ebook img

3D Lya radiation transfer. II. Fitting the Lyman break galaxy MS 1512-cB58 and implications for Lya emission in high-z starbursts PDF

0.29 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 3D Lya radiation transfer. II. Fitting the Lyman break galaxy MS 1512-cB58 and implications for Lya emission in high-z starbursts

Astronomy&Astrophysicsmanuscriptno.cb58˙final (cid:13)c ESO2008 February2,2008 α 3D Ly radiation transfer. II. Fitting the Lyman break galaxy MS α 1512–cB58 and implications for Ly emission in high-z starbursts DanielSchaerer1,2,AnneVerhamme1 1 ObservatoiredeGene`ve,Universite´deGene`ve,51,Ch.desMaillettes,CH–1290Sauverny,Switzerland 2 Laboratoired’Astrophysique(UMR5572),ObservatoireMidi-Pyre´ne´es,14AvenueE.Belin,F–31400Toulouse,France 8 0 Receiveddate;accepteddate 0 2 ABSTRACT n Aims.To understand the origin of the Lyα line profile of the prototypical Lyman break galaxy (LBG) MS 1512–cB58 and other a J similarobjects.ToattemptaconsistentfitofLyαandotherUVpropertiesofthisgalaxy.Tounderstandthemainphysicalparameter(s) responsibleforthelargevariationofLyαlinestrengthsandprofilesobservedinLBGs. 8 Methods.Using our 3D Lyα radiation transfer code (Verhamme et al. 2006), we compute the radiation transfer of Lyα and UV continuum photons including dust. Observational constraints on the neutral gas (column density, kinematics, etc.) are taken from ] h otheranalysisofthisobject. p Results.TheobservedLyαprofileofMS1512–cB58isreproducedforthefirsttimetakingradiationtransferandallobservational - constraints into account. The observed absorption profile is found to result naturally from the observed amount of dust and the o relativelyhighHIcolumndensityN .RadiationtransfereffectsandsuppresionbydusttransformastrongintrinsicLyαemissionwith H r EW(Lyα)>∼60ÅintotheobservedfaintsuperposedLyαemissionpeak.WeproposethatthevastmajorityofLBGshaveintrinsically t s EW(Lyα)∼60–80Åorlarger,andthatthemainphysicalparameterresponsiblefortheobservedvarietyofLyαstrengthsandprofiles a in LBGs is N and the accompanying variation of the dust content. Observed EW(Lyα) distributions, Lyα luminosity functions, [ H andrelatedquantitiesmustthereforebecorrectedforradiationtransferanddusteffects.Theimplicationsfromourscenarioonthe 1 duty-cycleofLyαemittersarealsodiscussed. v Keywords.Galaxies:starburst–Galaxies:ISM–Galaxies:high-redshift–Ultraviolet:galaxies–Radiativetransfer–Line:profiles 7 8 1 1 1. Introduction thesampleofShapleyetal.(2003)cB58isfoundinthequartile . (∼25%)ofLBGswiththestrongestLyαabsorption.Assucha 1 Discovered serendipitously by Yeeetal. (1996), the Lyman representativeandgiventhequalityandamoutofobservational 0 Break Galaxy (LBG) MS 1512–cB58 (hereafter cB58) lo- dataavailable,cB58isofparticularinterest. 8 cated at z ∼ 2.73 is strongly gravitationally magnified by the 0 foreground cluster MS 1512+36. It is by far the best stud- : OurobjectivesaretoexamineiftheobservedLyαlinepro- v ied LBG, which has been observed at many wavelengths (see file and strength of cB58 can be understood,and if one is able i Bakeretal. 2001, 2004; Bechtoldetal. 1997; Ellingsonetal. X toobtainconsistentdiagnosticsfromtheLyαlineandfromthe 1996; Frayeretal. 1997; Nakanishietal. 1997; Pettinietal. r 2002, 2000; Savaglioetal. 2002; Sawicki 2001; Teplitzetal. otherUVandbroadbandfeaturesusedinearlierpapers.Suchan a attemptiscarriedouthereforthefirsttimewithaLyαradiation 2004, 2000). In particular, rest-frame UV (Pettinietal. 2002, transfercode(Verhammeetal.2006).OtherLBGswithvarying 2000),optical(Teplitzetal.2004,2000),andradio(Bakeretal. strengthsofLyαemissionwillbeanalysedinasubsequentpaper 2001, 2004) observations have allowed to draw a fairly global (Verhammeetal.2007).Inparticularwewishtoelucidatewhat picture of this star-forming galaxy and its interstellar medium (ISM):itisyoung(∼50–300Myr),massive(∼ 1010 M ),with causesthebroadLyαabsorptionandveryweaksuperposedLyα ⊙ emissionincB58andinotherLBGsshowingsimilarLyαspec- asub-solarmetallicity(Z ∼ 2/5Z ),astarformationrate(SFR ⊙ ∼24M yr−1)typicalofLBGs,anditissurroundedbyoutflow- tra (cf. Shapleyetal. 2003). Similarly we want to understand ⊙ ingmaterialatV ∼250kms−1. whatphysicalparameter(s)distinguishthedifferentsubtypesof exp LBGsshowinglargevariationsespeciallyinLyα.Finally,fitting Thankstoitsapparentbrightnesstherest-UVspectraofthis observed starburst spectra with detailed Lyα radiation transfer galaxyare of comparablequality as the best studied localstar- modelingshouldingeneralprovideinsightfortheuseofLyαas bursts.Thishasinparticularmadeitpossibletodetectnumerous adiagnosticindistantgalaxies. stellar and interstellar (IS) lines, to study their kinematics, and tousethemfordetailedUVlinefitstoconstrainitsstellarcon- tent, age, star formation history etc. (e.g. deMelloetal. 2000; Theremainderofthepaperisstructuredasfollows.Themain Ellingsonetal.1996;Pettinietal.2000).Apartfromitsbright- observationalpropertiesofcB58aresummarisedinSect.2.The ness,magnifiedbyafactor∼30thankstogravitationallensing principles of our simulations and fit method are described in (Seitzetal.1998),thepropertiesofcB58areempiricallyfound Sect. 3. In Sect. 4 we discuss the implicationsfromour results to be typicalof LBGs (Shapleyetal. 2003). More precisely, in ontheunderstandingofLyαemissioninLBGs,andontheprop- ertiesofthesegalaxies.Ourmainconclusionaresummarisedin Sendoffprintrequeststo:[email protected] Sect.6. 2 DanielSchaerer,AnneVerhamme:3DLyαradiationtransfer.II.cB58andimplicationsforLyαinhigh-zstarbursts 2. ObservationalconstraintsfromcB58 a young age is the underabundance of N and the Fe-peak ele- mentsintheISMofcB58(Pettinietal.2002),givingtheupper ThemainpropertiesofcB58ofrelevanceforthe presentpaper limit age <∼ 300 Myr, the timescale for the release of N from aresummarisedinwhatfollows. intermediate-massstars. 2.1.RedshiftandISMoutflowproperties 2.3.Extinction/dustcontent DirectobservationsofphotosphericlinesbyPettinietal.(2002, ThepreciseamountofextinctionincB58remainsunclear.While 2000) assign the systemic redshift at zUV = 2.7276+−00..00000013. Pettinietal. (2000) estimated Es(B−V) = 0.29fromtheirUV Teplitzetal. (2004) determine zHII = 2.729±0.001 from rest- spectralfitting,andTeplitzetal.(2000)calculatedE (B−V) = frame optical emission lines(Hα, [N ], [O ] and Hβ) of the g 0.27fromthe H /H ratio, Bakeretal. (2001) used fourmeth- α β counterarc “A2”, in agreement with their earlier determination odsincludingacorrectionofthevaluederivedfromtheBalmer fromthemainimageofcB58.TheCOemissionlinedetermina- decrementobtaining values from E (B−V) = 0.042 to 0.236. tionbyBakeretal.(2004)isz =2.7265+0.0004. s CO −0.0005 Here Es and Eg refertothecolorexcessofthestellarlightand The interstellar absorption lines and Lyα absorption are the nebulargasrespectively,which are related by E (B−V) = blueshiftedby∼ 250kms−1 withrespecttothegalaxyredshift, 0.44E (B−V) if the Calzetti law (Calzettietal. 200s0) applies. g determined by its photospheric lines. The small Lyα emission FromthisweconcludethatE (B−V)∼0.10–0.54,andweadopt g peak on top of the absorption (see e.g. Fig. 4) is redshifted by ameanvalueofE (B−V)∼0.3forsimplicity. ∼ 300 km s−1(Pettinietal. 2002). Both are evidence for large- g scaleoutflowingmediumaroundthestar-forminggalaxy. Interestingly,andincontrasttothepropertiesseenintheav- 2.4.Starformationrate,mass,andmetallicityofcB58 erage LBG spectra of Shapleyetal. (2003) and spectra of in- ThestarformationrateestimatedfromtheUVluminosityL dividualz ∼ 3 LBGs observed by Tapkenetal. (2007), Lyα is is SFR ∼ 40 M yr−1 (Pettinietal. 2000) after correct1i5n0g0 UV ⊙ redshifted in cB58 by a similar amountas the interstellar lines forreddeningandgravitationalmagnification(assumingamag- areblueshifted,insteadofbeingredshiftedby∼ +2×V with exp nification factor µ = 30, cf. below). Adopting a lower extinc- respectto thestellar lines(orby ∼ 3×V fromthe ISlines). exp tion,basedontheBalmerdecrement,Bakeretal.(2004)derive As discussed by Verhammeetal. (2006) the latter behaviouris SFR =23.9±0.7M yr−1fromHα. naturallyexplainedbyasphericallysymmetricexpandingshell Hα/Hβ ⊙ The velocity dispersion measured from nebular and CO withconstantvelocity,wheretheemergingLyαphotonsmostly emissionlinesaresimilar:σ =81kms−1(Teplitzetal.2000), originatefromscatteringonthebacksideoftheshellwherethey andσ = 74±18km s−1H(IBIakeretal. 2004). The dynamical gainredshiftof∼2×V .ThesmallerredshiftofLyαindicates CO exp mass deducedfromthese values, giventhe physicalsize of 2.4 alreadyempiricallyadeviationfromthissimplesymmetry.This kpc of the galaxy (Seitzetal. 1998), is M ∼ 1.×1010 M . willbesubstantiatedbelow.Howtypical/frequentsuchvelocity dyn ⊙ The mass of the gas deduced from the CO column density is shiftsarecannotbeassertedfromtheavailabledata,represent- M =(6.6±5.8)×109M (Bakeretal.2004). ingmostlystackedspectra.Thiswillrequiremanyhighquality gas 4.3 ⊙ Themetallicityderivedfromtheinterstellarabsorptionlines spectra of individualLBGs. However, only the Lyα shape, not and from the ionised region are compatible: Z ∼ 2/5 Z IS ⊙ line shifts, is the criterion used to classify cB58 in the quartile (Pettinietal.2002)andZ ∼1/3Z (Teplitzetal.2000). withLyαabsorption. HII ⊙ ThelowionisationISMabsorptionlinesyieldconsistentlya velocitydispersionb = 70kms−1(Pettinietal.2002).Theneu- 2.5.Gravitationallensing tral hydrogen column density of the outflow is determined by Lensing reconstructionshows that the primary image of cB58, VoigtfittingoftheLyαabsorptionwings;N =(7.0±1.5)×1020 H anarcwhosespectrumwillbeusedhere,ismagnifiedby3.35–4 cm−2 and N = 6+1.4 × 1020 cm−2 is obtained by Pettinietal. H −2. mag overall, i.e. a magnification factor µ ∼ 22–40 (Seitzetal. (2002) and Savaglioetal. (2002) respectively. Absorption pro- 1998). Approximately only a fraction 0.5–0.66 of the source file line fitting shows that at least ∼ 2/3 of the low ionisation is imaged into the cB58 arc according to Bakeretal. (2004); materialisfoundatV = −265kms−1,withabparameterof70 Seitzetal. (1998). However, the fact that cB58 follows all the kms−1(Pettinietal.2002). samescalingrelations(amongLyαequivalentwidth,interstellar The outflow of cB58 is located well in front of the stars absorption line strengths, extinction etc. Shapleyetal. (2003)) and coversthem almost completely, since it absorbs almost all obeyed by unlensed LBGs, shows that the spectrum is not an the UV lightfromthe backgroundstars. Indeed,Savaglioetal. unrepresentativesliceofthegalaxy. (2002)findonlyasmallresidualmeanfluxabovethezerolevel in the core of the Lyα absorption feature, whereas it is black forPettinietal.(2002).Heckmanetal.(2001)estimateanareal 3. FittingtheLyαspectrumofcB58 coveringfactorforopticallythickgasof98%fromtheresidual intensityatthecoreoftheCλ1335line. 3.1.Observations We use the normalised rest-frame UV spectrum from Pettinietal.(2002),obtainedwiththeEchelleSpectrographand 2.2.Ageandstar-formationhistoryofcB58 Imager(ESI)ontheKecktelescopeIIata resolutionof58km UV spectral fitting, including detailed stellar line profile fits, s−1, and kindly made available to us by Max Pettini. We have consistently indicate ages of >∼ 20–100 Myr and favour con- also examined the UVES spectrum taken with the VLT from stant star formation over this timescale (deMelloetal. 2000; Savaglioetal. (2002). Except for slight differences in the nor- Ellingsonetal. 1996; Pettinietal. 2000). Such an age is also malisationthespectrashowaverygoodagreement(cf.Fig.2). consistentwiththeobservedstellarmassandstarformationrate The former spectrum is used subsequently for our line profile (Bakeretal.2004).Anotherindependentargumentinfavourof fitting. DanielSchaerer,AnneVerhamme:3DLyαradiationtransfer.II.cB58andimplicationsforLyαinhigh-zstarbursts 3 Table1.Inputparametersofthe“standard”cB58modelforthe ineifconsistentsolutionscanbeobtained.ThevalueforFWHM radiationtransfercode istakenfromtheobservedHαline(σ ). HII For the spherical shell (1), the emergent spectrum is com- V =V 255kms−1 puted by integration over the entire volume. This assumes exp front Vback free that the shell is unresolved and completely integrated within NH 7.0×1020cm−2 the spectroscopic aperture, which corresponds to ∼ 2 kpc b 70kms−1 (Seitzetal. 1998). For the slabs (2), the emergent spectra are E (B-V) 0.3 g computed taking the photons emitted within an opening angle FWHM(Lyα) 80kms−1 oftypically60degreesintoaccount.Theresultsdependlittleon EW(Lyα) free theexactopeningangle. AllmodelshavebeencomputedusingtheMonteCarlo(MC) radiation transfer code MCLya developed by Verhammeetal. 3.2.LyαplusUVcontinuummodeling (2006).Thecodetreatsthescatteringoflineandcontinuumpho- To fit the observations we use our 3D Monte Carlo (MC) ra- tonsintheLyαlineandtheadjacentcontinuum,aswellasscat- diationtransfercodeMCLya(Verhammeetal.2006).Thecode teringandabsorptionbydust.InpracticeonehighstatisticsMC solvesthetransferofLyαlineandadjacentcontinuumphotons simulationisrunforeachsetofparameterslistedaboveassum- includingthedetailedprocessesofLyαlinescattering,dustscat- ingaconstant(flat)inputspectrum.Bykeepingtraceofthere- teringanddustabsorption. lationbetweentheinputfrequencybinofthephotonsandtheir For simplicity, and given empirical evidence in favour of a emergentfrequency,simulationsfor arbitraryinputspectra can fairlysimplegeometryinz∼3LymanBreakGalaxies(hereafter be generated a posteriori in an interactive manner. This avoids LBG) discussed by Verhammeetal. (2006), we first adopted a unnecessarytransfercomputationswithoutresortingtoanysim- simple“super-bubble”modeltoattemptfittingtheobservedLyα plifyingassumption.Forcomparisonwiththeobservations,the lineprofile.Theassumed“standard”geometryisthatofanex- theoreticalspectrumisfinally convolvedwith a gaussianto the panding,spherical, homogeneous,and isothermal shell of neu- instrumentalresolution. tralhydrogensurroundingacentralstarburstemittingaUVcon- Simulations for multi-slab geometries (3) have been com- tinuumplusLyαrecombinationlineradiationfromitsassociated putedbycombiningtheresultsfromasingleslabMCcomputa- H  region. The homogeneity and a covering factor near unity tionsinanumericalfashion,modifyingappropriatelytherelative arealsosupportedbytheobservations(cf.Sect.2).Takinginto velocityshifts of the slabs and openinganglesof the emerging accountdeviationsfromaconstantexpansionvelocityisneces- radiation. This allows fast, interactive fitting, without resorting sary to reproducethe observedLyαprofile of cB58,as already e.g.toapproximateanalyticfits(cf.HansenandOh2006). indicatedfromtheempiricalevidencediscussedearlier. 3.2.2. SyntheticstarburstspectraintheLyαregion 3.2.1. Radiationtransfermodeling When spatially integratedgalaxy spectra are considered,it is a The following geometries have been adopted: 1) a spherically priorinecessarytoincludebothstellarandnebularlinesinfitsof symmetric expandingshell with velocity V , 2) a foreground observedspectra.AstheregionaroundLyαisgenerallynotcon- exp slabmovingtowardstheobserverwithvelocityV =V ,and sideredandnotincludedordiscussedinmostevolutionarysyn- front exp 3) two parallelslabs with differentvelocitiesV and V = thesiscodes,weherebrieflyexaminethebehaviourofthisspec- back front V respectively to mimic a shell like geometry allowing for tral range. To do so we use the evolutionary synthesis models exp velocity variationsbetween the frontand the back of the shell. ofSchaerer(2003)(hereafterS03)complementedbytherecent ThevalueofV istakenfromtheobservations.V isafree modelsofDelgadoetal. (2005) includinghighspectralresolu- exp back parameter. tionstellaratmospheres,kindlymadeavailabletousbyMiguel The other model parameters are: the velocity dispersion Cervin˜o.Onlythemainingredientsofthesemodelsetsshallbe given by the Doppler parameter b, the H  column density N , summarisedhere. H and the dust absorption optical depth τ at Lyα wavelength. TheS03modelsbasicallyincludesimplifiednon-LTEmodel a We assume that dust and H  are uniformly mixed. As dis- atmospheres for massive stars (> 20 M ), and LTE line blan- ⊙ cussedinVerhammeetal.(2006),τ relatestotheusualextinc- ketedKuruczatmospheresotherwise.TheDelgadoetal.(2005) a tion E(B−V) ≈ (0.06...0.11)τ , where the numericalcoeffi- modelsincludeinparticulartheoreticalhighspectralresolution a cientcoversattenuation/extinctionlawsofCalzettietal.(2000), libraries,andallmassivestarsaretreatedwiththeplaneparallel Seaton(1979) andsimilar. Herewe assume E(B−V) = 0.1τ . non-LTEblanketedTLUSTYcode(LanzandHubeny2003).In a The values for these parameters, summarised in Table 1, are bothcasesthesamestellartracksandmetallicities,summarised takenfromtheobservationsofcB58(Sect.2).Notethatwesup- in S03, have been used. With respect to the Lyα region these posethatthecolorexcessmeasuredforthenebulargasisrepre- modelsrepresentthemostup-to-datecomputations.Theonlyre- sentativeforthedustopticaldepthseenbytheLyαphotons. strictionisthatthesecomputationsdonottreatthestellarwinds Thespectrumofthecentralpointsourceisdescribedbythe ofthehotteststars,whichleadstosomemodificationsofthein- stellar continuum around Lyα, either a flat continuum or syn- trinsicLyαlineprofileofthesestars.However,unpublishedtest theticstarburstspectradescribedbelow,andthenebularrecom- computations (Martins 2000) show that these effects are small bination line, described by its equivalent width EW(Lyα) and or negligible compared to the underlyingLyα absorption from fullwidthathalfmaximumFWHM(Lyα).Althoughinprinciple thebulkofBandAstarsandcomparedtotheexpectednebular theequivalentwidthoftheintrinsicLyαemissionisdetermined emission.ThisisalsoconfirmedbyLeitherer(2007). by the stellar population,i.e. can be predicted by the synthetic In Fig. 1 we show the spectra predicted by these two syn- spectra,EW(Lyα)iskeptasafreeinputparameterfortheradia- thesis over the spectral range centered on Lyα. The spectra, tiontransfermodeling.Theresultingfitvalueswillsubsequently computed for instantaneous bursts with ages 0.1, 10, and 50 becomparedtovaluesexpectedfromsynthesismodelstoexam- Myr at solar metallicity and for a Salpeter IMF with an up- 4 DanielSchaerer,AnneVerhamme:3DLyαradiationtransfer.II.cB58andimplicationsforLyαinhigh-zstarbursts Fig.1. Predicted stellar spectra around Lyα from the synthesis Fig.2. Observed spectra of cB58 from Pettinietal. (2002) models of S03 (blue and red low-resolution curves), and the (black) and Savaglioetal. (2002) (red) compared to the high- high-resolution models of (Delgadoetal. 2005) in black and resolution synthesis models of (Delgadoetal. 2005) for solar green.Computationsforsolarmetallicityburstsofages0.1,10, metallicityburstsofages0.1,10,and50Myr(inmagenta,green and50Myrareshownfromtoptobottom.Thegreenlineshows and blue from top to bottom). Apart from small differences in the equilibrium spectrum reached for constant star formation, the normalisationthe two observedspectra are very consistent. as the red dashedline for the S03 model.All spectra are in F Thecomparisonwiththemodelsillustrateshowtheshapeofthe λ units, normalisedarbitrarily at 1280Å. The main photospheric red wing of Lyα can be clearly used to exclude bursts of ages line identifications are indicated at the top (cf. text). Note the largerthan10–50Myr. excellentoverallagreementof the two independentmodels,al- lowingareasonabledescriptionofthebroadabsorptionaround Lyα. oramoreconstantstarformationhistoryarethereforerequired. Ofcourse,otherUVspectrallinessuchasthewellknownSi andClines,aresensitivetoageandstarformationhistory(cf. Leithereretal.1995). per mass cut-off of 100 M , are normalised arbitrarily at 1280 ⊙ As other parts of the UV spectrum (see e.g. Leithereretal. Å. The high-resolution spectra allow the identification of the 1999), the detailed integrated spectrum in the Lyα region de- main(photospheric)spectrallines,whicharetheCmultiplet pendsalsosomewhatonmetallicity(cf.Fig.3).Themainreason centered at 1175.6 Å, Si  multiplets at λλ 1193.3,1194.5and isthesystematicshiftoftheaveragestellareffectivetemperature 1260.4,1264.7,the Si  multiplet λλ 1206.5,1207.5,and C  with metallicity for a given age. In consequence similar spec- λ1247.4. The position of the N  multiplet λλ 1238.8,1242.8 tra of burstscan be obtainedatdifferentmetallicities, provided formed in the winds of early type stars (not included in the some age shift is allowed for. Despite the detailed metallicity presentmodels)isalsoindicated. differences,whichcanbeaccountedforbyusingtheappropriate ThetemporalbehaviouroftheLyαprofileinaburstcanbe highresolutionspectra,theoverallbehaviouroftheshapeofthe sketchedasfollows:forages<∼10MyrtheLyαabsorptiondeep- Lyαprofileremainsquiteindependentlyofmetallicity,ascould ensbutremainsrelativelynarrow.Atolderages,whenstarswith beexpected. alowerionisationdegreeintheiratmospheresdominate,theLyα It is also reassuring to note the good overall agreement of becomes considerably stronger and broader. At > 50 Myr, not the two independent synthesis models, allowing a reasonable shownhere,theredwingremainsbroad,whereasthefluxshort- descriptionofthe broadabsorptionaroundLyαevenwithlow- wardofLyαdisappearsveryrapidly.Forconstant(ongoing)star resolution spectra. In any case predictionsfrom both synthesis formationthespectrumreachesquiteshortly(over>∼10Myr)an models, as well as flat spectra, will be used below as input for equilibriumwithaLyαlineprofilequitecloselyresemblingthat thecB58fitswiththeLyαradiationtransfercode. ofa∼10Myrburst,asalsoshowninFig.1. The relative strengths of the stellar Lyα absorptionand ex- The shape of the red wing of Lyα, up to ∼ 1240 Å, pro- pected intrinsic nebular emission is illustrated in Fig. 3, where videsausefulconstraintontheageandstarformationhistoryof the predicted Lyα equivalent widths of these components are the starburst. For bursts with ages >> 10 Myr the width of the plottedasafunctionoftimeforthecaseofinstantaneousbursts stellar Lyα absorptionbecome so large, that a measurementof and for constant star formation, as well as for three different the shape of its red wing can alreadybe distinctive,evenwith- metallicities. The behaviour of these quantities is as expected outconsideringinterstellarLyαradiationtransfer.Forexample, from earlier computationsat solar metallicity (CharlotandFall forthe case ofcB58shownin Fig. 2the observedLyαwingis 1993;Valls-Gabaud1993).Decreasingmetallicityincreasesthe clearlylessbroadthantheburstmodelat50Myr.Youngerbursts nebularemissionandintroducesasmallageshiftinLyαabsorp- DanielSchaerer,AnneVerhamme:3DLyαradiationtransfer.II.cB58andimplicationsforLyαinhigh-zstarbursts 5 Fig.3.PredictedLyαequivalentwidthsofthenebularemission Fig.4.PredictedLyαlineprofileforasymmetricsphericalshell (EW(Lyα) > 0) and stellar absorption (EW(Lyα) < 0) for in- withconstantvelocity,theinputparameterssummarisedinTable stantaneousbursts(solidandlong-dashedlines)andmodelswith 1, and EW(Lyα)=0, 10, 40 Å (green, blue, magenta respec- constantstarformation(shortdashed,dotted,anddash-dotted). tively).Theinputspectrumisthereddottedline.Theobserved Thelong-dashedlinesshowthetotalEW (nebular+stellar)for spectrumofcB58fromPettinietal.(2002)isshowninblack. constant star formation, the dotted lines the stellar absorption component.Threedifferentmetallicities,Z =0.02(solar,black), 0.004(red),and0.0004(blue)areshown. tion. For constant star formation over ∼ 20–100 Myr or more, oneexpectsinparticularEW(Lyα)∼60–100Å. 4. Results Wenowdiscussthesimulatedspectraassumingdifferentgeome- triesandtheirdependenceontheinputparameters. 4.1.Modelsforaconstantvelocityshell The predicted Lyα line profile for a symmetric spherical shell withconstantvelocity,computedwiththeinputparameterssum- marisedinTable1andwithEW(Lyα)=0,10,and40Åiscom- paredtotheobservedprofileinFig.4.Theinputspectrum,here aflatcontinuumplusline,isalsoshownforillustration. As expected from our earlier simulations (Verhammeetal. 2006), the global shape of the theoretic spectrum is similar to theobservedone,consistingofabroaddampedabsorptionplusa redshiftedasymmetricemissionlinecomponent,whosestrength dependsonthestrength(EW)oftheinputline.Thenetabsorp- Fig.5. Observed (black) and predicted Lyα line profile for the tionisduetodustabsorption,sincethecase consideredhereis singleforegroundslabmodel(blue).Theinputspectrum,shown the integrated spectrum of a shell, where all scattered photons bythereddottedlinehasEW(Lyα)=40Å. are observed. Scattering of photons out of the line of sight is thereforenotpossible,henceanynetabsorptionmustbedueto dust. The superposed emission peak results from the radiation ond the position of the predicted Lyα emission peak is found transfer of the photons from the original (input) emission line, at too high positive velocities. The first problem can be solved which are scattered and absorbed, and are able to escape only byincreasingthe columndensityof the shell. Asalreadymen- thankstotheirredshiftacquiredonthebackoftheshell. tioned above, and first pointed out by Verhammeetal. (2006), TwomainproblemsareimmediatelyclearfromFig.4.First anintegratedshellgeometrynecessarilyrequiresalargerN to H the predicted width of the absorption is unsufficient, and sec- reproducea simpleVoigtprofileofthesame widthasa slabof 6 DanielSchaerer,AnneVerhamme:3DLyαradiationtransfer.II.cB58andimplicationsforLyαinhigh-zstarbursts thesamecolumndensity.Theseconddiscrepancywiththesim- pleshellmodelcouldalsobeanticipated(cf.Sect.2),sincethe redshiftedpeakofLyαisexpectedat2×V ,whereastheob- exp servationsshowthepeakaround∼ 300kms−1.Asthevelocity shift of the Lyα peak is a fairly generic feature of symmetric expandingshell models, it is clear that this discrepancycannot be resolvedby changesofthe inputparameters,such as N , b, H E(B-V), etc. This has been confirmedby numerousmodel cal- culations. Note also that this model allows only for a fairly weak in- trinsic Lyα emission with EW(Lyα) < 10 Å, much lower than thevalueexpectedfromsynthesismodelsforthestarformation historyderivedforcB58(cf.below). 4.2.Singleslabmodel Giventhedifficultieswithasimpleshellmodelandthefactthat the direct observational constraints on the outflow only relate to cold material in front of the UV source, one could ask the questionwhetherasinglemovingforegroundslab(withoutany backscattering source) could explain the observations. In other words this boils down to the question if the observed velocity shiftof∼255kms−1 betweenstellarandinterstellarabsorption Fig.6. Observed (black) and predicted Lyα line profile for the linescouldbe enoughto allow fora partialtransmissionofthe intrinsic Lyα line, such that it appears at velocities >∼ 250 km twoslabmodeldescribedinSect.4.3(blue).Theinputspectrum s−1? The simpleanswerobtainedfrommanysimulationsis no. isshownbythereddottedline. Moreprecisely,withtheobservedcolumndensity,bparameter, E(B-V),andFWHM(Lyα)thetransmissionofLyαlinephotons emitted at line center (V = 0) througha slab is negligible,and hencenolineisformedontopofthebroadabsorptionlinepro- file,independentlyoftheintrinsicLyαequivalentwidth.Thisis showninFig.5. Forenoughlinephotonstoescapetroughtheslabtheintrin- sic emission line must be redshifted by > 200 km s−1, which is larger than the possible redshift of ∼ 100 km s−1 found by Teplitzetal.(2000)from10restframeopticalnebularemission lines1.Inanycase,suchasolutionwouldrequirealargeintrinsic Lyαequivalentwidth(EW(Lyα)>∼40Å)inagreementwiththe resultsfoundbelow. Hence the presence and position of the Lyα peak together witharelativelylargeHIcolumndensitytestifiedbythedamped absorptionexcludesmostlikelyapureforegroundslab.Toallow fortheLyαtransmission,arecedingbackgroundscreenmustbe presentso that the Lyα photonscan gain an additionalredshift bybouncingofftheback,inasimilarfashionasinthespherical shell.Suchasituationwillbesimulatednow. 4.3.Modelsfortwomovingslabs To attempt reproducingthe observedLyα emission component wenowassumeageometrywithtwoparallelslabs,oneinfront Fig.7. Same as Fig. 6 but using high resolution spectra from andoneinthebackoftheUVandLyαsource.Whilethevelocity evolutionary synthesis models for the description of the stellar andtheotherparametersoftheapproachingforegroundslabare continuum.Theinputspectrum,arbitrarilynormalised,isshown fixedbytheobservations(cf.Table1),thevelocityV ofthe bythereddottedline. back recedingslabiskeptasafreeparameters. A good fit to the observed spectrum of cB58 is found for V ∼140kms−1,asshowninFig.6.ForthischoiceofV foregroundslab,andlowenoughtoproducethepeakattheob- back back the velocity shift of the receding slab is sufficient to allow a servedvelocityof∼300kms−1.Theemergentspectrumisbasi- non-zerotransmissionofthereflectedLyαphotonsthroughthe callyindependentontheproperties(e.g.NH)ofthebackground slab, which merely acts as a movingmirror.Thisis clear since 1 As pointed out by Pettinietal. (2002) this possible small reshift the spectrum reflected from a slab depends only on the ther- couldwellbeduetouncertainties intheabsolutewavelengthcalibra- mal width b, and only weakly so (∝ b−1/2), as e.g. shown by tion. HansenandOh(2006). DanielSchaerer,AnneVerhamme:3DLyαradiationtransfer.II.cB58andimplicationsforLyαinhigh-zstarbursts 7 Interestinglythe valueofthe secondfreeparameter,the in- Bothdetailedanalysisoftherest-UVspectraofsomeLBGs trinsicLyαequivalentwidthEW(Lyα),isrequiredtobe EW>∼ and broad band SED fitting of many LBGs yields typically 80 Å to reproduce the observed strength of the Lyα emission stellar ages of several hundred Myr and fairly constant or peak. In our two slab model the solid angle under which the slowlydecreasingstarformationrates(cf.Papovichetal.2001; receding“mirror”isseenbytheforegroundslabgovernsthere- Pentericcietal.2007;Shapleyetal.2001).Theseresultsandour quired EW, since this controls the relative amount of photons analysisof cB58 indicate fairly longstar formationtimescales, received from direct and reflected radiation at the back of the incontraste.g.tothesuggestionofFerraraandRicotti(2006). foreground slab. The lower limit on EW(Lyα) given above is cB58 is part of the quartile of z ∼ 3 LBGs showing a obtainedbyassumingasolidangleof2π.Theobservationsare Lyα dominated by absorption with faint or little Lyα emission compatiblewitharbitrarilylargervaluesofEW(Lyα). (Shapleyetal. 2003). Therefore we can expect that these ob- Insteadoftheflatcontinuumwehavealsoexaminedmodels jects behave in a similar way as cB58 and hence have much using the more realistic synthetic spectra including stellar Lyα higherintrinsicLyαequivalentwidthsandhigherintrinsicLyα absorptionpresentedabove(Sect.3.2.2)plusnebularLyαemis- luminosities. In other words observed distribution functions of sionasinputfortheradiationtransfercalculations.Theresulting EW(Lyα) and the Lyα luminosity function must be strongly Lyαprofile, shownin Fig. 7, is of similar qualityfor a slightly modifiedbyradiationtransferanddusteffects,andthefraction lowerinputLyαequivalentwidthof>∼60Å. of objects with low EW(Lyα) (L(Lyα)) must be “artificially” Fitsusingdifferentcombinationsofthecolumndensityand overestimated. extinctioncouldbeexamined,giventheuncertaintyonthedust Takingradiationtransferanddustintoaccount,shouldthere- opticaldepthdiscussedabove(cf.Sect.2).Usinge.g.lowerval- fore allow to reconcile observed Lyα strengths with relatively ues of E (B − V) and our “standard” value for N leads to a long(≫ 50Myr) “dutycycles” of LBGs. In anycase, age dif- g H narrowerLyα absorptionprofile,which wouldrequirea higher ferencesbetween∼200and400MyrfoundbyPentericcietal. column density. Quantifyingthe degeneraciesaround the solu- (2007) for LBGs with and without Lyα emission respectively, tion found here is beyond the scope of this paper. In any case, cannotbethedirectcauseoftheobservedLyαdifferences.Ifour itisquiteclearthatthemainconclusion,ahighcolumndensity scenarioalsoworksforLyαemitters(henceforthLAEs,i.e.Lyα andtheneedforalargeintrinsicLyαequivalentwidth,mustbe selectedLBGs)andthesuppresionofLyαphotonsissufficient, quiterobustwithrespecttothesedegeneracies.Thismustbethe it could explain the relatively low percentage of star-forming casesinceahighcolumndensityisrequiredtocreatethebroad galaxieswithno/littleLyαemissionandhencereducetheneed Lyα absorption (independently of the exact geometry), and in forshortstarburstepisodesinvokede.g.byMalhotraandRhoads thiscasetheescapefractionofLyαphotons“injected”closeto (2002).Thiswouldthenalsohelptoreconcilethelowernumber linecenterislowquiteindependentlyoftheexactdustcontent. densitiesof LAEs comparedto LBGs despite the agreementin Insummary,weconcludethatwiththesimplegeometrycon- theirbias(Kovacˇetal.2007), sidered here we are able to reproducefor the first time the ob- Itmay be reasonableto expectthatmostof the LBGs have served Lyα profile of cB58 with a radiation transfer modelus- quiteverysimilarminimumintrinsicLyαequivalentwidthsof∼ ing all observed constraints on the outflow plus just two free 60–80Å determinedby constantstar formationover> 50–100 parameters,Vback andEW(Lyα).One of theinterestingconclu- Myr.LargerEWsareexpectedforobjectsdominatedbyyounger sionsfromthisanalysisistoshowthattheobservedabsorption (<∼10–40Myr)populations(cf.Fig.3).LowerEWswouldthen dominatedLyαlineprofileofcB58iscompatiblewithanintrin- be expected either in post-starburst objects or due to transfer sicallyverydifferentspectrumwithastrong(EW(Lyα)>∼60Å) and dust effects. Since the outflow velocities of LBGs do not Lyαemissionline.Radiationtransfereffectsandthepresenceof varystronglybetweensubsampleswithdifferentLyαstrengths2 dust transform the intrinsic starburst spectrum to the observed we proposethatthe mainfactorleadingto thediversityofLyα one. strengthsinLBGsistheirHcolumndensityandconcomitantly theirdustcontent3. Thissuggestionis compatiblewith the observationalcorre- 5. Discussion:aunifyingscenarioforLyαemission lationsfoundbetweenE(B-V)andEW(Lyα)(e.g.Shapleyetal. inLBGs 2003; Tapkenetal. 2007) and with the differences in extinc- tion found by Pentericcietal. (2007) between two subsamples As we have shown above the observed Lyα spectrum of cB58 ofz ∼ 4LBGs. Italsobroadlyagreeswith Lyαline profilefit- is compatible with an intrinsically strong Lyα emission (with ting of LBGs with strong Lyα emission, discussed in the next EW(Lyα) > 60 Å). Hence this is compatible with the equiva- paperofthisseries(Verhammeetal.2007). lent width expected for a starburst with a constant star forma- Given observed mass-metallicity relations (e.g. Erbetal. tionrateover>50–100Myr,thetimescaleoverwhichEW(Lyα) 2006;Tremontietal.2004)itmaybequitenaturaltospeculate reachesa constantequilibriumvalueof∼ 60–80Å fora “stan- thatthedifferenceinN anddustcontentisrelatedtothegalaxy H dard” IMF and metallicities comparable to that of cB58 (see masstofirstorder.ThedataofShapleyetal.(2001)showsucha Fig.3andSchaerer2003).ThereforetheobservedLyαstrength trend.InthiscasemoremassiveLBGswouldbemoredusty,and and profileare compatiblewith the star-formationhistoriesde- henceshowlowerEW(Lyα),althoughtheycouldhaveidentical rived from detailed modeling of the rest-UV properties, who Lyαemissionpropertiesintrinsically.Suchatrendise.g.found consistentlyfoundaconstantstarformationrateandagesupto by Pentericcietal. (2007). The absenceof brightLBGs (in the agesof∼20–100Myr(cf.deMelloetal.2000;Ellingsonetal. 1996; Pettinietal. 2000). Constant star formation over such 2 The expansion velocities determined by one third of the veloc- timescales,insteadofanagedburstwhichwouldberesponsible ity shift between the interstellar absorption lines and the Lyα peak, foralowEW(Lyα),isalsophysicallymoreplausibleforobjects V ∼ 1/3∆(V ,V(Lyα)) is ∼ 160–260 km s−1 for the sample of exp ISM likecB58havinglargestarformationrates,largephysicalscales, Shapleyetal.(2003). etc. Takinginto accountLyα radiationtransferand dustallows 3 Ifthedust-to-gasratioremainsconstant,bothN andthedustcon- H ustoreconcilethesediagnostics. tentincreaseinlockstep. 8 DanielSchaerer,AnneVerhamme:3DLyαradiationtransfer.II.cB58andimplicationsforLyαinhigh-zstarbursts UV restframe) with high Lyα equivalent widths (in emission) prototypical Lyman break galaxy MS 1512–cB58 at z = 2.7. reported in many papers (e.g. Andoetal. 2004; Shapleyetal. Since this is one of, if not the best studied LBG, and since it 2003;Tapkenetal.2007) wouldalso naturallybeexplainedby is part of the quartile of LBGs showing predominantly Lyα in this fact, if the SFR correlates with mass, as observed for star absorption (cf. Shapleyetal. 2003), a detailed Lyα line profile forminggalaxiesouttoz∼2(seeDaddietal.2007;Elbazetal. analysisincludingradiationtransferanddusteffectsis ofgreat 2007;Noeskeetal.2007). interest. RelevantfordeterminingtheLyαpropertiesarehowever,the Three different geometries were explored for the material total H  column density and the relative dust to H  content. surrounding the central starburst; a spherically symmetric ex- Assumingthelattertobeconstant4,theabovesuggestionwould panding shell with velocity V , a foregroundslab movingto- exp imply larger amounts of H  in more massive LBGs, known to wards the observer, and a geometry mimicing a shell with a holdatleastinnearbygalaxies(Kennicutt1998).However,since lower velocity in the back. All available observational con- theHresponsibleforshapingLyαisfoundinoutflowsitmay straintswereused(seeTable1).Inparticulartheseinclude:the onlytraceafractionofthetotalneutralhydrogencontent.Hence velocityV ofthe foregroundmaterial, its Dopplerparameter exp the H  column density derivedfrom the Lyα fits may not be a b,columndensityN ,andtheobservedextinction.Thewidthof H goodtracerofthegasmass,andhencemaynotsimplyscalewith theintrinsicLyαemissionwastakenfromtheobservedFWHM galaxymass.Correlatingtheoutflowpropertiesmorecloselyto ofHα.Thetwofreeparameterswere:theequivalentwidthofthe those of the host galaxymayrequiredynamicalmodeling(e.g. intrinsicLyαemission,andthevelocityV ofthebackground back Blaizotandetal.2007;FerraraandRicotti2006). slab(ifapplicable). While the “scenario”proposedheretoexplainthediversity Our radiation transfer calculations have confirmed what ofLyαlinestrengthsinLBGsseemsconsistentwiththeobser- couldbeexpectedfromourearlierexpandingshellsimulations vations,itremainstobetestedmoregenerally.LBGswithstrong and from the lower-than-usualobserved velocity shift between Lyαemissionhavealsobeenstudiedwithourradiationtransfer the peak of “remnant” Lyα emission and the blue IS absorp- models for this purpose and are broadly in agreementwith the tion lines (cf. Sect. 2.1); the Lyα line profile of cB58 cannot scenarioproposedhere(Verhammeetal.2007).Alternativeex- bereproducedbyanexpandingshellwithisotropicconstantve- planationshavealsobeenproposed.ForexampleShapleyetal. locity Vexp. Considering,however,a lower shell velocity in the (2001)havefromempiricalevidencesuggestedageasthemain backallowedustoobtainexcellentfitstotheobservedLyαline differenceinLBGs,whereyoungerobjectsaremoredusty,and profile.Interestingly,theinputspectrumrequiresafairlystrong henceshowlessLyαemission.However,itisnotclearwhyolder Lyαemission,withalowerlimitofEW(Lyα)>∼60Å.Radiation LBGs would contain less dust, especially since outflows, sup- transfer and the suppresion of photons by dust are responsible posedly used to expel the dust, are ubiquitousin all LBGs and fortransformingsuchan inputspectrumintothe observedLyα since precisely these outflowsare the location wherethe emer- absorptionprofilewithasuperposedfaintemissionpeak.Inthis gent Lyα spectrum is determined. Also, why would younger waytheobservedLyαlinestrengthandprofilecanbereconciled LBGsbemoremassivethanolderonesastheirdatawouldim- withthestrongintrinsicLyαemissionexpectedfromtheapprox- ply ? FerraraandRicotti (2006) have proposedthat LBGs host imately constant star-formation history of cB58 derived from short-lived (30± 5 Myr) starburst episodes, whose outflows – earlier detailed UV spectral analysis (cf. deMelloetal. 2000; whenobservedatdifferentevolutionaryphases–wouldgiverise Pettinietal.2000). totheobservedcorrelationsbetweenISlinesandLyα.However, In fact we suggest that cB58 and most other LBGs have their conclusion may need to be revised since the “observed” intrinsically EW(Lyα) ∼ 60–80 Å or larger, and that the main windvelocityversusSFRrelation(theirFig.1)isincorrectand physicalparameterresponsibleforthe observedvariety ofLyα flatterthanassumed5.FurthermoretheagesobtainedfromSED strengthsandprofilesinLBGsisN andtheaccompanyingvari- H andspectralfitsofLBGsshowolderagesandfairlyconstantstar ation of the dust content (see Sect. 5). This explains not only formationhistories,asalreadymentionedearlier. theabsorption-dominatedobjectcB58,butalsoobservedcorre- InpaperIIIofthisseries(Verhammeetal.2007)wewillex- lationsbetweenE(B-V)andEW(Lyα)inLBGs, theabsenceof amine how our models are able to explain variouscorrelations brightLBGswithstrongLyαemission,andothercorrelations. observed among Lyα, IS lines, and other properties of LBGs Among the implications from our work are that observed (Shapleyetal.2003)andLAEs.Furtherworkwillbeneededto EW(Lyα) distributions and Lyα luminosity functions must be testthescenarioproposedhere,tounderstandmorepreciselythe correctedforradiationtransferanddusteffects.Furthermorerel- relationsbetweenLBGsandLAEss,andtounderstandthelinks atively shortduty cycles, suggestedearlier in the literature,are betweenstar-formation,hostgalaxy,andoutflowproperties. notrequiredtoexplainthevariationsobservedbetweendifferent LBGtypes.Ourproposedunifyingscenariowillbedetailedfur- therandsubjectedtoadditionaltestsinasubsequentpublication 6. Conclusions onasampeofLBGswithstrongLyαemission(Verhammeetal. 2007).Providingaclearerpictureofthephysicallinksbetween A 3D Lyα and UV continuum radiation transfer code theobservablesincludingLyαlinestrengthandprofile,andthe (Verhammeetal.2006)hasforthefirsttimebeenappliedtothe star-formation,hostgalaxy,andoutflowpropertiesandevolution ofLBGsandLAEsremainsanobjectiveforthenearfuture. 4 Combining e.g.thedependence of thedust-to-gasratioonmetal- licityO/HfromLisenfeldandFerrara(1998)withthemass-metallicity Acknowledgements. WethankMaxPettiniandSandraSavaglioforprovidingus relationatz>∼2(Erbetal.2006),givesaverysmalldependenceofthe withtheirhighresolutionUVspectraofcB58,andMiguelCervin˜oforsynthetic dust-to-gasratioongalaxianmass. high-resolutionspectra.ThisworkwassupportedbytheSwissNationalScience 5 Theyassume v = 1/2∆(V ,V(Lyα))insteadof theweaker de- Foundation. w ISM pendence v ∼ 1/3∆(V ,V(Lyα)) obtained from shell models and w ISM supportedbydirectmeasurementsofstellar,IS,andLyαvelocityshifts. References FurthermoretheirSFRvaluesdifferfromthosequotedinShapleyetal. (2003). Ando,M.,Ohta,K.,Iwata,I.,Watanabe,C.,Tamura,N.,Akiyama,M.,andAoki, DanielSchaerer,AnneVerhamme:3DLyαradiationtransfer.II.cB58andimplicationsforLyαinhigh-zstarbursts 9 K.:2004,ApJ610,635 1996,AJ111,1783 Baker,A.J.,Lutz,D.,Genzel,R.,Tacconi,L.J.,andLehnert,M.D.:2001,A&A 372,L37 Baker,A.J.,Tacconi,L.J.,Genzel,R.,Lehnert,M.D.,andLutz,D.:2004,ApJ 604,125 Bechtold,J.,Yee,H.K.C.,Elston,R.,andEllingson,E.:1997,ApJL477,L29+ Blaizot,J.andetal.:2007,A&Ainpreparation Calzetti,D.,Armus,L.,Bohlin,R.C.,Kinney,A.L.,Koornneef,J.,andStorchi- Bergmann,T.:2000,ApJ533,682 Charlot,S.andFall,S.M.:1993, ApJ415,580 Daddi, E., Dickinson, M., Morrison, G., Chary, R., Cimatti, A., Elbaz, D., Frayer,D.,Renzini,A.,Pope,A.,Alexander,D.M.,Bauer,F.E.,Giavalisco, M.,Huynh,M.,Kurk,J.,andMignoli,M.:2007,ApJ670,156 deMello,D.F.,Leitherer,C.,andHeckman,T.M.:2000, ApJ530,251 Delgado,R.M.G.,Cervin˜o,M.,Martins,L.P.,Leitherer,C.,andHauschildt, P.H.:2005, MNRAS357,945 Elbaz,D.,Daddi,E.,LeBorgne,D.,Dickinson,M.,Alexander,D.M.,Chary, R.-R.,Starck,J.-L.,Brandt,W.N.,Kitzbichler,M.,MacDonald,E.,Nonino, M.,Popesso,P.,Stern,D.,andVanzella,E.:2007,A&A468,33 Ellingson,E.,Yee,H.K.C.,Bechtold,J.,andElston,R.:1996, ApJL466,L71 Erb, D. K., Shapley, A. E., Pettini, M., Steidel, C. C., Reddy, N. A., and Adelberger,K.L.:2006,ApJ644,813 Ferrara,A.andRicotti,M.:2006, MNRAS373,571 Frayer,D.T.,Papadopoulos,P.P.,Bechtold,J.,Seaquist,E.R.,Yee,H.K.C., andScoville,N.Z.:1997,AJ113,562 Hansen,M.andOh,S.P.:2006,MNRAS367,979 Heckman,T.M.,Sembach,K.R.,Meurer,G.R.,Leitherer,C.,Calzetti,D.,and Martin,C.L.:2001,ApJ558,56 Kennicutt,Jr.,R.C.:1998,ARA&A36,189 Kovacˇ,K.,Somerville,R.S.,Rhoads,J.E.,Malhotra,S.,andWang,J.:2007, ApJ668,15 Lanz,T.andHubeny,I.:2003,ApJS146,417 Leitherer,C.:2007, In”Ly-αworkshop:lessonsfromlocaltohigh-zgalaxies” IAP,Paris,www2.iap.fr/lyman07/ Leitherer,C.,Robert,C.,andHeckman,T.M.:1995,ApJS99,173 Leitherer,C.,Schaerer,D.,Goldader,J.D.,Delgado,R.M.G.,Robert,C.,Kune, D.F.,deMello,D.F.,Devost,D.,andHeckman,T.M.:1999, ApJS123,3 Lisenfeld,U.andFerrara,A.:1998, ApJ496,145 Malhotra,S.andRhoads,J.E.:2002,ApJL565,L71 Martins,F.:2000,Master’sthesis,Universite´Paul-Sabatier,Toulouse Nakanishi,K.,Ohta,K.,Takeuchi,T.T.,Akiyama,M.,Yamada,T.,andShioya, Y.:1997,PASJ49,535 Noeske,K.G.,Weiner,B.J.,Faber,S.M.,Papovich,C.,Koo,D.C.,Somerville, R. S., Bundy, K., Conselice, C. J., Newman, J. A., Schiminovich, D., Le Floc’h,E.,Coil,A.L.,Rieke, G.H.,Lotz,J.M.,Primack, J.R.,Barmby, P.,Cooper, M. C., Davis, M., Ellis, R. S., Fazio, G. G., Guhathakurta, P., Huang,J.,Kassin,S.A.,Martin,D.C.,Phillips,A.C.,Rich,R.M.,Small, T.A.,Willmer,C.N.A.,andWilson,G.:2007,ApJL660,L43 Papovich,C.,Dickinson,M.,andFerguson,H.C.:2001, ApJ559,620 Pentericci,L.,Grazian,A.,Fontana,A.,Salimbeni,S.,Santini,P.,deSantis,C., Gallozzi,S.,andGiallongo,E.:2007,A&A471,433 Pettini, M., Rix, S. A., Steidel, C. C., Adelberger, K. L., Hunt, M. P., and Shapley,A.E.:2002,ApJ569,742 Pettini,M.,Steidel,C.C.,Adelberger,K.L.,Dickinson,M.,andGiavalisco,M.: 2000,ApJ528,96 Savaglio,S.,Panagia,N.,andPadovani,P.:2002,ApJ567,702 Sawicki,M.:2001,AJ121,2405 Schaerer,D.:2003,A&A397,527 Seaton,M.J.:1979,MNRAS187,73P Seitz,S.,Saglia,R.P.,Bender,R.,Hopp,U.,Belloni,P.,andZiegler,B.:1998, MNRAS298,945 Shapley,A.E.,Steidel,C.C.,Adelberger,K.L.,Dickinson,M.,Giavalisco,M., andPettini,M.:2001,ApJ562,95 Shapley,A.E.,Steidel,C.C.,Pettini,M.,andAdelberger,K.L.:2003,ApJ588, 65 Tapken,C.,Appenzeller,I.,Noll,S.,Richling,S.,Heidt,J.,Meinko¨hn,E.,and Mehlert,D.:2007,A&A467,63 Teplitz,H.I.,Malkan,M.A.,andMcLean,I.S.:2004,ApJ608,36 Teplitz,H.I.,McLean,I.S.,Becklin,E.E.,Figer,D.F.,Gilbert,A.M.,Graham, J.R.,Larkin,J.E.,Levenson,N.A.,andWilcox,M.K.:2000, ApJL533, L65 Tremonti, C. A., Heckman, T. M., Kauffmann, G., Brinchmann, J., Charlot, S.,White,S.D.M.,Seibert,M.,Peng,E.W.,Schlegel,D.J.,Uomoto,A., Fukugita,M.,andBrinkmann,J.:2004, ApJ613,898 Valls-Gabaud,D.:1993, ApJ419,7 Verhamme,A.,Schaerer,D.,Atek,H.,andTapken,C.:2007,A&Ainpreparation Verhamme,A.,Schaerer,D.,andMaselli,A.:2006,A&A460,397 Yee,H.K.C.,Ellingson,E.,Bechtold,J.,Carlberg,R.G.,andCuillandre,J.-C.:

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.