AmericanJournalofInfectionControl47(2019)A29−A38 ContentslistsavailableatScienceDirect American Journal of Infection Control journal homepage: www.ajicjournal.org StateoftheScienceReview New and emerging infectious diseases (Ebola, Middle Eastern respiratory syndrome coronavirus, carbapenem-resistant Enterobacteriaceae, Candida auris): Focus on environmental survival and germicide susceptibility DavidJ.WeberMD,MPHa,b,*,EmilyE.Sickbert-BennettMS,PhDa,b,HajimeKanamoriMD,PhD,MPHc, WilliamA.RutalaPhD,MPHb aDepartmentofHospitalEpidemiology,UniversityofNorthCarolinaHospitals,ChapelHill,NC,USA bDivisionofInfectiousDiseases,UniversityofNorthCarolinaSchoolofMedicine,ChapelHill,NC,USA cInfectionControlandLaboratoryDiagnostics,TohokuUniversity,Sendai,Japan KeyWords: Surface Environment Disinfection In the recent past, we have witnessed the emergence of many DEFINITIONS new infectious diseases, some of which are major public health threats. The public health threats posed by emerging diseases TheWorldHealthOrganization(WHO)states,“anemergingdis- have been well described in 2 reports from the Institute of Medi- easeisonethathasappearedinapopulationforthefirsttime,orthat cine, 1 in 1992 and 1 in 2001.1,2 Since the outbreak of Legionella mayhaveexistedpreviouslybutisrapidlyincreasinginincidenceor in 19763,4 and AIDS in 19815,6 later demonstrated to be due to geographicrange.”11TheCentersforDiseaseControlandPrevention HIVin1983,7manyemerginginfectiousdiseaseshavehadimpor- (CDC) provides the following definition of emerging infections as tant infection control implications. This review will focus on sev- “infectiousdiseaseswhoseincidenceinhumanshasincreasedinthe eral of the most important current infection prevention threats past2decadesorthreatenstoincreaseinthenearfuturehavebeen including Ebola virus, Middle Eastern respiratory syndrome defined as ‘emerging.’” These diseases, which respect no national (MERS) coronavirus (CoV), carbapenem-resistant Enterobacteria- boundaries, include: (1) new infections resulting from changes or ceae (CRE), and Candida auris with a focus on mechanisms of evolution of existing organisms; (2) known infections spreading to transmission,environmentalcontaminationandstability,andger- new geographic areas or populations; (3) previously unrecognized micide susceptibility. Germicides that will be discussed include infections appearing in areas undergoing ecologic transformation, chemical sterilantsusedtoprocesscriticalequipmentanddevices and (4) old infections reemergingas a resultof antimicrobial resis- (eg, surgical instruments, implants), high-level disinfectants that tanceinknownagentsorbreakdownsinpublichealthmeasures.12 areusedto disinfectsemicritical equipmentanddevices(ie, med- ical equipment or devices that come into contact with nonintact FACTORSINTHEEMERGENCEOFINFECTIOUSDISEASES skin or mucous membranes), low-level disinfectants used for dis- ANDPREPAREDNESS infection of surfaces or shared equipment that come into contact with intact skin (eg, blood pressure cuffs, room surfaces), and Thefactorsleadingtotheemergenceofinfectiousdiseaseshave antiseptics (ie, germicides used on skin or mucous membranes to beendescribed.13-17Importantly,alltheseauthorsnotedthatwewill reducethemicrobialflora).8,9Thisreviewupdatesapreviousarti- continuetoseenewandemerginginfectiousdiseasesfortheforesee- cle that reviewed Ebola and MERS and also reviews CRE and ablefuture.Recentarticleshaveprovidedrecommendationsforpre- Cauris.10 parednessatthehealthcarefacility,localandnationallevels.10,18-20 KEYCONSIDERATIONSINASSESSINGANDMANAGINGTHETHREAT OFEMERGINGINFECTIOUSDISEASESINHEALTHCAREFACILITIES * AddresscorrespondencetoDavidJ.Weber,MD,MPH,UniversityofNorthCarolina Assessingandmanagingthethreatofanemerginginfectiousdis- Hospitals,2163Bioinformatics,CB#7030,ChapelHill,NC,27599-7030. easerequiresanunderstandingofthebiologyofthepathogen,itsepi- E-mailaddress:[email protected](D.J.Weber). Conflictsofinterest:Nonetoreport. demiology, the clinical manifestations of infection, the methods of https://doi.org/10.1016/j.ajic.2019.03.004 0196-6553/©2019AssociationforProfessionalsinInfectionControlandEpidemiology,Inc.PublishedbyElsevierInc.Allrightsreserved. A30 D.J.Weberetal./AmericanJournalofInfectionControl47(2019)A29−A38 diagnosis, and therapies (if available).10 All health care facilities EVD is characterized by the sudden onset of fever, headache, shouldhaveahighlycommunicablediseaseplanforagentsthatare myalgias,arthralgiasofthelargejoints,andbackpain.Typically,2- transmittedbydropletoraerosols(eg,severeacuterespiratorysyn- 3 days after the initial symptoms gastrointestinal symptoms occur drome [SARS], MERS) or are transmitted by contact (eg, Ebola, includingabdominalpain,nausea,vomiting,anddiarrhea.Amacular Lassa).10Detailedinformationisbestfound,especiallyearlyinanepi- ormaculopapularskinrashmayappearondays5-7ofthedisease. demic, on the web pages of local and state health department, the Hemorrhageislesscommon,occurringinonly15%-20%ofpatients. CDC, and the WHO. For highly communicable diseases, there are 2 Terminalcasesdevelopdisseminatedintravascularcoagulation,sep- majorareasthatplaceahealthcarefacilityandthepersonnelatsub- ticshock,andmultiorgansystemfailure.Mortalityrangesfrom40%- stantial risk for disease acquisitionand transmission.10 First, inade- 90%anddepends,inpart,ontheinfectingstrain. quatescreeningprocedureswhenpatientsenterahealthcarefacility canpotentiallyallowtransmissionfromanillpatienttohealthcare Epidemiologyandtransmission personnel,otherpatients,orvisitors.Second,inadequatesuppliesof personal protective equipment (PPE) and/or training of health care Ebola is transmitted person-to-person most commonly through personnel (HCP) in proper donning and doffing procedures can directcontact(ie,nonintactskinorviamucousmembranecontact) increasetheriskofexposureforHCP. withblood,bodyfluids(eg,urine,saliva,sweat,feces,vomit,breast Akeyfocusofthisarticleistoreviewthetransmissionroutesof milk,andsemen)ofanillperson,orindirectlyviaobjectssuchasnee- newandemerginginfectiousagents.Preventingdiseaseacquisition dlesandsyringesthathavebeencontaminatedwithbodyfluidsfrom via person-to-person transmission or contact with the contami- anillperson(Table1).31Lesscommonmechanismsincludeacquisi- natedenvironmentdependsonrapidandappropriateinstitutionof tionfrominfectedfruitbatsornonhumanprimates.Sexualtransmis- isolation precautions, appropriate hand hygiene, and appropriate sionhasalsobeendescribed.Ebolaisnottransmittedviatheairorby disinfection of medical equipment, devices, and the surface envi- water. However, in Africa it has been acquired by handling bush ronment. Importantly, once the nature of the emerging disease is meat.TheincubationperiodofEbolaisgenerally8-10days(range,2- known (ie, enveloped virus, bacteria, fungi, nonenveloped virus, 21days).Person-to-persontransmissionhasonlyoccurredfromper- mycobacteria),itispossibletodeterminetheproperantisepticsand sonswithsignsorsymptomsofEVD.Diagnostictestingisachieved disinfectants,evenintheabsenceofstudiesoftheexactinfectious with the use of real time (RT) polymerase chain reaction (PCR) on agent.21Forexample,anenvelopedvirus(eg,Ebola,MERS-CoV)or blood.32 Viral RNA is usually detectable by PCR between 3 and vegetative bacterium (eg, CRE) would be inactivated by any agent 10daysaftertheonsetofsymptoms. active against nonenveloped viruses or mycobacteria. It is impor- Patients with EVD should be provided appropriate critical care tanttorememberthatalcoholhasreducedactivityagainstnonen- includingfluidandelectrolytereplacement;oxygentherapytomain- veloped viruses (eg, norovirus) and no activity against spores (eg, tainoxygenstatus;medicationstosupportbloodpressure,reducing Clostridioidesdifficile). vomitinganddiarrhea,andtomanagefeverandpain;oralorparen- teral nutrition; and treating coexisting infections (eg, malaria), if present.33-34 Although there are currently no antiviral drugs EBOLA approvedbytheUSFoodandDrugAdministration(FDA),anumber oftherapiesareunderinvestigationincludingantibody-basedthera- Historyandmicrobiology pies (eg, convalescent blood products, monoclonal antibodies), and drugsandsmallmolecules(eg,Ebolavirusgeneexpressioninhibitors, ThefirstrecognizedoutbreakofEbolaoccurredinWestAfricain and Ebola virus entry and inhibitors).33-35 A number of preventive 1976.Inthe40yearssincetheinitialoutbreaksinZaireandSudan, vaccinesarecurrentlyinclinicaltrials.33-35 >20 outbreaks have occurred.22 The largest outbreak occurred in WestAfrica(Guinea,SierraLeone,andLiberia)from2014-2016,and resulted in 28,600 cases and 11,325 deaths.23 Importantly, in the Environmentalcontaminationandsurvival 2014-2016 outbreak >850 HCP developed confirmed or probable Ebola virus disease (EVD).24 The percentage of exposed HCP who Ebolavirushasbeenisolatedbycellculturefrommultiplebody developed EVD has rangedfrom 12.5%-76%.24 The mortality of HCP fluids of infected or convalescent patients including blood, saliva, who developed Ebola has frequently exceeded 50%.24 Key concerns stool,vaginalfluid,sweat,andurinefordaysormonthsafterillness.36 forHCPincludethelowinoculatingdoserequiredfortransmission; Giventhehighvolumeofdiarrheaandvomitingandthepotentialfor high frequency of HCP infections, especially in resource poor coun- fomitetransmission,thefrequencyofenvironmentalcontamination tries;andhighmortality.Asof2019,anEVDoutbreakiscontinuing and survival of Ebola virus is of high concern. Several studies have withmoderateintensityintheDemocraticRepublicoftheCongo. assessed the frequency of contamination within the health care Overall,11peopleweretreatedforEbolaintheUnitedStatesdur- ingthe2014-2016epidemic.23Twooutof149HCPwhocaredfora patient with EVD in the United States developed EVD; both Table1 recovered.24 ModesoftransmissionofEbolavirus The microbiology, epidemiology, diagnosis, clinical features, and Common treatmentofEbolahavebeenreviewed.22,25-30Ebolaiscausedbya (cid:1)Person-to-personviadirectcontactviabodyfluids(ie,urine,saliva,sweat,feces, nonsegmented,single-strandednegativeRNAvirusofthefamilyFilo- vomit,breastmilk,andsemen) viridae. There are 5 identified Ebola virus species, 4 of which are (cid:1)Person-to-personviaindirectcontactduetoenvironmentalcontamination knowntocausediseaseinhumans:Zaire,Sudan,TaiForest(formerly (eg,needles,syringes) Coted’Ivoire),andBundibugyo.Thefifth,Restonvirus,hascauseddis- LessCommon (cid:1)Infectedfruitsbats easeinnonhumanprimates,butnotinhumans.Thenaturalreservoir (cid:1)Nonhumanprimates(eg,apes,monkeys) hostofEbolavirusremainsunknown.However,thedetectionofanti- (cid:1)SexualtransmissionviasemenfromamanwhorecoveredfromEbolavirus bodiesagainstEbolaandEbolavirusfragmentsinfruit-andinsecti- disease(viaoral,vaginal,oranalsex) vore bats are highly suggestive that these animals serve as a (cid:1)Ingestionofbushmeat (cid:1)Exposureinalaboratory reservoir. D.J.Weberetal./AmericanJournalofInfectionControl47(2019)A29−A38 A31 environment of a patient with EVD by culture37,39 or RT-PCR.37-42 MERS Although the frequency of environmental contamination was vari- able,allstudiesreportedsomeenvironmentalsampleswerepositive Historyandmicrobiology by RT-PCR. Contamination was most often demonstrated for blood staineditems,37,42andtoilet/latrine,39,40,42orobjectsincloseproxim- The history of MERS has been reviewed.61-63 MERS, a new viral itytothepatient(eg,mattress,bedrails).37,42SamplesfromPPE(eg, respiratorydiseaseofhumans,wasfirstdescribedin2012andlater gloves) have tested positive by RT-PCR for Ebola virus.37,42 Viable discoveredtobecausedbyanovelcoronavirus,MERS-CoV(lineage viruswasnotisolatedineitherofthe2studiesthatculturedenviron- 2CbCoV).TheWHOhasreportedthatbetween2012andDecember mentalsamples. 2018,therewere2,279laboratory-confirmedcasesofMERS,includ- TheenvironmentalsurvivalofEbolavirushasbeenstudiedusing ing806associateddeaths(case-fatalityrate=35.3%),reportedglob- culture-based techniques under a variety of environmental condi- ally.64 Although cases have been reported from 27 countries, the tions (eg, temperature, humidity), in various liquids, aerosols, and majorityofcases(ie,1,901)havebeenreportedfromSaudiArabia.64 surfaces.43-49Thesestudiesmaybesummarizedasfollows.First,via- TwocasesofMERShavebeenreportedintheUnitedStates,bothof bleEbolacansurviveinliquids(eg,liquidmedia,tissueculturemedia, whom were health care providers who acquired infection in Saudi water,liquidblood,plasma)fordaystoweeks.Second,viableEbola Arabia.65NotransmissionhasbeenreportedintheUnitedStates. viruscanalsosurvivedriedonavarietyofsurfaces(eg,plastic,glass, The microbiology, epidemiology, and clinical manifestations of stainlesssteel,polypropylene,nitrile,banknotes)fordaystoweeks. MERS have been reviewed.66-72 MERS-CoV, a betacoronavirus, is a Third,Ebolasurvivesinliquidsandonsurfacesforalongerduration single-stranded, positive-sense enveloped RNA virus that can cause of time at lower temperatures (eg, 4°C vs 21°C). Fourth, although anacuterespiratoryillnessinhumans.MERS-CoVisazoonoticdis- aerosol transmission has not been observed, Ebola virus has been easethatistransmittedfromanimals-to-humans.Dromedarycamels, demonstratedtosurviveinanaerosolfor>3hours.Fifth,survivalof hosts for MERS-CoV, have been implicated in direct and indirect Ebolaonporoussurfaces,suchascotton,issubstantiallylessthanon transmissiontohumans,althoughtheexactmodeoftransmissionis steelandplasticsurfaces. unknown.63,67,71Batsarelikelythemainmammalianreservoir.71 Usingmacaques,viableEbolaviruswasdemonstratedtosurvive TheclinicalspectrumofMERSinfectionrangesfromasymptom- incorpsesforatleast3daysandRNAcouldbedetectedfortissuesfor aticormildrespiratorysymptomstosevereacuterespiratorydisease theentire10-weekstudyperiod.50EbolaviruswasdetectedbyRT- and death. Typical symptoms of MERS include fever, cough, and PCR in a deceased patient’s house 14 days after a patient was bur- shortnessofbreath.Pneumoniaiscommonbutnotalwayspresent. ied.41ConsistentuseofappropriatePPEwithstrictadherencetodon- Gastrointestinal symptoms (vomiting, diarrhea) frequently occur. ninganddoffingprotocolsiscrucialtopreventingacquisitionofEVD Riskfactorsformoreseverediseaseincludeolderage,comorbidities duringpatientcare.28,51,52AkeycomponentofreducingHCPriskis (eg, chronic lung diseases, diabetes), and immunosuppression. The propertraininginPPEdonninganddoffingwithongoingtrainingto diagnosisisconfirmedbyapositiveRT-PCRassaytargetingatleast2 maintaincompetency. differentgenomicregions.Currently,therearenospecifictherapies orvaccinesavailable. Susceptibilitytogermicides Epidemiologyandtransmission Ebolavirusisnotinactivatedbydetergents.53UsingRT-PCR,Cook MERSmaybetransmittedfromperson-to-personviadirectcon- etal54demonstratedthatEbolavirusoutbreakvariantsdriedwithan tact likely due to droplet transmission (Table 2). This occurs most organicsoilloadonastainlesssteelcarrierwereinertafter5minutes commonlywhenthereisclosecontactsuchasprovidingunprotected exposuretosodiumhypochlorite(≥0.5%)andafter2.5minutesexpo- caretoaninfectedpatient.Thusfar,nosustainedcommunitytrans- sureto70%ethanol.Smitheretal55confirmedtheactivityofsodium mission has been documented. Studies of family clusters and HCP hypochlorite;104EbolavirusesasmeasuredbyPCRwereinactivated contacts of patients have reported low frequencies of transmission by0.75%sodiumhypochloritewith10minutescontacttime.Inalater (ie,1%-3%).However,increasedtransmissionhasoccurredinhealth study, Smither et al56 reported that multiple disinfectants (ie, 0.5% caresettingswithlimitedinfectioncontrolprocedures.Importantly, hypochlorite,10%hypochlorite,5%peraceticacid,70%ethanol)were MERSmaybetransmittedfromanasymptomaticsource.73However, effective against dried cell culture medium containing Ebola virus. superspreadershavealsobeenreported.74 However, only 5% peracetic acid consistently reduced Ebola virus TheepidemiologyandpreventionofMERSinhealthcaresettings titersindriedbloodtoundetectablelevels.Basedonthehierarchyof hasbeenreviewed.10,75-77Infectionpreventionstrategieshavebeen microbial susceptibility togermicidesand studiesof germicideeffi- informed by the multiple reports of outbreaks of MERS involving cacy,theCDCstatesthatanyUSEnvironmental ProtectionAgency- healthcarefacilities,78-81andbythelargeoutbreakinSouthKorea.82 (EPA)registeredhospitaldisinfectantwithalabelclaimforanonen- Importantly,duringtheseoutbreaks>20%ofcasesmayhaveoccurred veloped virus (eg, norovirus, rotavirus, adenovirus) can be used to inhealthcareproviders.Factorscontributingtointrahospitaltrans- disinfectenvironmentalsurfacesinroomsofpatientswithknownor mission include: (1) the initial symptoms of MERS are nonspecific suspectedEVD.57 In a systematic review, Kampf58 reported that 80% ethanol was highlyeffectiveagainstall21tested,envelopedviruseswithin30sec- Table2 onds.A>4-log reductionofanEbolastrainwasachievedin15sec- 10 ModesoftransmissionofMiddleEasternrespiratorysyndromecoronavirus onds using the following povidone-iodine solutions: 4%, 7.5%, 10%, and 3.2% iodine with 78% alcohol.59 Therefore, data suggests that TransmissionWellEstablished hand antisepsis for skin contamination with Ebola virus can be (cid:1)Human-to-humantransmissionviadirectcontactduetodropletspread (sourcemaybeasymptomatic) obtainedwitheitherpovidone-iodineor70%-80%alcohol(although (cid:1)Animal-to-humantransmission(dromedarycamelstohumans) properPPEshouldalwaysbeworn). TransmissionUnclear Anultraviolet-light(UV-C)boothwasdemonstratedtoinactivate (cid:1)Human-to-humantransmissionviadirectcontactduetoairbornetransmission >3-log bacteriophage MS2 (a nonenveloped virus) and could be (cid:1)Human-to-humantransmissionviaindirectcontact(ie,fomites,contaminated 10 usefulfordisinfectionofcontaminatedPPE.60 surfaces) A32 D.J.Weberetal./AmericanJournalofInfectionControl47(2019)A29−A38 leadingtoafailuretoisolatethepatient;(2)inadequatecompliance organism)anditincludesbacteriathatarenotsusceptibletocarbape- withinfectioncontrolpractices;(3)inadequatehealthcarefacilities nemsviamorethanonetypeofmechanism.”TheCDCspecifiesthat (eg, overcrowding, close proximity of patients to cases); (4) use of carbapenem resistance mechanisms include the following: (1) the aerosolgeneratingprocedures;and(5)prolongedviralshedding.83 production of carbapenemases (called carbapenemase-producing- CRE),enzymesthatbreakdowncarbapenemsandrelatedantimicro- Environmentalcontaminationandsurvival bials making them ineffective. This includes enzymes like Klebsiella pneumoniaecarbapenemase;and(2)thecombinationofmechanisms Extensiveenvironmentalcontaminationhasbeendocumentedby other than carbapenemase production (called non-carbapenemase- bothcultureandRT-PCRinclinicalareashousingMERSpatients.84,85 producing-CRE),mostcommonlytheproductionofb-lactamases(eg, Positive sites have included patient room surfaces (eg, bed sheets, AmpC) in combination with alterations in the bacteria’s cell mem- bedrails,intravenousfluidhangers),anteroomsurfaces,medicaldevi- brane(eg,porinmutations).TheCDChasreportedthefollowingtypes ces(eg,portablex-raymachines,thermometers),andair-ventilating of CRE in the United States: NDM, OXA48, VIM, IMP, and Klebsiella equipment.Touchablesurfaceshavebeenfoundtobecontaminated pneumoniaecarbapenemase.93 through respiratory secretions from clinically fully recovered patients.84 MERS-CoV has also been detected in air samples in the Epidemiologyandtransmission vicinityofpatients.85However,1largeoutbreakevaluationfailedto demonstrateanytransmissionviathepotentiallycontaminatedenvi- The biology, epidemiology, and management of CRE have been ronmentwithoutdirectcontactwiththeindexcase.86 reviewed.94-97Recentarticleshavereviewednewerantibioticthera- MERS-CoV has been shown to be recoverable after 48 hours on pies for CRE.98,99 Follow-up of hospitalized CRE colonized patients steelorplasticwashers(20°Cand40%relativehumidity).87Further, demonstrated that the mean duration of colonic carriage was >1 no decrease in stability was observed during aerosolization experi- year.100However,HCParerarely,ifever,colonized.Astudyoffecal ments.MultiplestudiesonCoVsotherthanMERS-CoVhavedemon- carriageamongHCPinahospitalendemicforCRErevealednoneof strated that these viruses can remain viable for days to weeks on 177evaluatedhealthcareproviderswerecolonizedwithCRE.101 environmental surfaces.88,89 Survival is enhanced at low tempera- ThemainreservoirleadingtohumanCREinfectionsisthehuman tures(ie,4°Cvs20°C).89 gut.Person-to-persontransmissionviadirectandindirectcontactare the most common mechanisms of transmission (Table 3). Multiple Susceptibilitytogermicides hospital outbreaks have resulted from contaminated endoscopes, especially duodenoscopes.102-104 These outbreaks have occurred AsMERS-CoVisanenvelopedvirus,itislikelysusceptibletoEPA- despiteallstepsincleaningandhigh-leveldisinfectionofendoscopes registeredhospitaldisinfectantsandFDA-approvedantiseptics.Stud- compliant with current guidelines. Strategies to provide pathogen- iesoninactivationofsurrogatesforSARS-CoV(mousehepatitisvirus freeendoscopeshavebeenreviewed.104Watersourcesinthehospital and transmissible gastroenteritisvirus) demonstratedthe following (eg,faucets,washbasins,showers,toilets),especiallysinkshavebeen inactivationafter1-minutecontacttime:(1)fortransmissiblegastro- demonstratedtobeareservoirofCRE.105-107Strategiesandsuccess enteritisvirus,therewasalog reductionfactorof3.2for70%etha- 10 rates of interventions to eliminate CRE from water reservoirs have nol, 2.0 for phenolic, 2.3 for ortho-phthalaldehyde, 0.35 for 1:100 been reviewed.105,106 Companion animals have been demonstrated hypochlorite,4.0for62%ethanol,and3.5for71%ethanol;and(2)for tooccasionallybecolonizedwithCRE.108Thisisofrelevancetohealth mousehepatitisvirus,log reductionfactorswere3.9for70%etha- 10 care facilities considering that US health care facilities must permit nol, 1.3 for phenolic, 1.7 for ortho-phthalaldehyde, 0.62 for 1:100 personswith“service”animalsinthefacilityandmanyhospitalsper- hypochlorite,2.7for62%ethanol,and2.0for71%ethanol.90 mitanimal-assistedtherapy. GuidancefromtheCDCformanagingpatientswithMERSstates, StrategiestomanageCREcolonized/infectedpatientsandtocon- “HCPshouldperformhandhygienebeforeandafterallpatientcon- trol outbreaks in health care facilities have been reviewed.109-111 tact,contactwithpotentiallyinfectiousmaterial,andbeforeputting BoththeWHO112andtheCDC113providedetailedguidanceonmeth- on and upon removal of PPE, including gloves. Hand hygiene in odstocontrolCRE.Theuseofbundlestocontrolhorizontaltransmis- healthcare settings can be performed by washing with soap and sionofCREinhealthcarefacilitieshavebeenreviewed.114 water or using alcohol-based hand rubs. If hands are visibly soiled, usesoapandwater,notalcohol-basedhandrubs.”91TheCDCfurther states “Standard cleaning and disinfection procedures (eg, using Environmentalcontaminationandsurvival cleaners and water to pre-clean surfaces prior to applying an EPA- registereddisinfectant tofrequentlytouchedsurfacesorobjectsfor CREhasbeenisolatedfromtheenvironmentinthevicinityofhos- appropriate contact times as indicated on the product’s label) are pitalized colonized/infected patients including pillows, infusion appropriate for MERS-CoV in healthcare settings, including those pumps, bedside tables, and toilet areas.115-117 The frequency of patient-care areas in which aerosol-generating procedures are per- recoveryhasvariedamongstudies,butobjectsclosertothepatient formed.IftherearenoavailableEPA-registeredproductsthathavea aremorelikelycontaminatedwith5%-15%ofsamplesfrombedrails labelclaimforMERS-CoV,productswithlabelclaimsagainsthuman and over bed tables yielding CRE.115,116 Fecal continence is an coronavirusesshouldbeusedaccordingtolabelinstructions.”91 Table3 CRE Modesoftransmissionandreservoirsofcarbapenem-resistantEnterobacteriaceae Definitionandmicrobiology (cid:1)Patient-to-patientviadirectcontact (cid:1)Patient-to-patientviaindirectcontact ^Transienthandcarriagebyhealthcarepersonnel TheCDCdefinesCREforsurveillancepurposesasEnterobacteria- ^Contaminatedsharedmedicaldevices ceae that are “resistant to imipenem, meropenem, doripenem, or ^Contaminatedendoscopes(especiallyduodenoscopes) ertapenemORdocumentationthattheisolatepossessacarbapene- (cid:1)Healthcarefacilityreservoirtopatient mase.”92TheCDCfurtherelaboratesthatCREis“aphenotypicdefini- ^Contaminatedsinks ^Contaminatedendoscopes(especiallyduodenoscopes) tion (ie, based on the antibiotic susceptibility pattern of the D.J.Weberetal./AmericanJournalofInfectionControl47(2019)A29−A38 A33 independentpredictorofbeinganonspreaderofCRE.117CREhasalso orPCRassaysspecificforCauris.Multiplevirulencefactorshavebeen beenisolatedintheenvironmentoflong-termcarefacilities.118 described.133 Havilletal119reportedsurvivalofCREonstainlesssteeldiscsfor Themostcommonclinicalsyndromesreportedhavebeenblood- >10 days. However, Weber et al120 reported that 3 species of CRE stream infections (candidemia), wound infections, and ear infec- (Klebsiella, Enterobacter, and Escherichia coli) survived poorly (>85% tions.129Otherclinicalsyndromesreportedhaveincludedinfections die-offin24hours).Likelythisdifferencewasowingtothefactthat of the respiratory tract, central nervous system, urogenital system, Havill et al119 used a high inoculum (ie, 5-7-log ) whereas Weber intra-abdominal, skin and soft tissues, and bone.127 Patients with C 10 used a low inoculum (ie, »2-log ), which is similar to the actual auris infection have almost always presented with underlying ill- 10 amountofCREfoundonsurfacesinthevicinityofpatientscolonized/ nessesorcomorbiditiessuchasdiabetes,chronicoracuterenalfail- infectedwithCRE. ure, pulmonary disease, immunosuppressive conditions, tumor or malignancies,liverdisease,orsolidorgantransplants.137Riskfactors Susceptibilitytogermicides forinfectionhaveusuallyincludedcareinanintensivecareunit,the presenceofindwellingcentralvenouscatheters,arteriallines,Foley Withrarepossibleexceptions,antibiotic-resistantbacteriainclud- catheters, invasive surgical procedures, mechanical ventilation, and ingmultidrug-resistantorganismsdonothavereducedsusceptibility priororcontinuedexposuretobroad-spectrumantibioticsandanti- toEPA-registeredgermicides.121Evenwhenreducedsusceptibilityto fungalagents.132,133,136Mortalityrates>30%havebeenreportedfor a germicide(eg, quaternaryammonium compounds by methicillin- patientswithinvasiveinfections.127,132,133 resistantStaphylococcusaureus[MRSA])hasbeendemonstrated,the Atthepresenttime,therearenoclinicalbreakpointsforCauris. pathogenhasnotdemonstratedresistancetotheuseconcentration Highminimuminhibitoryconcentrationshavebeenreportedtoflu- ofthegermicide.121Kanamorietal122assessedtheefficacyof21ger- conazoleandothertriazoleantifungalssuchasvoriconazole,itraco- micidesagainstmultiple CREEnterobacteriaceaestrainsat1-minute nazole, and isavaconazole.127,132 Variability in susceptibility of contact time and in the presence of 5% fetal calf serum. Four high- isolateshasalsobeenreportedtoamphotericin.127 level disinfectants achieved >4-log kill for all tested strains, but 10 0.55% ortho-phthalaldehyde achieved a 2.4-4.8-log kill depending ontheCREstraintested.Eightdisinfectantsallach1i0eveda >4-log Epidemiologyandtransmission 10 kill. Among the 9 antiseptics tested (70% ethanol, 10% povidone- Caurishasbeenassociatedwithmultiplenosocomialoutbreaks, iodine, 2% and 4% chlorhexidine gluconate, 70% isopropyl alcohol, and 1% chloroxylenol) achieved ≥2.9-log kill against all test CRE especiallyintheintensivecaresetting.139-144AnevaluationofCauris 10 in New York City health care facilities demonstrated epidemiologic strains. Based on this study, EPA-registered disinfectants and FDA- links betweencasesin multiple hospitalsand long-termcare facili- approved antiseptics can be used with assurance for equipment/ ties.138 Importantly, colonization with C auris has been detected at instrument high-level disinfection, surface disinfection, and hand multiplebodysitesincludingnares,groin,axilla,andrectum.127Pro- antisepsis. A UV-C device for room disinfection has been shown to inactivate>5-log CREreductionindirectlineofsightand>4-log longed colonization has been reported with C auris detected >3 10 10 months after initial isolation and despite multiple negative screens CRE reduction in indirect line of sight when used at the recom- andantifungaltherapy.136,138 mended cycle time (ie, 5-10 minutes).123 The effectiveness of UV-C forroomdisinfectionwasconfirmedinanotherstudy.124 MultiplemechanismsfortransmissionofCaurisarelikelybased onoutbreakinvestigations(Table4).Riskfactorsforcolonizationor CAURIS infectionhavebeenreportedtoincludecontactwithpatientsknown toharborCauris.138,145SharinganenvironmentwithaCaurispatient or sequential bed occupancy that was previously occupied by a Historyandmicrobiology patientwithCaurishasalsobeendescribedasarisk.145Importantly, CaurisisanovelCandidaspeciesthatwasfirstreportedfollowing patients occupying a room that previously housed a patient with C auris have acquired C auris even though the room had been itsisolationfromtheearcanalofapatientinJapanin2009.125Since decontaminatedpriortooccupancy.145Anoutbreakevaluationfound then,Caurishasbeenreportedfrommultiplecountriesthroughout thatuseofreusableprobesfortemperaturemonitoringwasassoci- theworld.126-128TheCDCreportedthatasofJanuary22,2019,551 atedwithasignificantlyincreasedriskofCauriscolonizationwithan casesofCaurishadbeenreportedfrom12states,withsomestates (ie,NewYork,Illinois,NewJersey)reporting>100cases.129Caurisis odds ratio of 6.80.142 Transmission of C auris via transplantation of lungfromapatientwithrespiratorytractcolonizationorinfectionto anemergingpathogenthatpresentsaseriousglobalhealththreatfor thelungtransplantrecipienthasbeenreported.146 the following reasons: (1) it causes serious infections with a high mortality;(2)itisoftendifficulttoidentifywithstandardlaboratory Caurishasoccasionallybeenisolatedfromhealthcareproviders. methodsandcanbemisidentifiedinlaboratoriesunlessspecialized Biswaletal144reportedthatCauriswasdetectedonthehandsof4 technologyisused;(3)itisoftenmultidrugresistant(intrinsicorrap- idly inducible antifungal resistance); (4) it is becoming more wide- Table4 spread geographically; (5) increasing prevalence; (6) biofilm ModesoftransmissionofCandidaauris formation;(7)persistenceintheenvironment;and(8)ithascaused Common multipleoutbreaksinhealthcarefacilities.128,130,131 (cid:1)Patient-to-patientviadirectcontact The microbiology, clinical syndromes, diagnosis, and treatment of (cid:1)Patient-to-patientviaindirectcontactduetoenvironmentalcontamination Caurishavebeenreviewed.127,132-136Geneticanalyseshaveshownthat (ie,sharingsamehospitalroom,admissiontoahospitalroompreviously CaurisismostcloselyrelatedtoClusitaniaeandChaemulonii,although occupiedbyapatientwithCauris) ithasastrikingdivergencefromsomeotherCandidaspecies.127Cauris LessCommon (cid:1)Patient-to-patientviaindirectcontact:sharedequipmentduetoinadequate isoftenmisidentifiedinconventionaldiagnosticlaboratoriesusingbio- disinfection(eg,thermometer) chemicaltyping.127Caurismostcommonlyhasbeenmisidentifiedas (cid:1)Patient-to-patientviadirectcontact:donor-derivedtransmission Chaemulonii,butalsoasCfamata,Csake,Rhodotorulaglutinis,Rmucila- (eg,lungtransplantation) ginosa, and Saccharomyces boulardii.127,137,138 Currently, accurate (cid:1)Person-to-personviaindirectcontactduetotransientlycolonizedhealth identificationofCauriscanbeaccomplishedbytheuseofMALDI-TOF careprovider’shands A34 D.J.Weberetal./AmericanJournalofInfectionControl47(2019)A29−A38 health care providers(2.8%), although this waslikely due to inade- inactivationforEcoli.Importantly,theseinvitroexperimentswere quate hand hygiene rather than long-term colonization. Schelenz doneunderchallengingconditions(ie,5%fetalcalfserumand1-min- et al,139 while conducting an outbreak investigation in the United uteexposuretime).Itislikelythatallhigh-leveldisinfectantsthatare Kingdom,screened(nose,axilla,groin,andthroat)>250healthcare currently approved by the FDA when used appropriately (ie, after providers for colonization and found only a single person (nurse) appropriatecleaningandthemanufacturer’srecommendedconcen- transientlycolonizedwithCauris. trationandduration)areeffectiveagainstC.auris. Theactivityoflow-leveldisinfectantshasbeenevaluatedbyseveral Environmentalcontaminationandsurvival investigations.152,153 Direct comparison between the studies is impededbytheuseofdifferenttestconditionsincludingtestmethod, Widespreadcontaminationofthesurfaceenvironmenthasbeen durationofexposure,andpresenceorabsenceofproteinssuchasfetal reported by multiple investigators.138 Importantly, contaminated calfserum.Theactivityoflow-leveldisinfectantshasbeenmostcom- siteshaveincludedsitesinthepatient’sroomsuchassurfaces,toilets, prehensivelyinvestigatedusingthedisc-basedquantitativecarriertest ventilator/respiratory equipment, and sites outside of the patient’s and is summarized in Table 5.152,153 Importantly, both investigators room such as computer workstations, thermometers, glucometers, added 5% fetal calf serum to assess germicidal efficacy under more housekeeping carts, dialysis equipment, ultrasound equipment, and stringentconditions(ie,presenceofproteins).Importantly,quaternary vital sign machines.138 The environmental survival of C auris has ammoniumdisinfectantsaloneweresignificantlylesseffectiveagainst beenstudied.144,147,148Inlaboratorytests,CaurisandotherCandida C auris than other products.152,153 Some investigators reported that spp weredemonstrated to persistfor 7 dayson moistordry (steel concentrations of sodium hypochlorite ≥1,000 ppm were effective in disks) surfaces.147 Survival on dry linen for up to 7 days has been killing >4-log10 C auris in 3-5 minutes,150,151 whereas others153 demonstrated.148Cauriscellshavebeendemonstratedtoremainvia- reported sodium hypochlorite »1,200 ppm at an exposure time of bleonplasticsurfacesforatleast4weeks,or2weeksaftertheywere 1minuteresultedinonlya1.6-log10reductioninCauris.Itisunclear nolongerculturable.148 whetherthelongerexposuretimesandlackofproteinloadledtothe high reduction rates reported by Abdolrasouli et al150 and Moore Susceptibilitytogermicides et al.151 However,all investigatorshavereported that a 1:10 dilution of 5.25% sodium hypochlorite is effective in killing >4-log C auris 10 Severalreviewshaveincludedadiscussionofthesusceptibilityof evenwithshortexposuretimes(ie,1minute)andinthepresenceof Cauristogermicides.149ThesusceptibilityofCauristogermicides(ie, protein.152,153 Based on current studies, the CDC states “Quaternary antisepticsanddisinfectants)hasbeenstudiedbyseveralinvestiga- ammoniumcompounds(QACs)thatareroutinelyusedfordisinfection tors.139,144,150-153 Rutala et al153 assessed the germicidal activity of may not be effective against C auris....Until further information is high-leveldisinfectantsand/orchemicalsterilantsandreportedthat availableforCauris,CDCrecommendsuseofanEnvironmentalProtec- allagents(ie,0.20%peraceticacid,2.4%glutaraldehyde,0.65%hydro- tion Agency (EPA)-registered hospital-grade disinfectant effective genperoxideplus0.14%peroxyaceticacid,2%acceleratedhydrogen against Clostridium difficile spores (List K)”.154 CDC further states that peroxide)achieveda≥4.1-log reductionofCauriswiththeexcep- whentheuseofproductsonListKisnotfeasible,publishedresearch 10 tion of 0.55% ortho- phthalaldehyde that achieved only a 2.3-log has found that the following products led to a substantial reduction 10 Table5 SusceptibilityofCandidaauristolow-leveldisinfectantsusedforsurfacedisinfection* HighlyEffective(≥3.8-log10 ModeratelyEffective(2.0-3.8-log10 LessEffective(<2.0-log10Reduction) Reduction)[ET,minutes] Reduction)[ET,minutes] [ET,minutes] (cid:1)70%isopropylalcohol[1] (cid:1)>5%aceticacid(pH2.0) (cid:1)1:50dilution,5.25%sodium (cid:1)1:10dilution,5.25%sodium (whitedistilledvinegar)[3] hypochlorite hypochlorite(»6,100-6,700ppm)[1] (»1,245ppm)[1] (cid:1)1:128dilution,9.09%o-phenylphenol, (cid:1)1:256dilution,21.7%QACk[1] 7.66%p-tertiaryamylphenol[1] (cid:1)QAC{[1] (cid:1)1.4%hydrogenperoxide[1] (cid:1)QAC#[1] (cid:1)58%ethanol,0.1%QACy[1] (cid:1)55%isopropylalcohol,0.5%QACz[1] (cid:1)28.7%isopropylalcohol,27.3%ethyl alcohol,0.61%QACx[1] (cid:1)0.65%sodiumhypochlorite[1] (cid:1)0.39%sodiumhypochlorite[1] (cid:1)0.825%sodiumhypochlorite[1] (cid:1)Peraceticacid1200ppm,hydrogen peroxide<1%,aceticacid[3] (cid:1)1.4%hydrogenperoxide[1] (cid:1)0.5%hydrogenperoxide[10] (cid:1)29.4%ethylalcohol[0.5] NOTE.SusceptibilityofCandidaauristolow-leveldisinfectantsusedforsurfacedisinfection.152,153 ET,exposuretime;ppm,partspermillion;QAC,quaternaryammoniumcompound. *Disc-basedquantitativecarriertest,1minuteexposuretimeunlessotherwisenoted,5%fetalcalfserum. yQAC:alkyl(C1450%,C1240%,C1610%)dimethylbenzylammoniumsaccharinate0.1%. zQAC:n-alkyl(C1268%,C1432%)dimethylethylbenzylammoniumchlorides0.25%;n-alkyl(C1460%,C1630%,C125%,C185%)dimethylbenzylammoniumchlorides0.25%. xQAC:didecyldimethylammoniumchloride0.61%. kQAC:octyldecyldimethylammoniumchloride6.51%;dioctyldimethylammoniumchloride2.604%;didecyldimethylammoniumchloride3.906%;alkyl(50%C14,40%C12,10% C16)dimethylbenzylammoniumchloride8.68%. {Alkyldimethylbenzylammoniumchlorides. #Didecyldimethylammoniumchloride,n-alkyldimethylbenzylammoniumchloride. D.J.Weberetal./AmericanJournalofInfectionControl47(2019)A29−A38 A35 Table6 antisepticsmightreducetheburdenofCaurisontheskin,andthere- SusceptibilityofCandidaauristoantisepticsinselectedstudies* fore provide a potentially valuable tool for infection prevention, remainsunclear.TheCDCstatesthatwhencaringforpatientswithC Disinfectant Log10Reduction(minutes) Reference auris “healthcare personnel should follow standard hand hygiene Alcohol practices,whichincludealcohol-basedhandsanitizeruseor,ifhands 70%alcohol 6.0(NS) Biswaletal,2017144y 70%ethanol 4.0(1)z Rutalaetal,2019153 are visibly soiled, washing with soap and water. Wearing gloves is 70%isopropanol 3.8(1)z Rutalaetal,2019153 notasubstituteforhandhygiene.”154 CHG 0.5% 6.0(NS) Biswaletal,2017144 2.0% 1.6(1)z Rutalaetal,2019153 References 4.0% 1.9(1)z Rutalaetal,2019153 CHG/alcohol 2%CHG/61%ethanol >5.06(2) Mooreetal,2017151 1. Institute ofMedicine. Emerging infections: microbialthreats tohealthin the 1%CHG/61%ethanol 2.0(1)z Rutalaetal,2019153 UnitedStates.Washington(DC):NationalAcademyPress;1992. 2. Institute of Medicine. Microbial threats to health: emergence, detection, and Povidone-Iodine response.Washington(DC):NationalAcademyPress;2001. 10% >4.56(2) Mooreetal,2017151 3. FraserDW,TsaiTR,OrensteinW,etal.Legionnaires’disease:descriptionofan 10% 2.5(1)z Rutalaetal,2019153 epidemicofpneumonia.NewEnglJMed1977;297:1189-97. Triclosan 4. McDadeJE,ShepardCC,FraserDW,TsaiTR,RedusMA,DowdleWR.Legionnaires’ 0.5% 1.4(1)z Rutalaetal,2019153 disease:isolationofabacteriumanddemonstrationofitsroleinotherrespira- Hydrogenperoxide torydisease.NewEnglJMed1977;297:1197-203. 3.0% 1.4(1)z Rutalaetal,2019153 5. CentersforDiseaseControlandPrevention.Pneumonia−LosAngeles.MMWR Chloroxylenol 1981;30:1-3. 1% 2.8(1)z Rutalaetal,2019153 6. Centers for Disease Control and Prevention. Pneumocystis carinii pneumonia amongpersonswithhemophiliaA.MMWR1982;31:365-7. CHG,chlorhexidinegluconate;NS,notstated. 7. Barre-SinoussiF,ChermannJC,ReyF,etal.IsolationofaT-lymphotropicretrovi- *Alltestswereconductedinvitrounlessotherwisenoted. rusfromapatientatriskforacquiredimmunedeficiencysyndrome(AIDS).Sci- yHumanchallengestudy. ence1983;220:868-71. zTestconditionsincludedadditionof5%fetalcalfserum. 8. RutalaWA,WeberDJ.Disinfectionandsterilizationinhealthcarefacilities:an overviewandcurrentissues.InfectDisClinNorthAm2016;30:609-37. 9. RutalaWA,WeberDJ.Disinfection,sterilization,andantisepsis:anoverview.Am JInfectControl2016;44(5Suppl):e1-6. 10. WeberDJ,RutalaWA,FischerWA,KanamoriH,Sickbert-BennettEE.Emerging (>4-log ) of C auris in laboratory testing: Oxivir TB (Diversey Inc., infectious diseases: focus on infection control issues for novel coronaviruses 10 (severeacuterespiratorysyndrome-CoVandMiddleEastrespiratorysyndrome- Charlotte,NC),CloroxHealthcareHydrogenPeroxideCleanerDisinfec- CoV),hemorrhagicfeverviruses(LassaandEbola),andhighlypathogenicavian tant(Clorox,Oakland,CA),PrimeSani-ClothWipe(PDI,Inc.,Woodcliff, influenzaviruses,A(H5N1)andA(H7N9).AmJInfectControl2016;44(5Suppl): NJ),andSuperSani-ClothWipe(PDI,Inc.,Woodcliff,NJ).154 e91-100. 11. World Health Organization. Emerging diseases. Available from: http://www. RoomdisinfectionwithaUV-Cdevicehasbeeninvestigatedforits searo.who.int/topics/emerging_diseases/en/.AccessedFebruary7,2019. ability to inactivate Candida spp, MRSA, and Clos difficile.155 C auris 12. CentersforDiseaseControlandEpidemiology.Whatare“emerging”infectious demonstrated substantially less susceptibility to UV-C than MRSA diseases? Available from: https://wwwnc.cdc.gov/eid/page/background-goals. AccessedFebruary7,2019. and less susceptibility than C albicans or C glabrata at 10 minutes 13. WilsonME.Travelandtheemergenceofinfectiousdiseases.EmergInfectDis exposuretime.155ReductionsinCaurisandClosdifficileweresimilar 1995;1:39-46. at10minutes.155Withregardtoroomdisinfectiondevices,theCDC 14. Morse SS. Factors in the emergence of infectious diseases. Emerg Infect Dis statesthat“dataonhands-freedisinfectionmethods,likegermicidal 1995;1:7-14. 15. PikeBL,SaylorsKE,FairJN,etal.Theoriginandpreventionofepidemics.Clin UV irradiation, are limited, and these methods may require cycle InfectDis2010;50:1636-40. timessimilartothoseusedtoinactivatebacterialspores(eg,Clostrid- 16. vanDoornHR.Emerginginfectiousdiseases.Medicine(Abingdon)2014;42:60-3. iumdifficile)whenusedforCauris.”154Werecommendthatdailyand 17. RosenthalSR,OstfeldRS,McGarveyST,LurieMN,SmithKF.Redefiningdisease emergencetoimproveprioritizationandmacro-ecologicalanalyses.OneHealth terminalroomcleaning/disinfectionbedonewithanagentdemon- 2015;1:17-23. stratedtobeeffectiveagainstCauris.TheuseofaUV-Cdeviceforter- 18. BrookesVJ,Herna(cid:2)ndez-JoverM,BlackPF,WardMP.Preparednessforemerging minaldisinfectionshouldbeconsideredasasupplementalmethod. infectious diseases: pathways from anticipation to action. Epidemiol Infect 2015;143:2043-58. TheactivityofantisepticsagainstCaurishasbeenstudiedbysev- 19. GrahamBS,SullivanNJ.Emergingviraldiseasesfromavaccinologyperspective: eralinvestigators(Table6).Thereisgoodagreementthat70%alcohol preparingforthenextpandemic.NatImmunol2018;19:20-8. (both isopropyl and ethyl) is effective against C auris at 1 minute. 20. KadingRC,GolnarAJ,HamerSA,HamerGL.Advancedsurveillanceandprepared- nesstomeetaneweraofinvasivevectorsandemergingvector-bornediseases. Importantly,theactivityofalcoholhasnotbeenstudiedatthetimes PLoSNeglTropDis2018;12:e0006761. usedbymosthealthcareproviderswhenperforminghandhygiene 21. RutalaWA,WeberDJ.Registrationofdisinfectantsbasedonrelativemicrobioci- (ie, 10-15 seconds). Unfortunately, studies on the activity of other dalactivity.InfectControlHospEpidemiol2004;25:333-41. 22. ShearsP,O’DempseyTJD.EbolavirusdiseaseinAfrica:epidemiologyandnosoco- importantantisepticssuchaschlorhexidinegluconateandpovidone- mialtransmission.JHospInfect2015;90:1-9. iodine have produced variable results (Table 6). This variability is 23. CentersforDiseaseControlandPrevention.2014-2016EbolaoutbreakinWest likelyexplainedbydifferencesinthetestconditionsincludinginvitro Africa. Available from: https://www.cdc.gov/vhf/ebola/history/2014-2016-out- break/index.html.AccessedFebruary7,2019. versushumanchallenge,durationofexposure,andpresenceofapro- 24. SelvarajSA,LeeKE,HarrellM,IvanovI,AllegranziB.Infectionratesandriskfac- teinload(eg,fetalcalfserum).Itappearsthat10%povidone-iodine torsforinfectionamonghealthworkersduringEbolaandMarburgvirusout- would provide adequate skin antisepsis if applied for ≥1 minute. breaks:asystematicreview.JInfectDis2018;218(Suppl_5):679-89. UsingapanelofCaurisclinicalisolates,Keanetal,156screenedthem 25. KoenigKL,MajesticC,BurnsMJ.Ebolavirusdisease:essentialpublichealthprin- ciplesforclinicians.WestJEmergMed2014;15:728-31. for their planktonic and sessile susceptibilities to skin disinfection 26. LuiWB,LiZX,DuY,CaoGW.Ebolavirusdisease:fromepidemiologytoprophy- challenge using povidone-iodine, chlorhexidine gluconate, and laxis.MilMed2015;2:7. hydrogenperoxide.Caurisbiofilmsdisplayedincreasedtoleranceto 27. MurrayMJ.Ebolavirusdisease:areviewofitspastandpresent.Anesth-Analg 2015;121:798-809. antisepsiscomparedwithplanktoniccells.Analysisusingacomplex 28. Fischer WA, Uyeki TM, Tauxe RV. Ebola virus disease: whatclinicians in the biofilmmodeldemonstratedreducedsusceptibilityagainstclinically UnitedStatesneedtoknow.AmJInfectControl2015;43:788-93. relevant concentrations of chlorhexidine gluconate (0.05%) and 29. ToKK,ChanJF,TsangAK,ChengVC,YuenKY.Ebolavirusdisease:ahighlyfatal infectiousdiseasereemerginginWestAfrica.MicrobesInfect2015;17:84-97. hydrogen peroxide (3%), with eradication achieved only with povi- 30. KhalafallahMT,AboshadyOA,MoawedSA,RamadanMS.Ebolavirusdisease: done-iodine (10%). As noted by Forsberg et al,136 whether topical essentialclinicalknowledge.AvicennaJMed2017;7:96-102. A36 D.J.Weberetal./AmericanJournalofInfectionControl47(2019)A29−A38 31. CentersforDiseaseControlandPrevention.Ebolatransmission.Availablefrom: personalprotectiveequipmentpriortoremoval.InfectControlHospEpidemiol https://www.cdc.gov/vhf/ebola/transmission/index.html. Accessed February 7, 2015;36:1226-8. 2019. 61. Rabaan AA. Middle East respiratory syndrome coronavirus: five years later. 32. Centers for Disease Control and Prevention. Ebola treatment. Available from: ExpertRevRespirMed2017;11:901-12. https://www.cdc.gov/vhf/ebola/treatment/index.html. Accessed February 7, 62. WidagdoW,OkbaNMA,StalinRajV,HaagmansBL.MERS-coronavirus:fromdis- 2019. coverytointervention.OneHealth2016;3:11-6. 33. MalvyD,McElroyAK,deClerckH,Gu€ntherS,vanGriensvenJ.Ebolavirusdisease. 63. Al-OsailAM,Al-WazzahMJ.ThehistoryandepidemiologyofMiddleEastrespira- Lancet2019;393:936-48. torysyndromecoronavirus.MultidiscipRespirMed2017;12:20. 34. TradMA,NaughtonW,YeungA,MazlinL,O’SullivanM,GilroyN,etal.Ebola 64. World Health Organization. Middle East respiratory syndrome coronavirus virusdisease:anupdateoncurrentpreventionandmanagementstrategies.J (MERS-CoV). Available from: https://www.who.int/emergencies/mers-cov/en/. ClinVirol2017;86:5-13. AccessedFebruary7,2019. 35. DhamaK,KarthikK,KhandiaR,etal.Advancesindesigninganddevelopingvac- 65. CentersforDisease Controland Prevention.MERSintheUS.Availablefrom: cines,drugs,andtherapiestocounterEbolavirus.FrontImmunol2018;9:1803. https://www.cdc.gov/coronavirus/mers/us.html.AccessedFebruary7,2019. 36. VetterP,FischerWA2nd,SchiblerM,JacobsM,BauschDG,KaiserL.Ebolavirus 66. MackayIM,ArdenKE.MERScoronavirus:diagnostics,epidemiologyandtrans- sheddingandtransmission:reviewofcurrentevidence.JInfectDis2016;214 mission.VirolJ2015;12:222. (Suppl3):177-84. 67. ZumlaA,HuiDS,PerlmanS.MiddleEastrespiratorysyndrome.Lancet2015;386:995- 37. BauschDG,TownerJS,DowellSF,KaducuF,LukwiyaM,SanchezA,etal.Assess- 1007. mentoftheriskofEbolavirustransmissionfrombodilyfluidsandfomites.J 68. ArabiYM,BalkhyHH,HaydenFG,etal.MiddleEastrespiratorysyndrome.NEngl InfectDis2007;196(Suppl2):142-7. JMed2017;376,584-94. 38. PuroV,FuscoFM,PetrecchiaA,etal.SamplingsurfacesforEbolaviruspersis- 69. HuiDS.Epidemicandemergingcoronaviruses(severeacuterespiratorysyn- tenceaftercleaningproceduresinhigh-levelisolationsettings:theexperience dromeandMiddleEastrespiratorysyndrome).ClinChestMed2017;38:71- with2patientsattheLazzaroSpallanzaniNationalInstituteforInfectiousDis- 86. eases.InfectControlHospEpidemiol2016;37:723-5. 70. ChafekarA,FieldingBC.MERS-CoV:understandingthelatesthumancoronavirus 39. YoukeeD,BrownCS,LilburnP,etal.Assessmentofenvironmentalcontamination threat.Viruses2018;10. and environmental decontamination practices within an Ebola holding unit, 71. Al-OmariA,RabaanAA,SalihS,Al-TawfiqJA,MemishZA.MERScoronavirusout- Freetown,SierraLeone.PLoSOne2015;10:e0145167. break: implications for emerging viral infections. Diagn Microbiol Infect Dis 40. PoliquinPG,VogtF,KaszturaM,etal.Environmentalcontaminationandpersis- 2019;93:265-85. tenceofEbolavirusRNAinanEbolatreatmentcenter.JInfectDis2016;214 72. DawsonP,MalikMR,ParvezF,MorseSS.WhathavewelearnedaboutMiddle (Suppl3):145-52. Eastrespiratorysyndromecoronavirusemergenceinhumans?Asystematiclit- 41. KapetshiJ,Fausther-BovendoH,CorbettC,etal.Contributionofenvironment eraturereview.VectorBorneZoonoticDis2019;19:174-92. sample-baseddetectiontoEbolaoutbreakmanagement.JInfectDis2018;218 73. Al-TawfiqJA,GautretP.AsymptomaticMiddleEastrespiratorysyndromecoro- (Suppl5):292-6. navirus(MERS-CoV)infection:extentandimplicationsforinfectioncontrol:a 42. PalichR,IrengeLM,BartedeSainteFareE,AugierA,MalvyD,GalaJL.Ebolavirus systematicreview.TravelMedInfectDis2019;27:27-32. RNAdetectiononfomitesincloseproximitytoconfirmedEbolapatients;N’Zere- 74. KangCK,SongKH,ChoePG,etal.Clinicalandepidemiologiccharacteristicsof kore,Guinea,2015.PLoSOne2017;12:e0177350. spreadersofMiddleEastrespiratorysyndromecoronavirusduringthe2015out- 43. PiercyTJ,SmitherSJ,StewardJA,EastaughL,LeverMS.Thesurvivaloffiloviruses breakinKorea.JKoreanMedSci2017;32:744-9. in liquids, on solid substrates and in a dynamic aerosol. J Appl Microbiol 75. AlfarajSH,Al-TawfiqJA,MemishZA.MiddleEastrespiratorysyndromecoronavi- 2010;109:1531-9. rusintermittentpositivecases:implicationsforinfectioncontrol.AmJInfect 44. FischerR,JudsonS,MiazgowiczK,BushmakerT,PrescottJ,MunsterVJ.Ebola Control2019;47:290-3. virus stability onsurfaces and in fluids in simulated outbreak environments. 76. HuiDS,AzharEI,KimYJ,MemishZA,OhMD,ZumlaA.MiddleEastrespiratory EmergInfectDis2015;21:1243-6. syndromecoronavirus:riskfactorsanddeterminantsofprimary,household,and 45. CookBW,CuttsTA,NikiforukAM,PoliquinPG,CourtDA,StrongJE,etal.Evaluat- nosocomialtransmission.LancetInfectDis2018;18:e217-22. ingenvironmentalpersistenceanddisinfectionoftheEbolavirusMakonavari- 77. Al-TawfiqJA,AuwaerterPG.Healthcare-associatedinfections:thehallmarkof ant.Viruses2015;7:1975-86. Middle East respiratory syndrome coronavirus with review of the literature. 46. WesthoffSmithD,Hill-BatorskiL,N’jaiA,EisfeldAJ,NeumannG,HalfmannP, JHospInfect2019;101:20-9. etal.Ebolavirusstabilityunderhospitalandenvironmentalconditions.JInfect 78. Al-AbdallatMM,PayneDC,AlqasrawiS,etal.Hospital-associatedoutbreakof Dis2016;214(Suppl3):142-4. MiddleEastrespiratorysyndromecoronavirus:aserologic,epidemiologic,and 47. SchuitM,MillerDM,Reddick-ElickMS,etal.Differencesinthecomparativesta- clinicaldescription.ClinInfectDis2014;59:1225-33. bility of Ebola virus Makona-C05 and Yambuku-Mayinga in blood. PLoS One 79. ParkHY,LeeEJ,RyuYW,KimY,KimH,LeeH,etal.Epidemiologicalinvestigation 2016;11:e0148476. ofMERS-CoVspreadinasinglehospitalinSouthKorea,MaytoJune2015.Euro 48. PalyiB,MagyarN,HenczkoJ,SzalaiB,FarkasA,StreckerT,etal.Determiningthe Surveill2015;20:1-6. effectofdifferentenvironmentalconditionsonEbolavirusviabilityinclinically 80. KiM.2015MERSoutbreakinKorea:hospital-to-hospitaltransmission.Epidemiol relevantspecimens.EmergMicrobesInfect2018;7:5. Health2015;37:e2015033. 49. FischerRJ,BushmakerT,JudsonS,MunsterVJ.Comparisonoftheaerosolstability 81. BalkhyHH,AlenaziTH,AlshamraniMM,etal.Descriptionofahospitaloutbreak of2strainsofZaireEbolavirusfromthe1976and2013outbreaks.JInfectDis ofMiddleEastrespiratorysyndromeinalargetertiarycarehospitalinSaudiAra- 2016;214(Suppl3):290-3. bia.InfectControlHospEpidemiol2016;37:1147-55. 50. PrescottJ,BushmakerT,FischerR,MiazgowiczK,JudsonS,MunsterVJ.Postmor- 82. OhMD,ParkWB,ParkSW,etal.MiddleEastrespiratorysyndrome:whatwe temstabilityofEbolavirus.EmergInfectDis2015;21:856-9. learnedfromthe2015outbreakintheRepublicofKorea.KoreanJInternMed 51. WeberDJ,FischerWA,WohlDA,RutalaWA.Protectinghealthcarepersonnel 2018;33:233-46. fromacquiringEbolavirusdisease.InfectControlHospEpidemiol2015;36:1229- 83. Al-TawfiqJA,PerlTM.MiddleEastrespiratorysyndromecoronavirusinhealth- 32. caresettings.CurrOpinInfectDis2015;28:392-6. 52. HewlettAL,VarkeyJB,SmithPW,RibnerBS.Ebolavirusdisease:preparedness 84. BinSY,HeoJY,SongMS,etal.Environmentalcontaminationandviralshedding andinfectioncontrollessonsfromtwobiocontainmentunits.CurrOpinInfect in MERS patients during MERS-CoV outbreak in South Korea. Clin Infect Dis Dis2015;28:343-8. 2016;62:755-60. 53. vanKampenJJA,TintuA,RusscherH,etal.Ebolavirusinactivationbydetergents 85. KimSH,ChangSY,SungM,ParkJH,BinKimH,LeeH,etal.Extensiveviable isannulledinserum.JInfectDis2017;216:859-66. MiddleEastrespiratorysyndrome(MERS)coronaviruscontaminationinair 54. CookBW,CuttsTA,NikiforukAM,LeungA,KobasaD,TheriaultSS.Thedisinfec- and surrounding environment in MERS isolation wards. Clin Infect Dis tioncharacteristicsofEbolavirusoutbreakvariants.SciRep2016;6:38293. 2016;63:363-9. 55. SmitherS,PhelpsA,EastaughL,NgugiS,O’BrienL,DutchA,etal.Effectivenessof 86. ChoSY,KangJM,HaYE,etal.MERS-CoVoutbreakfollowingasinglepatient fourdisinfectantsagainstEbolavirusondifferentmaterials.Viruses2016;8:185. exposureinanemergencyroominSouthKorea:anepidemiologicaloutbreak 56. SmitherSJ,EastaughL,FiloneCM,etal.Two-centerevaluationofdisinfectant study.Lancet2016;388:994-1001. efficacyagainstEbolavirusinclinicalandlaboratorymatrices.EmergInfectDis 87. vanDoremalenN,BushmakerT,MunsterVJ.StabilityofMiddleEastrespiratory 2018;24:135-9. syndromecoronavirus (MERS-CoV) under different environmental conditions. 57. CentersforDiseaseControlandPrevention.Interimguidanceforenvironmental EuroSurveill2013;18. infectioncontrolinhospitalsforEbolavirus.Availablefrom:https://www.cdc. 88. Otter JA, Donskey C, Yezli S, Douthwaite S, Goldenberg SD, Weber DJ. gov/vhf/ebola/clinicians/cleaning/hospitals.html.AccessedFebruary7,2019. TransmissionofSARSandMERScoronavirusesandinfluenzavirusinhealth- 58. KampfG.Efficacyofethanolagainstvirusesinhanddisinfection.JHospInfect care settings: the possible role of dry surface contamination. J Hosp Infect 2018;98:331-8. 2016;92:235-50. 59. EggersM,EichmannM,KowalskiK,ZornJ,ReimerK.Povidone-iodinehandwash 89. CasanovaLM,JeonS,RutalaWA,WeberDJ,SobseyMD.Effectsofairtemperature andhandrubproductsdemonstrateexcellentinvitrovirucidalefficacyagainst andrelativehumidityoncoronavirussurvivalonsurfaces.ApplEnvironMicro- EbolavirusandmodifiedvacciniavirusAnkara,thenewEuropeantestvirusfor biol2010;76:2712-7. envelopedviruses.BMCInfectDis2015;15:375. 90. HulkowerRL,CasanovaLM,RutalaWA,WeberDJ,SobseyMD.Inactivationofsur- 60. TomasME,CadnumJL,JencsonA,DonskeyCJ.TheEboladisinfectionbooth:eval- rogatecoronavirusesonhardsurfacesbyhealthcaregermicides.AmJInfectCon- uationofanenclosedultravioletlightboothfordisinfectionofcontaminated trol2011;39:401-7. D.J.Weberetal./AmericanJournalofInfectionControl47(2019)A29−A38 A37 91. CentersforDiseaseControlandPrevention.Interiminfectionpreventionand 119. HavillNL,BoyceJM,OtterJA.Extendedsurvivalofcarbapenem-resistantEntero- controlrecommendationsforhospitalizedpatientswithMiddleEastrespira- bacteriaceaeondrysurfaces.InfectControlHospEpidemiol2014;35:445-7. tory syndrome coronavirus (MERS-CoV). Available from: https://www.cdc. 120. WeberDJ,RutalaWA,KanamoriH,GergenMF,Sickbert-BennettEE.Carbape- gov/coronavirus/mers/infection-prevention-control.html.AccessedFebruary8, nem-resistant Enterobacteriaceae: frequency of hospital room contamination 2019. and survival on various inoculated surfaces. Infect Control Hosp Epidemiol 92. CentersforDiseaseControlandPrevention.FAQsaboutchoosingandimple- 2015;36:590-3. mentingaCREdefinition.Availablefrom:https://www.cdc.gov/hai/organisms/ 121. WeberDJ,RutalaWA.Useofgermicidesinthehomeandthehealthcaresetting: cre/definition.html.AccessedFebruary8,2019. istherearelationshipbetweengermicideuseandantibioticresistance?Infect 93. CentersforDiseaseControlandPrevention.TrackingCRE.Availablefrom:https:// ControlHospEpidemiol2006;27:1107-19. www.cdc.gov/hai/organisms/cre/trackingcre.html.AccessedFebruary8,2019. 122. KanamoriH,RutalaWA,GergenMF,Sickbert-BennettEE,WeberDJ.Germicidal 94. TemkinE,AdlerA,LernerA,CarmeliY.Carbapenem-resistantEnterobacteriaceae: activityagainstcarbapenem/colistin-resistantEnterobacteriaceaeusingaquanti- biology,epidemiology,andmanagement.AnnNYAcadSci2014;1323:22-42. tativecarriertestmethod.AntimicrobAgentsChemother2018;62. 95. MartirosovDM,LodiseTP.Emergingtrendsinepidemiologyandmanagementof 123. KanamoriH,RutalaWA,GergenMF,WeberDJ.Patientroomdecontamination infectionscausedbycarbapenem-resistantEnterobacteriaceae.DiagnMicrobiol againstcarbapenem-resistantEnterobacteriaceaeandmethicillin-resistantStaph- InfectDis2016;85:266-75. ylococcusaureususingafixedcycle-timeultraviolet-Cdeviceandtwodifferent 96. Potter RF, D’Souza AW, Dantas G. The rapid spread of carbapenem-resistant radiationdesigns.InfectControlHospEpidemiol2016;37,994-6. Enterobacteriaceae.DrugResistUpdat2016;29:30-46. 124. RockC,CurlessMS,NowakowskiE,RossT,CarsonKA,TrexlerP,etal.UV-Clight 97. Iovleva A, Doi Y. Carbapenem-resistant Enterobacteriaceae. Clin Lab Med disinfection of carbapenem-resistant Enterobacteriaceae from high-touch 2017;37:303-15. surfaces in a patient room and bathroom. Infect Control Hosp Epidemiol 98. ThadenJT,PogueJM,KayeKS.Roleofnewerandre-emergingolderagentsinthe 2016;37:996-7. treatmentofinfectionscausedbycarbapenem-resistantEnterobacteriaceae.Viru- 125. SatohK,MakimuraK,HasumiY,NishiyamaY,UchidaK,YamaguchiH.Candida lence2017;8:403-16. aurissp.nov.,anovelascomycetousyeastisolatedfromtheexternalearcanalof 99. Trecarichi EM, Tumbarello M. Therapeutic options for carbapenem-resistant aninpatientinaJapanesehospital.MicrobiolImmunol2009;53:41-4. Enterobacteriaceaeinfections.Virulence2017;8:470-84. 126. Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous emergence of 100. ZimmermanFS,AssousMV,Bdolah-AbramT,LachishT,YinnonAM,Wiener-Well multidrug-resistant Candida auris on 3 continents confirmed by whole- Y.Durationofcarriageofcarbapenem-resistantEnterobacteriaceaefollowinghos- genome sequencing and epidemiological analyses. Clin Infect Dis pitaldischarge.AmJInfectControl2013;41:190-4. 2017;64:134-40. 101. BittermanR,GeffenY,RabinoG,ElukO,WarmanS,GreenblattAS,etal.Rateof 127. Jeffery-SmithA,TaoriSK,SchelenzS,JefferyK,JohnsonEM,BormanA,etal.Can- colonizationofhealthcareworkersbycarbapenem-resistantEnterobacteriaceae didaauris:areviewoftheliterature.ClinMicrobiolRev2017;31:e00029-17. inanendemichospital:aprospectivestudy.AmJInfectControl2016;44:1053-4. 128. Lamoth F, Kontoyiannis DP. The Candida auris alert: facts and perspectives. 102. Rutala WA, Weber DJ. Outbreaks of carbapenem-resistant Enterobacteriaceae JInfectDis2018;217:516-20. infectionsassociatedwithduodenoscopes:whatcanwedotopreventinfec- 129. Centers for Disease Control and Epidemiology. Candida auris. Available from: tions?AmJInfectControl2016;44(5Suppl):e47-51. https://www.cdc.gov/fungal/candida-auris/index.html.AccessedJanuary26,2019. 103. O’HoroJC,FarrellA,SohailMR,SafdarN.Carbapenem-resistantEnterobacteria- 130. CentersforDiseaseControlandEpidemiology.Candidaauris:adrug-resistant ceaeandendoscopy:anevolvingthreat.AmJInfectControl2016;44:1032-6. germthatspreadsinhealthcarefacilities.Availablefrom:https://www.cdc.gov/ 104. RutalaWA,KanamoriH,Sickbert-BennettEE,WeberDJ.What’snewinreproc- fungal/candida-auris/c-auris-drug-resistant.html.AccessedFebruary7,2019. essingendoscopes:arewegoingtoensure“theneedsofthepatientcomefirst”by 131. TsayS,KallenA,JacksonBR,ChillerTM,VallabhaneniS.Approachtotheinvesti- shiftingfromdisinfectiontosterilization?AmJInfectControl2019;47. gationandmanagementofpatientswithCandidaauris,anemergingmultidrug- 105. KiznyGordonAE,MathersAJ,CheongEYL,GottliebT,KotayS,WalkerAS,etal. resistantyeast.ClinInfectDis2018;66:306-31. Thehospitalwaterenvironmentasareservoirforcarbapenem-resistantorgan- 132. Sekyere JO. Candida auris: a systematic review and meta-analysis of current ismscausinghospital-acquiredinfections-asystematicreviewoftheliterature. updates on an emerging multidrug-resistant pathogen. Microbiologyopen ClinInfectDis2017;64:1435-44. 2018;7:e00578. 106. KanamoriH,WeberDJ,RutalaWA.Healthcareoutbreaksassociatedwithawater 133. CortegianiA,MisseriG,FascianaT,GiammancoA,GiarratanoA,ChowdharyA. reservoirandinfectionpreventionstrategies.ClinInfectDis2016;62:1423-35. Epidemiology,clinicalcharacteristics,resistance,andtreatmentofinfectionsby 107. LewisSS,SmithBA,Sickbert-BennettEE,WeberDJ.Waterasasourceforcoloni- Candidaauris.JIntensiveCare2018;6:69. zationandinfectionwithmultidrug-resistantpathogens:focusonsinks.Infect 134. BidaudAL,ChowdharyA,DannaouiE.Candidaauris:anemergingdrugresistant ControlHospEpidemiol2018;39:1463-6. yeast−amini-review.JMycolMed2018;28:568-73. 108. Ko€ckR,Daniels-HaardtI,BeckerK,MellmannA,FriedrichAW,MeviusD,etal. 135. SpivakES,HansonKE.Candidaauris:anemergingfungalpathogen.JClinMicro- Carbapenem-resistantEnterobacteriaceaeinwildlife,food-producing,andcom- biol2018;56. panionanimals:asystematicreview.ClinMicrobiolInfect2018;24:1241-50. 136. ForsbergK,WoodworthK,WaltersM,BerkowEL,JacksonB,ChillerT,etal.Can- 109. FriedmanND,CarmeliY,WaltonAL,SchwaberMJ.Carbapenem-resistantEntero- didaauris:therecentemergenceofamultidrug-resistantfungalpathogen.Med bacteriaceae:astrategicroadmapforinfectioncontrol.InfectControlHospEpide- Mycol2019;57:1-12. miol2017;38:580-94. 137. VallabhaneniS,KallenA,TsayS,etal.Investigationofthefirstsevenreported 110. FrenchCE,CoopeC,ConwayL,HigginsJP,McCullochJ,OkoliG,etal.Controlof casesofCandidaauris,agloballyemerginginvasive,multidrug-resistantfungus- carbapenemase-producingEnterobacteriaceaeoutbreaksinacutesettings:anevi- UnitedStates,May2013-August2016.MMWRMorbMortalWklyRep2016;65, dencereview.JHospInfect2017;95:3-45. 1234-7. 111. GoodmanKE,SimnerPJ,TammaPD,MilstoneAM.Infectioncontrolimplications 138. AdamsE,QuinnM,TsayS,etal.Candidaaurisinhealthcarefacilities,NewYork, ofheterogeneousresistancemechanismsincarbapenem-resistantEnterobacter- USA,2013-2017.EmergInfectDis2018;24:1816-24. iaceae(CRE).ExpertRevAntiInfectTher2016;14:95-108. 139. SchelenzS,HagenF,RhodesJL,etal.Firsthospitaloutbreakofthegloballyemerg- 112. WorldHealthOrganization.Guidelinesforthepreventionandcontrolofcarbape- ing Candida auris in a European hospital. Antimicrob Resist Infect Control nem-resistantEnterobacteriaceae,AcinetobacterbaumanniiandPseudomonasaer- 2016;5:35. uginosainhealthcarefacilities.Availablefrom:https://www.who.int/infection- 140. CalvoB,MeloAS,Perozo-MenaA,etal.FirstreportofCandidaaurisinAmerica: prevention/publications/guidelines-cre/en/.AccessedFebruary7,2019. clinical and microbiological aspects of 18 episodes of candidemia. J Infect 113. CentersforDiseaseControlandPrevention.Carbapenem-resistantEnterobacter- 2016;73:369-74. iaceae in healthcare settings. Available from: https://www.cdc.gov/hai/organ- 141. Ruiz-Gaita(cid:2)nA,MoretAM,Tasias-PitarchM,etal.AnoutbreakduetoCandida isms/cre/index.html.AccessedFebruary7,2019. auriswithprolongedcolonisationandcandidaemiainatertiarycareEuropean 114. Munoz-PriceLS,QuinnJP.Deconstructingtheinfectioncontrolbundlesforthe hospital.Mycoses2018;61:498-505. containment of carbapenem-resistant Enterobacteriaceae. Curr Opin Infect Dis 142. EyreDW,SheppardAE,MadderH,etal.ACandidaaurisoutbreakanditscontrol 2013;26:378-87. inanintensivecaresetting.NEnglJMed2018;379:1322-31. 115. LernerA,AdlerA,Abu-HannaJ,MeitusI,Navon-VeneziaS,CarmeliY.Environ- 143. Khan Z, Ahmad S, Benwan K, et al. Invasive Candida auris infections in mentalcontaminationbycarbapenem-resistantEnterobacteriaceae.JClinMicro- Kuwaithospitals:epidemiology,antifungaltreatmentandoutcome.Infection biol2013;51:177-81. 2018;46:641-50. 116. Decraene V, Phan HTT, George R, Wyllie DH, Akinremi O, Aiken Z, et al. A 144. BiswalM,RudramurthySM,JainN,etal.ControllingapossibleoutbreakofCan- large, refractory nosocomial outbreak of Klebsiella pneumoniae carbapene- didaauris infection: lessons learntfrommultiple interventions. J HospInfect mase-producing Escherichia coli demonstrates carbapenemase gene out- 2017;97:363-70. breaks involving sink sites require novel approaches to infection control. 145. ShackletonJ,SchelenzS,RochonM,HallA,RyanL,Cervera-JacksonR.Theimpact AntimicrobAgentsChemother2018;26:62. ofenvironmental decontamination inaCandida aurisoutbreak. J HospInfect 117. LernerA,AdlerA,Abu-HannaJ,CohenPerciaS,KazmaMatalonM,CarmeliY. 2016;94(Suppl1):88-9. SpreadofKPC-producingcarbapenem-resistantEnterobacteriaceae:theimpor- 146. AzarMM,TurbettSE,FishmanJA,PierceVM.Donor-derivedtransmissionofCan- tance of super-spreaders and rectal KPC concentration. Clin Microbiol Infect didaaurisduringlungtransplantation.ClinInfectDis2017;65:1040-2. 2015;21,470.e1-7. 147. PiedrahitaCT,CadnumJL,JencsonAL,ShaikhAA,GhannoumMA,DonskeyCJ. 118. LiuCY,LaiCC,ChiangHT,etal.Predominanceofmethicillin-resistantStaphylo- Environmentalsurfacesinhealthcarefacilitiesareapotentialsourcefortrans- coccusaureusintheresidentsandenvironmentsoflong-termcarefacilitiesin missionofCandidaaurisandotherCandidaspecies.InfectControlHospEpide- Taiwan.JMicrobiolImmunolInfect2019;52:62-74. miol2017;38:1107-9. A38 D.J.Weberetal./AmericanJournalofInfectionControl47(2019)A29−A38 148. WelshRM,BentzML,ShamsA,HoustonH,LyonsA,RoseLJ,etal.Survival,persis- 153. Rutala WA, Kanamori H, Gergen MF, Sickbert-Bennett EE, Weber DJ. tence,andisolationoftheemergingmultidrug-resistantpathogenicyeastCan- Susceptibility of Candida auris and Candida albicans to 21 germicides didaaurisonaplastichealthcaresurface.JClinMicrobiol2017;55:2996-3005. used in healthcare facilities. Infection Control Hosp Epidemiol 2019;40: 149. KuTSN,WalravenCJ,LeeSA.Candidaauris:disinfectantsandimplicationsfor 380-2. infectioncontrol.FrontMicrobiol2018;9:726. 154. Centers for Disease Control and Prevention. Infection prevention and control 150. AbdolrasouliA,Armstrong-JamesD,RyanL,SchelenzS.Invitroefficacyofdisin- forCandidaauris.Availablefrom:https://www.cdc.gov/fungal/candida-auris/c- fectants utilised for skin decolonisation and environmental decontamination auris-infection-control.html.AccessedFebruary7,2019. duringahospitaloutbreakwithCandidaauris.Mycoses2017;60:758-63. 155. CadnumJL,ShaikhAA,PiedrahitaCT,JencsonAL,LarkinEL,GhannoumMA,etal. 151. MooreG,SchelenzS,BormanAM,JohnsonEM,BrownCS.Yeasticidalactivityof Relative resistance of theemerging fungal pathogen Candida auris and other chemical disinfectants and antiseptics against Candida auris. J Hosp Infect Candida species to killing by ultraviolet light. Infect Control Hosp Epidemiol 2017;97:371-5. 2018;39:94-6. 152. CadnumJL,ShaikhAA,PiedrahitaCT,SankarT,JencsonAL,LarkinEL,etal.Effec- 156. KeanR,McKloudE,TownsendEM,SherryL,DelaneyC,JonesBL,etal.Thecom- tivenessofdisinfectantsagainstCandidaaurisandotherCandidaspecies.Infect parativeefficacyofantisepticsagainstCandidaaurisbiofilms.IntJAntimicrob ControlHospEpidemiol2017;38:1240-3. Agents2018;52:673-7.