavlov,G.G.2007,Ap&SS,308,287 Kargaltsev,O.,&Pavlov,G.G.2010,inAIPConf.Proc.v.1248,X-ray beenreported.)Theadequacyofapower-lawfitpointstothe Astronomy2009:PresentStatus,Multi-wavelengthApproachandFuture emission we observe being primarily magnetospheric in na- Perspectives,ed.A.Comastri,L.Angelini,&M.Cappi(Melville,NY: ture.Thissuggestsashortdutycycleandhighpulsedfraction AIP),25. Kargaltsev,O.,Rangelov,B.,&Pavlov,G.G.2013,arXiv:1305.2552 forthepulsar(e.g.,Kargaltsev&Pavlov2007). However,its Karpova,A.,Zyuzin,D.,Danilenko,A.,&Shibanov,Yu.2015,MNRAS, propertiesarenotunusualforX-rayrotation-poweredpulsars, 453,2241 Kennel,C.F.,&Coroniti,F.V.1984,ApJ,283,694 andgivenohinttothenatureoftheveryunusualradioPWN Kennel,C.F.,&Coroniti,F.V.1984,ApJ,283,710 thatsurroundsit. Kim,M.,Kim,D.-M.,Wilkes,B.J.,etal.2007,ApJS,169,401 X-raySourceinRadioPWNG141.2+5.0 5 Kothes,R.,Landecker,T.L.,Reich,W.,Safi-Harb,S.,&Arzoumanian,Z. Rots,A.2009,DeterminingtheAstrometricErrorinCSCSourcePositions, 2008,ApJ,687,516 http://cxc.harvard.edu/csc/memos/files/Rots_CSCAstrometricError.pdf Kothes,R.,Sun,X.H.,Reich,W.,&Foster,T.J.2014,ApJ,784,L26 Tam,C.,Roberts,M.S.E.,&Kaspi,V.M.2002,ApJ,572,202 Landecker,T.L.,Higgs,L.A.,&Wendker,H.J.1993,A&A,276,522 Taylor,A.R.,Gibson,S.J.,Peracaula,M.,Martin,P.G.,Landecker,T.L., Leahy,D.A.,Elsner,R.F.,&Weisskopf,M.C.1983,ApJ,272,L256 Brunt,C.M.,Dewdney,P.E.,Dougherty,S.M.,Gray,A.D.,Higgs,L.A., Lehmer,B.D.,Xue,Y.Q.,Brandt,W.N.,etal.2012,ApJ,752:46 Kerton,C.R.,Knee,L.B.G.,Kothes,R.,Purton,C.R.,Uyaniker,B., Porth,O.,Komissarov,S.S.,&Keppens,R.2013,MNRAS,431,L48 Wallace,B.J.,Willis,A.G.,&Durand,D.2003,AJ,125,3145 Rees,M.J.,&Gunn,J.E.1974,MNRAS,167,1 vanDyk,D.A.,Connors,A.,Kashyap,V.L.,&Siemiginowska,A.2001, Reynolds,S.P.2009,ApJ,703,662 ApJ,548,224 Reynolds,S.P.,&Chevalier,R.A.1984,ApJ,278,630 Weiler,K.W.1985,inTheCrabNebulaandRelatedSupernovaRemnants (ed.Kafatos,M.C.,&Henry,R.B.C.)(Cambridge:CambridgeU.Press), 265

See more

The list of books you might like