ebook img

2014 RNA structure analysis of alphacoronavirus terminal genome regions PDF

2014·2.03 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 2014 RNA structure analysis of alphacoronavirus terminal genome regions

VirusResearch194(2014)76–89 ContentslistsavailableatScienceDirect Virus Research journal homepage: www.elsevier.com/locate/virusres RNA structure analysis of alphacoronavirus terminal genome regions RamakanthMadhugiria,MarkusFrickeb,ManjaMarzb,JohnZiebuhra,∗ aInstituteofMedicalVirology,JustusLiebigUniversityGiessen,Schubertstrasse81,35392Giessen,Germany bFacultyo fM athema ticsandC ompu terScie nce,Friedr ichSchil lerUniversityJen a,L eutrag raben1, 07743Jena,Germany a r t i c l e i n f o a b s t r a c t Articlehistory: Coronavirusgenomereplicationismediatedbyamulti-subunitproteincomplexthatiscomprisedof Availab leonline13October2014 morethanad ozenvir allyencoded a ndseveral cel lu larproteins.Int eraction softhevi ralre pl icasecompl ex withc is-ac ti ngRN Aelem entsloca tedi nthe5 (cid:3)and3(cid:3)- terminal genomeregi on sen sure thespeci ficrepli- Keywords: cationofviralRNA.Overthepastyears,boundariesandstructuresofcis-actingRNAelementsrequired RNAvirus forcor on aviru sgen ome repl icatio nhav ebeenexte nsiv elycharact er izedinbe tacor onaviruse sand,to Coro navirus ale sserextent, otherco ronavirusg enera .Here ,wereview ourcurrentu nd erstandingofcoro navir us Replication cis-actingelementslocatedintheterminalgenomeregionsanduseacombinationofbioinformaticand cis-Actingelement RNAstructureprobingstudiestoidentifyandcharacterizeputativecis-actingRNAelementsinalpha- RNAstructure coronaviruses.ThestudysuggestssignificantRNAstructureconservationamongmembersofthegenus Alphacoronavir usbu talso acrossge nusbound aries. Overall,t heconservatio npatte rnidentifi ed for 5(cid:3)and 3(cid:3)-terminalRNAs truc tura leleme ntsin thegenomes ofalpha -an dbetacorona virusesi sinagreem en twith thewidelyusedreplicasepolyprotein-basedclassificationoftheCoronavirinae,suggestingco-evolution ofthecoronavirusreplicationmachinerywithcognatecis-actingRNAelements. ©2014ElsevierB.V.Allrightsreserved. 1. Introduction large number of virally encoded nonstructural proteins that are either involved in viral RNA synthesis or interact with host cell Coronavirusesareenveloped,positive-strandRNAviruseswith functions(reviewedinMastersandPerlman,2013;Ziebuhr,2008). exceptionally large genomes of approximately 30kb. They have Most of the nonstructural proteins (nsp) are expressed as sub- been assigned to the subfamily Coronavirinae within the family domainsoftwolargereplicasegene-encodedpolyproteinscalled Coron aviridae( de Groo tetal.,201 2a;Mastersa ndPerlm an, 2013). pp1a(∼4 50 kDa )and pp1ab(∼7 50kDa).Co-an dposttransla tional TogetherwiththefamiliesArteriviridae,Roniviridae,andMesoniviri- cleavage of pp1a/1ab by two types of virus-encoded proteases dae,theCoronaviridaeformtheorderNidovirales(deGrootetal., givesrisetoatotalof15–16matureproteinsthat(togetherwith 2012b). The family Coronaviridae is currently comprised of four the nucleocapsid protein and cellular proteins) form the viral generacalledAlpha-,Beta-,Gamma-andDeltacoronavirus.Closely replication-transcription complex (RTC) (Almazán et al., 2004; relatedvirusspeciesinthesegeneraaregroupedtogetherinspe- Schelle et al., 2005; Ziebuhr, 2008; Ziebuhr et al., 2000). This cificlineages.Coronavirusesinfectmammalsandbirdsandinclude multi-proteincomplexreplicatestheviralgenomeandproduces path ogens of major medica l, vet erinary an d e conom ic interest anextensives etof3(cid:3)-co terminals ubg enom icmesse nger RNAs(sg (de Groot et al., 2012a), with severe acute respiratory syndrome mRNAs),thelatterrepresentingahallmarkofcorona-andother (SARS)coronavirus(SARS-CoV)andMiddleEastrespiratorysyn- nidoviruses (Pasternak et al., 2006; Sawicki et al., 2007; Ziebuhr drome(MERS)coronavirus(MERS-CoV)providingtwoprominent andSnijder,2007).ThesgmRNAsareusedtoexpressopenread- examp lesofne wlyemergin g,highlypa thogenicc oron avirusesin ing frames l ocated in th e 3(cid:3)-proxi mal third o f the gen ome. They humans(Drostenetal.,2003;Ksiazeketal.,2003;Zakietal.,2012). essentiallyencodetheviralstructuralproteins,suchasthenucleo- Besides their large genome sizes, coronaviruses and related capsid(N),membrane(M),spike(S)andenvelope(E)proteins,and nidoviruses stick out from other plus-strand RNA viruses by the avaryingnumberofaccessoryproteins,thelatterofteninvolved infunctionsthatcounteractantiviralhostresponses(Mastersand Perlman, 2013; Narayanan et al., 2008b). Coronavirus sg mRNAs contain a comm on 5(cid:3) leade r s equ ence (ap proximately 60 –95 nt) ∗ Corresponding author at: Institute of Medical Virology, Biomedical Research thatisi de nticalto the5(cid:3) end ofthege nome.Thecomp lemen tof Center, Justus Liebig University, Schubertstr. 81, 35392 Giessen, Germany. this se quenceis att ach edtoth e3 (cid:3)en dofnasc entn egativestran ds Tel.:E +-4m9a 6il4a1d d9r9e4s1s:2j0o0h;n f.azxie:b +u4h9r @64v1ir 9o9.m41ed2.0u9n.i-giessen.de(J.Ziebuhr). ina complex pr ocesscall ed “dis contin uo usexten sionofn egative http://dx.doi.org/10.1016/j.virusres.2014.10.001 0168-1702/©2014ElsevierB.V.Allrightsreserved. R.Madhugirietal./VirusResearch194(2014)76–89 77 strands” (Sawicki and Sawicki, 1995, 1998; Sawicki et al., 2007; Baker,2000;Minskaiaetal.,2006;Puticsetal.,2005;Saikatendu Sethnaetal.,1991).Thisprocessinvolvesattenuationofnegative- etal.,2005;Seybertetal.,2000;teVelthuisetal.,2010;Ziebuhr strandRNAsynthesisattranscription-regulatingsequences(TRS) etal.,1995).Insomecases,theseactivitiescouldbelinkedtospe- located upst reamofth ei ndividualORFsinthe3(cid:3)-p roximalge nome cifi cs tepsof vi ralRN Asyn thesis and/orR NApr oce ssingo rw ere region (“body TRSs”, TRS-B). Guided by basepairing interactions shown to interfere with cellular functions (reviewed in Masters between the negative-strand complement of a TRS-B and the andPerlman,2013;Ziebuhr,2008).Therearemultipleinteractions TRS loca ted d ownstream of t he 5(cid:3) leader on th e viral gen ome betw eenthei ndivid ualreplic asege ne-enc ode dnspsan dthestruc- (“leaderTRS”,TRS-L),thenascentminusstrandmaybetransferred turalbasisandfunctionalimplicationsoftheseinteractionshave from its downstream position on the template (at the TRS-B) to beenstudiedinafewcases.Forexample,ithasbeenshownthatthe theT RS- L,wherenega tive-stra nd RNA synthesi sis then resum ed exori bonucle as e and ribose 2(cid:3)O -methylt ra nsfe rase activiti esas so- and comp leted b y copying the 5(cid:3) lead er sequen ce . The set of 3(cid:3) ciatedwithnsp1 4an dnsp1 6,respectively,areeach stimulat edby antileader-containingsgminus-strandRNAsissubsequentlyused specificinteractionswithnsp10(Bouvetetal.,2014;Decrolyetal., astemplatesfortheproductionofthecharacteristicnestedsetof 2011). Also, there is evidence that a heteromultimeric complex 5(cid:3) capped,5(cid:3) lea der- containing an d3(cid:3) -polyadenylate dsgm RN As formed byns p7an dn sp8intera ctsw it h(andservesasap rocessiv- incoronavirus-infectedcells(Laietal.,1983;Sawickietal.,2001; ityfactorfor)theRNA-dependentRNApolymerase(RdRp,nsp12) SawickiandSawicki,1995;Sethnaetal.,1989;Spaanetal.,1983). (Zhaietal.,2005).Additionalinteractionsbetweenindividualsub- Sgminu s-str andRNA sconta inaU- str etch atthe ir5(cid:3)en d ,thu spro- units of the RTCh avebeens uggestedon thebasis oftwo-hy brid vid ingatemplat efor 3(cid:3) polya d enylation of sgm RNAs( Hofm ann scree nin gda ta(P anet al.,2 008;vonB run net al.,20 07 )andthere andBrian,1991;Wuetal.,2013). is evidence that a substantial number of coronavirus nsps form Similar to other RNA viruses, coronavirus genomes contain homo- and/or heterooligomeric complexes (Anand et al., 2002, important RN Asigna lsin their5(cid:3)a nd3(cid:3)-termina lgenome regions, 2003;B ouvete tal.,2014;Chen etal.,2011; Ricagno et al., 2006; mainly (but not exclusively) in the untranslated regions (UTR). Suetal.,2006;Xiaoetal.,2012;Zhaietal.,2005). These signals are required for viral RNA synthesis (replication Despite major progress in the characterization of proteins and/ortranscription)andarecollectivelyreferredtoascis-acting and cis-acting RNA elements involved in coronavirus RNA syn- RNAelements(Changetal.,1994;Daltonetal.,2001;Izetaetal., thesis, the molecular mechanisms that mediate specific steps of 1999;Kimetal.,1993;LiaoandLai,1994;Linetal.,1994,1996; coronavirusRNAreplicationandtranscriptionarefarfrombeing Zhangetal.,1994).Asindicatedabove,coronavirusesalsocontain understood.Importantinformationoncis-actingRNAelementshas cis-actingelementsatinternalpositionsinthegenome,thebest beenobtainedfromstudiesusingdefectiveinterfering(DI)RNAs documentedonesbeingtheleaderandbodyTRSswhichplayavital and, more recently, genetically engineered coronavirus mutants roleinthetransferofthenascentminus-strandRNAtoanupstream (reviewed in Brian and Baric, 2005; Masters, 2007; Sola et al., positiononthetemplate(seeabove).Otherinternalcis-actingele- 2011b). mentsincludespecificRNAsignalsrequiredforgenomepacking, In this article, we will summarize previous work on whichhavebeencharacterizedinasmallnumberofcoronaviruses (beta)coronavirusgenomiccis-actingRNAelementsandwillthen (Chenetal.,2007;Escorsetal.,2003;Makinoetal.,1990;Morales moveontopresentconclusionsfromourrecentbioinformaticand etal.,2013;Penzesetal.,1994),andacomplexRNApseudoknot RNA structure probing studies on cis-acting RNA elements con- structurelocatedintheORF1a-ORF1boverlapregionthatmediates servedinalphacoronaviruses. a(−1)rib osomal fra mes hifteventand thusco ntrolst heex pression ofthesecondlargeORFonthecoronavirusgenomeRNA(ORF1b) (B rierl eyetal. ,1987 ,198 9; deH aanetal.,20 02;Nam yeta l.,2006). 2. Identificationanddelineationofcoronaviruscis-acting Both viral and cellular proteins, including the viral N pro- elements tein,heterogeneousribonucleoprotein(hnRNP)familymembers, polypyrimidinetract-bindingprotein,andpoly(A)-bindingprotein Historically, cis-acting RNA elements required for coronavi- (PABP),havebeenshowntobindtospecificcoronaviruscis-acting rus RNA synthesis have mainly been studied by using naturally elements and there is evidence to support the biological signifi- occurring and genetically engineered defective interfering RNAs canceofsomeoftheseprotein-RNAinteractions(reviewedinShi (DI RNAs) (reviewed in Brian and Baric, 2005; Brian and Spaan, andLai,2005;Solaetal.,2011b). 1997;Masters,2007;Solaetal.,2011b).DIRNAsarereplication- The coronavirus RTC is a multi-subunit assembly comprised competentgenome-derivedRNAmoleculesthatcontainextensive of more than a dozen viral and an unknown number of cellu- internal deletions but retained all the cis-acting RNA signals lar proteins. The complex is anchored through transmembrane requiredforreplicationbyfunctionalreplicasecomplexesprovided domainspresentinnsps3,4and6tointracellularmembranous byahelpervirusthatreplicatesinthesamecell(Levisetal.,1986; structuresthatprovideaspecializedmembrane-shieldedcompart- Weissetal.,1983).Essentially,thesecis-actingelementscomprise mentin(o rat) which vi ralRNAsyn thesistakesplace( denBoon theun tra nsl ated5(cid:3) -and3(cid:3)-ter minal genomere gionsbut ,insome and Ahlquist, 2010; Gosert et al., 2002; Kanjanahaluethai et al., cases,mayalsoextendintocodingregions.Insomecases,theyalso 2007;Knoopsetal.,2008;Oostraetal.,2008;Oostraetal.,2007; contain noncontiguous sequences derived from internal genome Snijderetal.,2006;vanHemertetal.,2008).Overthepastyears, regions. Coronavirus DI RNAs were first described for the beta- viral components of the coronavirus RTC have been character- coronavirusesMHVandBCoV(Changetal.,1994;deGrootetal., ized in considerable detail, providing a wealth of functional and 1992;Hofmannetal.,1990;Luytjesetal.,1996;Makinoetal.,1985, structural information (reviewed in Imbert et al., 2010; Masters, 1988a,1988b,1984).Subsequently,thesestudieswereextendedto 2006; Ulferts et al., 2010; Ulferts and Ziebuhr, 2011; Ziebuhr, alpha-andgammacoronaviruses(Izetaetal.,1999;Mendezetal., 2008). A large number of virally encoded enzymes, including 1996;Penzesetal.,1994,1996).Overtheyears,studiesofdefec- protea se, ADP- ribose-1(cid:3)(cid:3) -ph osphata se, NTPa se, 5(cid:3)-to-3 (cid:3) helicase, tivege nomes pr ove dtobe veryu seful for identif yingcor on avirus RNA5(cid:3)-tr iphosphatase,RNApolymeras e,guanos ine-N7andribose RNA elements require d for repli cation (an dpackaging ).However, 2(cid:3)-O methyltransferase s, 3(cid:3)- to-5(cid:3) exoribo nuclease and urid ylate- DIRN Asalsoh avedisad van tages,ama joro nebeingho mologous specificendoribonuclease,havebeenidentified(Bakeretal.,1989; recombination between the RNA replicon and the helper virus Bhardw ajetal.,2004;Chen eta l.,200 9,2011;D ecroly et al., 2008, genome.Thus, forexamp le,a rtifici alDIRNA scon tain ingmut ant5(cid:3) 2011;Eckerleetal.,2010;Ivanovetal.,2004;Kanjanahaluethaiand leadersequencesrapidlyacquiretheleadersequenceofthehelper 78 R.Madhugirietal./VirusResearch194(2014)76–89 virus,aprocesscommonlyreferredtoas“leaderswitching”(Chang foradditionalstableortransientlong-rangeRNA-RNAinteractions et al., 1 994, 19 96; Makino and Lai , 1 99 0). The latter occu rs very oft he5(cid:3)UTRw ithot he rgenome regions.Ev idenceto supportthis often if poorly replicating mutant DI RNAs are to be character- hypothesiswasobtainedinsubsequentstudies.Forexample,the izedwhichgenerallyrequireamplificationstepsbyserialpassaging energetically unstable lower part of MHV SL1 was found to be tode termin etheirp henotyp e.Withthed evelo pm ento freverse- involvedinlo ng-range RNAin tera ctio nswi thth e3(cid:3)U TR(Li et al., genetic systems suitable to produce and manipulate full-length 2008) (see below). Also, in a study using MHV/BCoV chimera, a coronaviruscDNAcopies,anattractivealternativeforstudyingcis- regiondownstreamofSL4wasrevealedtobeengagedinlong-range acting RNA elements at the genome level (including long range interactionswiththensp1-codingregion,thuspossiblyformingan RNA-RNAinteractions)isnowavailablethatovercomessomeofthe extensivehigher-orderRNAstructure(Guanetal.,2012).Asub- limitationsofDIRNA-basedsystems(Almazánetal.,2000;Casais sequentBCoVDIRNAmutagenesisstudy(Suetal.,2014)further etal.,2001;Scobeyetal.,2013;Tekesetal.,2008;Thieletal.,2001; suggestedthatthismultipartiteRNAstructuremayinvolveseveral vandenWormetal.,2012;Yountetal.,2000,2003). stem-loop(sub)structuresidentifiedinearlierstudies(Gustinetal., 2009;RamanandBrian,2005)butrequirerefoldingofotherRNA 2.1. Delineationof5(cid:3)cis-actingelements struct uressug gest edear lierto bee ssential forDIRN A replica tion (Brownetal.,2007).ThestudybySuetal.(2014)alsoidentifiedan DIRNAsstudiesonrepresentativebetacoronavirusesrevealed intriguingrequirementincisofanoligopeptidesequenceintheN- that l ess th en 500 nt from the 5(cid:3) end of the genome (4 66 nt in proximal p art of nsp1, su gge st ing that nsp1 m ay be an es sent ial MHVand498ntinBCoV)arerequiredforreplication(Changetal., cis-acting protein factor in betacoronavirus replication, in addi- 1994;Kimetal.,1993;Luytjesetal.,1996).Insubsequentstudies tiontoitsmultipleotherfunctions(BrockwayandDenison,2005; onalp ha-a nd ga mmac oronavi rus es, minim al 5(cid:3) cis-acting signals Hua ng et al.,2011a ,b;Ka mitaniet al.,2006,20 09; Leietal., 2013; of649and544ntweredeterminedforTGEV(Escorsetal.,2003) Lokugamage et al., 2012; Narayanan et al., 2008a; Tanaka et al., an dIBV ,res pect ive ly(Da ltonetal.,2 001 ).The 5(cid:3)-term ina lge nome 2012;Tohya et al., 2009; Watheletet al .,20 07;Züs tetal., 200 7). regi onso f466nt(M HV)to6 49 nt (TGEV )co mprisethe entire5(cid:3) Possib leinte rac ting partn ersfornsp 1 rem ainto beid en tifie d. UTRran gin gin siz efrom 21 0nt (M HV,BC oVandHC oV- OC43) to The 5 (cid:3)-proximal SL1 and SL 2 are predict ed to be conserved 314nt(TGEV)andthusextendintothensp1-codingregionofORF acrossallgeneraoftheCoronavirinae(ChenandOlsthoorn,2010; 1a (see below). By contrast, the gammacoronavirus IBV features Liuetal.,2007).Nuclearmagneticresonance(NMR)spectroscopy a m uch larger 5 (cid:3) U TR (528 n t) ( Boursnell et al., 198 7) a nd lacks stu die sof MHVa ndHCoV -OC43SL 1RNAssup ported thepredicted acounterpartofnsp1(Ziebuhretal.,2001).Itthereforeappears stem-loopandrevealed2–3noncanonicalbasepairsinthemid- th atthegamm ac orona virus5(cid:3)U TR (al one)co nt ainsallth e5(cid:3)RNA dleofthe stem .Thefull yba se-pairedSL1 was propo sed to exist signalsrequiredforgenomereplication. inequilibriumwithhigher-energy(partiallyunfolded)conformers. CharacterizationofMHVmutantscontainingspecificreplacements 2.2. Functionalandstructuralfeaturesofcoronavirus5(cid:3) inSL1andseque nc eana lysisofs econd-site revertan tssupportsa cis-actingelements “dynamicSL1”modelinwhichSL1isstructurallyandfunctionally bipartite(Lietal.,2008).WhiletheupperpartofSL1is(required Cis-acting RNA structures in the 5(cid:3)-terminal region of the tobe)sta ble ,t hel owerp artis( requ iredt obe) un stab le ,possibly coronavirusgenomehavefirstbeenstudiedforBCoVusingDIRNA- indicatingtherequirementforanoptimizedstabilitytopermitor basedsystems(Brownetal.,2007;Changetal.,1994,1996;Gustin fine-tunetransientlong-range(RNA-orprotein-mediated)interac- etal., 2009;Ra maneta l., 20 03;Ra manan d Bria n,200 5).In the5(cid:3)- tionsbetw eenthe5 (cid:3)and3(cid:3)UT Rsreq uir edforsgRNAtrans cription terminal215ntsoftheBCoVgenome,fourstem-loops(designated andgenomereplication,respectively. I[compr ised ofI aa nd Ib],II, III,andI V)w eredefined .Enzymatic S L2isthe mostconse rvedstructureinthecoronavirus5(cid:3) UTR probing and mutational analysis of both naturally occurring and (Chen and Olsthoorn, 2010; Liu et al., 2007). It is comprised of genetica lly e ngineered D I RNAs w e re use d to (i) c orroborate the a 5-bp ste m and a hi ghly c onse rve d l oop seq ue nc e, 5(cid:3)-CUUG Y- predictedR NAseconda rys tructu resan d(ii) de ter minetheirfu nc- 3 (cid:3), that was show n to adop t a 5(cid:3)-uYN MG(U )a or uCU YG(U)a-like tionalsignificanceinDIRNAreplication.Morerecently,twofurther tetraloopstructure(Leeetal.,2011;Liuetal.,2009).Reversegenet- stem-loops (called SL-V and SL-VI) were identified in the BCoV icsdataconfirmedthatSL2isrequiredforMHVreplicationandmay nsp1-codingregionofwhichSL-VIwasconfirmedtobeessential haveaspecificroleinsgRNAsynthesis.Withincertainstructural forDIRNAreplication(Brownetal.,2007). constraints, nucleotide replacements were found to be tolerated Subsequentstudiessuggested(avaryingdegreeof)conserva- or could be rescued by increasing the stem stability, suggesting tionof5(cid:3) cis-ac tingele mentsamo ng betacor onaviru ses andeven al imited pla sticityo fth isimporta ntci s-actin gRNAel ement(Liu themoredistantlyrelatedalpha-andgammacoronaviruses(Chen etal.,2009). andOlsthoorn,2010;Kangetal.,2006).Tofacilitatethediscussion ThepredictedSL3(namedSL-IIinBCoVDIRNAstudies)appears ofdataobtainedinstudiesofdifferentvirusesbydifferentlabora- tobeconservedonlyinasubsetofbeta-andgammacoronaviruses tories,wewilluseinthisarticleauniformnomenclatureforthe (ChenandOlsthoorn,2010).ForBCoVandcloselyrelatedviruses, mainR NA stru ctur al elem entsin t he5(cid:3)-pro ximalgenome reg ion the TR S-L core seque nce (CS ) h as bee n pr oposed to be e xposed (SL1,SL2,[SL3ifpresent],SL4andSL5).Thenomenclatureisbased in the SL3 loop region, a structure similar to the TRS-L hairpin on SL designations used by the Leibowitz and Giedroc laborato- structurereportedfortherelatedarterivirusequinearteritisvirus riesandinpredictionsofgenus-andlineage-specificconservation (EAV) (Chang et al., 1996; van den Born et al., 2004, 2005). By patt erns of 5(cid:3)cis-acting e lements ina lpha-,beta-and gammacoro- contra st, in m ost oth er cor onav iruse s, the TR S-L CS an d flank ing naviruses(ChenandOlsthoorn,2010;Kangetal.,2006;Liuetal., regions were suggested to be located in nonstructured regions 2006,2007).Theproposedfunctionalandstructuralconservation (ChenandOlsthoorn,2010;Stirrupsetal.,2000;WangandZhang, of5(cid:3)c is-actin gele mentsam ongbetaco rona virusesre ceivedstrong 2000). supportbyreverse-geneticdatademonstratingthatSARS-CoVSL1, SL4isalonghairpinlocateddownstreamoftheTRS-LCSand SL2,andSL4canfunctionallyreplacetheircounterpartsintheMHV suggested to be conserved in all coronavirus genera (Chen and genomewhenintroducedindividually(Kangetal.,2006).Bycon- Olsthoorn, 2010; Raman et al., 2003; Raman and Brian, 2005). trast,rep lacem entofthee ntireMHV5(cid:3) UTRw ith th atofSA RS -CoV In the vast major ity of c oro nav iruses, SL4 con tain s a sho rt ORF didnotproduceaviableMHVmutant,suggestingarequirement comprised of only a few codons. Because of its position in the R.Madhugirietal./VirusResearch194(2014)76–89 79 Fig.1. Alignment-basedsecondarystructurepredictionof5(cid:3)genomeregionsofbetacoronaviruses.Thevirusesincludedinthisanalysisrepresentallcurrentlyrecognized lineagesandspeciesinthegenusBetacoronavirus.ThealignmentwasgeneratedusingLocARNAandthestructurewascalculatedusingRNAalifold.Theconsensussequence isrepresentedusingtheIUPACcode:A(adenine),C(cytosine),G(guanine),U(uracil),R(purine[AorG]),Y(pyrimidine[CorU]),M(CorA),K(UorG),W(UorA),S(CorG), B(C,U,orG[notA]),D(A,U,orG[notC]),H(A,U,orC[notG]),V(A,C,orG[notU],N(anybase).Colorsareusedtoindicateconservedbasepairs:fromred(conservationof onlyonebase-pairtype)topurple(allsixbase-pairtypesarefound);fromdark(allsequencescontainthisbasepair)tolightcolors(1or2sequencesareunabletoformthis basepair).Thegraybarsbelowthealignmentindicatetheextentofsequenceconservation.GrayshadowsareusedtolinkRNAstructureswiththecorrespondingdot-bracket notationsabovethealignment.Torefinethealignment,ananchoratthehighlyconservedapicalloopofSL2wasused. genomeupstreamofORF1aitisgenerallyreferredtoastheuORF. andfunctionallyusingBCoVDIRNAandMHVreversegeneticssys- RecentreversegeneticsworkintheMHVsystem(Wuetal.,2014; tems(Brownetal.,2007;Guanetal.,2011,2012;RamanandBrian, Yang et al., 2011) showed that disruption of the uORF yields 2005). viablemutantsthat,however,acquirealternateuORFsuponserial passag ing in ce ll cu lture. In v itro, uO RF-disrup ted RN As sh owed 2.3. Characterizationofalphacoronavirus5(cid:3)-proximalRNA enhancedtranslationofthedownstreamORF.Theavailabledata structures suggest that the uORF represses ORF1a/1b translation and has a beneficialbutnon-essentialroleincoronavirusreplicationincell Toalargeextent,previousworkoncoronaviruscis-actingele- culture.SL4maybefurthersubdividedintoSL4aandSL4b.Inter- mentshasfocusedononlytwospeciesofcloselyrelatedlineageA estingly, despite its conservation in coronaviruses, SL4 tolerates betacoronaviruses(representedbyBCoVandMHV),whilethereis extensivemutations.Thus,forMHV,itwasshownthatbasepair- limited information on functionally and structurally related ele- inginSL4aisnotrequiredforreplicationandseparatedeletions ments in other coronaviruses. We therefore decided to embark ofSL4aandSL4baretolerated.Bycontrast,completedeletionof onamoredetailedcharacterizationofputativealphacoronavirus SL 4and a3- ntdel etio nimmedia tel ydownstr eamofSL 4abolish ed cis- a cting elements located in the 5 (cid:3) a nd 3(cid:3) ge nome regions. As orprofoundlyimpairedviralRNAsynthesis.Thecharacterization a starting point, we used 20 coronavirus genomes representing ofsecond-sitemutationsandaviableMHVmutantinwhichSL4 all the currently approved species from the four genera of the wasreplacedwithashortersequence-unrelatedstem-loopledtoa CoronavirinaeandthenewlyidentifiedMERS-CoV(deGrootetal., modelinwhichSL4wasproposedtofunctionasaspacerelement 2013)andcalculatedalignment-basedsecondarystructuresusing that controls the orientation of SL1, SL2, and TRS-L and thereby LocARNA(v.1.7.2)(Willetal.,2012).AlthoughLocARNAconsiders directs subgenomic RNA synthesis (Yang et al., 2011). The SL4 both sequence and secondary structure to calculate these mul- sequen ceoverlapsw itht he‘hotspo t’ofth e5 (cid:3)-pr oximal geno mic tiple alignmen ts, w e failed to detect RN A secondary struc tures acceptorrequiredforBCoVdiscontinuoustranscription(Wuetal., conservedacrossallcoronavirusgenerawhenusingthesehighly 2006), thus further supporting a role of the region immediately diverse sequences. We therefore resorted to producing separate downstreamofTRS-LinsubgenomicRNAsynthesis. genus-widealignment-basedsecondarystructurepredictionsfor Chen & O sth oorn (20 10) predicte d th at variations of another coronavirus es. To do this, we used com plete 5(cid:3) U TR regions a nd RNA stru ct ure called SL5 m ay be con serv ed in spec ific coron- 20 nts from th e O RF 1a 5(cid:3) end to c alculate c onsensu s struct ures avirusesgeneraand/orlineages.Inalpha-andbetacoronaviruses, withRNAalifold-r-p--color--noLP--MEA(v.2.0.7)(Lorenzetal., SL5 extends into ORF1a. Depending on the lineage studied, con- 2011)and-C,respectively,ifconstraintswereused.Thesubgroups servedloopsequencescouldbeidentifiedinsubstructuralhairpins (lineages)obtainedinthesesequencealignmentswereconsistent ofSL5.Sequenceconservationwasfoundtobemorepronounced withthepreviouslyrecognizedsubgroupsofalpha-andbetacoro- in alpha- compared to betacoronaviruses. Thus, for example, in naviruses (de Groot et al., 2012a, 2013) (not shown). As shown alphacoronaviruses, three hairpins, called SL5a, 5b, and 5c, each in Fig. 1, all the functionally relevant RNA secondary structure containinga5(cid:3)-UUC CGU-3 (cid:3) loopseq uence ,were ide ntifi ed. Simi- ele men ts ide ntifi edpreviously intheb etaco ronavirus5 (cid:3) genome larstructureswereonlypartlyconservedinbetacoronavirusesand regions,SL1,SL2andSL4,couldbeidentified.Inlinewithprevious significantlineage-specificvariationsinthesubstructuralhairpins predictionsanddespitethepronouncedsequencediversityinthe andtheirlo opsequencesw ereidentifi ed .Ap ossibleSL5eq uivalent 5(cid:3)-terminal geno meregi ons ,theseRNAs tructuresa resugges te dto ingammacoronaviruseswaspredictedtoadoptarod-likestruc- be conserved among all currently approved betacoronavirus lin- ture that lacks conserved loop sequences (Chen and Olsthoorn, eagesandspecies.Thisconclusionisalsosupportedbythelarge 2010).Asoutlinedabove,possiblebetacoronavirusSL5substruc- numberofcovariations,suggestingastrongselectionpressureto tures located within (or extending into) the nsp1-coding region retain these base-pairing interactions. Fig. 1 also shows the lack (termedSLsIV,V,VI,andVII)havebeencharacterizedstructurally ofconservationofastablehairpinstructurecontainingtheTRS-L. 80 R.Madhugirietal./VirusResearch194(2014)76–89 Itshouldbenotedthat,forseveralbetacoronaviruses,itispossi- proteinsthatbindinthisregionandtherebylikelyaffecttheSL4 bletoforceastem-loopcontainingtheTRS-L,butthisstem-loop structureremaintobefurtherinvestigated.Ofnote,hnRNPfamily isonlysupportedbytwoconservedbasepairs.Inlinewithpre- membersalongwiththeviralNproteinhavebeenshowntobind viousreports,bovinecoronavirus(andothervirusesbelongingto inthisregionandtheNproteinhasbeensuggestedtohavechap- thespeciesBetacoronavirus1)appear(s)tobeanexceptioninthat erone and TRS-L/TRS-B unwinding activities (Galán et al., 2009; am orestab leSL3containin g the5(cid:3)-UCU A AAC -3 (cid:3) sequence in the Grosso ehm eetal.,2009 ;Huangand Lai,1999 ;Keane et al., 2012; loopregioncanbepredictedinthiscase.Overall,thestructurepre- Lietal.,1997,1999;ShiandLai,2005;Solaetal.,2011a,b;Zún˜iga dictionshowninFig.1turnedouttobeinperfectagreementwith etal.,2007,2010).Itisthereforetemptingtospeculatethatcellular previousstudies(seechapter2.2). and/orviralproteinsbindandunwindtheenergeticallylabileSL4 Wethereforeusedthisapproachinsubsequentstudiesofcon- substructuretofacilitatethestrandtransferduringsgminus-strand served RNAstruc turee lem entslocat ed inthe5(cid:3)gen omereg io nsof RNAsynthesi s. alphacoronaviruses.PredictionswereverifiedandrefinedbyRNA structureprobingan alyses(Ehre sman netal.,1 987; Queta l.,1 983) 2.4. Delineationof3(cid:3)cis-actingelementsrequiredforcoronavirus usinginvitro-transcribedRNAswithsequencescorrespondingto replication the 5 (cid:3)-te rminal genome r egion s of H CoV-229E and HCoV-NL6 3, resp ectively(to bepublis hedelsew h ere).Forthe calcu lationofsec- Initialinformationon3(cid:3) cis-actingelementsrequiredforRNA ondary structures of single sequences, we used RNAfold --noLP replicationwas(again)derivedfrombetacoronavirusDIRNAstud- (v.2.0.7) (Lorenz et al., 2011) and -C, respectively, if constraints ies(Kimetal.,1993;LinandLai,1993;Luytjesetal.,1996).Deletion wereuse d. mu tagen es isd atasu gge sted tha t3(cid:3)cis -acting ele me ntsen compass Us ingmultiplealignmentscalculatedwithLocARNA,wewere theentire30 1-nt 3(cid:3) UTRplu spo ly(A)tail,alo ngwitha portionof abletoidentifyRNAsecondarystructuresconservedamong(all) the nucleocapsid (N) protein gene. However, subsequent studies alpha-andbetacoronaviruses,thusconfirmingandextendingear- showedthatthestructuralproteingenes(includingtheNprotein lierstudies(Figs.1and2)(ChenandOlsthoorn,2010;Ramanetal., codingregion)toleratemajorchangesincludingcombinationsof 2003).Theseinclude(i)SL1,(ii)SL2(withitsshortstemandhighly single-sitemutationsandrearrangementsofentiregenes,suggest- conser vedloo pregio n[5 (cid:3)-UU UG U-3 (cid:3)inalp ha coron aviru ses]) ,(iii)a ing that th e 3(cid:3)-proxi mal coding regions d o not fo rm pa rt of the poorlystru cture dregio ncontainingthe TRS-LCSandsomeflan kin g 3(cid:3) c is-ac ting element (de Haan e t al., 20 02; Goe bel et al., 2 00 4b; sequence,(iv)SL4(containingtheuORF)and(v)SL5,thelatterbeing Lorenzetal.,2011).Similarly,formembersofthespeciesAlpha- conserved very well among all alphacoronavirus species (Fig. 2) coronavirus1(TGEV,FCoV),itwasshownthattheNgenewasnot and significantly more diverse in betacoronaviruses (Chen and requiredforreplication(Izetaetal.,1999)andevendeletionsofthe Olsthoorn,2010).Thelargenumberofcovariantbasepairsinthe accessoryproteingenes7aand7bweretoleratedinFCoV,suggest- alphacoron avirus SL5 (Fig.2 )sugges ts ignificant const raints an da ingthatth e3(cid:3)cis- acting re plica tio nsig nalsdono te xceed 283nts majorfunctionalroleforthisstructureinalphacoronavirus(and, pluspoly(A)tail(Haijemaetal.,2004).Forthegammacoronavirus possib ly, betacor onav irus ) re plication a nd there is indeed some IBV, a minim al 3 (cid:3)-termina l s equ ence o f 3 38 n ts was reported to experimental evidence to support this hypothesis (Brown et al., berequiredforDIRNAreplication(Daltonetal.,2001),supporting 2007; Su et a l., 2014). Usi ng RNA struc ture probin g inform at ion the ideatha t,ac ro ssall coronaviru sgenera ,t he3 (cid:3)UTR containsall obtain ed for the 5(cid:3)-term inal60 0nts ofHCoV-2 29Eand HCoV-NL63, the cis-a cting eleme nts requiredfo rreplica tion .ForM HV,itw as we confirmed and refined our RNA secondary structure predic- shown that a significantly smaller fragment of no more than 55 tionsfortwoB-lineagealphacoronaviruses(Figs.3and4).Thedata ntssufficesfortheinitiationofnegative-strandRNAsynthesis(Lin obtainedinthesestudies(detailstobepublishedelsewhere)sup- etal.,1994),suggestingdifferentialrequirementsforplus-versus portamo de linw hichthe ∼310-n t5 (cid:3)ge nomeregi onsconsiste ntly m inus -strand RNAsynth esis.Furthe rmore,using beta coron avirus foldinto4majorRNAstructurescalledSL1,SL2,SL4,andSL5.The DIRNAsystems,ashortpoly(A)tractofatleast5–10ntswasfound lattercontains3hairpinsubstructures,SL5a,5b,and5c,featuring toberequiredforreplication(SpagnoloandHogue,2000). highlyconserved5(6)-ntloopsequences. The consensus second ary structure predicted for alphacoron- 2.5. Structuralandfunctionalfeaturesofcoronavirus3(cid:3) aviruses(Fig.2)wasfoundtofitverywelltheindividualstructure cis-actingelements predictionsforHCoV-229EandHCoV-NL63(Fig.3Aand4A)and theinclusio no fstructurep robi nginformati onas ad ditio nal con- Cis-acting RNA elements present in the 3(cid:3)-terminal genome straintsrequiredonlyveryfewminoradjustmentsinourstructure regionshavebeenstudiedmostextensivelyinbetacoronaviruses. predictions(Figs.3Band4B).Mostimportantly,thebasalpartofthe The first essential RNA structural element, called bulged stem- predictedSL4wasnowpredictedtobeunpaired,therebyextending loop (BSL), was discovered in MHV (Hsue and Masters, 1997). It thesingle-strandedregiondownstreamoftheTRS-Landalsoaffect- comprises 68 nts immediately downstream of the MHV N gene ingthespacingbetweenSL4andSL5.The(predicted)basalstemof stopcodonandwasdiscoveredasaresultofattemptstoreplace SL4 con tainsth emostco nser ved sequ enc ewithinthe alph acoro n- the M HV 3 (cid:3) UT R w ith that of BC oV (Hsu e a nd Maste rs , 1997). avir us5(cid:3)-term ina lRNA structural elements (Fig.2, see theredbase Des pitelim itedse quenc eide nti tyinth e3(cid:3)UT Rsof thetwov iruses, pairs). Itistherefo rerea sonableto thinktha tthi ss truc tur ally flex- replacem ents o f the enti re 3(cid:3) UTR ( and specific p arts of i t) were ibleregionisinvolvedinlong-rangeRNA-RNAinteractions.Inline tolerated,suggestingthepresenceofconservedstructures(rather withthisidea,apreviousTGEVreversegeneticstudyshowedthat than sequences) that perform cis-acting functions in betacoron- mutantspermittingadditionalbase-pairinginteractionsofthecopy avirusreplication(HsueandMasters,1997).Theconservationof TRS-Bup streamofa reporters gRNAwithth e5(cid:3)-GAAA-3 (cid:3)s equ ence functio nallyequiv alente lem entsinth e3(cid:3) (an d5 (cid:3))UTR(s)amo ng immed iatelydo wn s treamof theTG EVTR S-L CS(5(cid:3)-ACUAAAC-3(cid:3)) betacoronav irusgenom eswasfur the rsu pported by astudy show- (see also Fig. 2) enhance the production of this specific reporter ingthataBCoV-derivedreporterDIRNAwasefficientlyreplicated sgRNA(Zún˜igaetal.,2004).Thesefunctionaldataandourstruc- byarangeofBCoV-andMHV-relatedbetacoronaviruses(Wuetal., turalan alyseso fal pha corona virus5 (cid:3)-terminal genom ere gion slead 20 03 ).Inte re stingly ,apo ssibleBSLequ ivalentwasalsoid entifi ed in us to suggest that the basal part of SL4 exists in a flexible state, IBVandothergammacoronavirusesanditsfunctionalsignificance therebypossiblyfacilitatingstrandtransferduringsgminus-strand wasdemonstratedusingIBVDIRNAconstructs(Daltonetal.,2001). RNAsynthesis.BoththisRNAstructuralflexibilityandtheroleof Thenearlyperfectstem-loopstructureinIBVcomprises42ntsand R.Madhugirietal./VirusResearch194(2014)76–89 81 b UCYG U U GG C D U C G Types of pairs SL5 G K U G 1 2 3 4 5 6 S SA e C G Incompatiblpairs021 a CCUGUUGCKHGCNBUUUABCSUUUBCCWNAUAGCRH2GH5SD0GYMCRUAUSUUUACGGCUAGCUCUCGGUCUUGAAUAGGGUAUUAASGB3W0GA0UHDGUCUUCGC c 200 U A SL1 AUUSKUAAUCGWBSNWCDGGGAKC NYRCBAAGGUUGGCCAUA GCUGUAACUCGAAUU SL4 BUUYUCGWAGUGG1A50 AKUGA UMGCU A A U A U A UCU GAKU SL2 CYC UUA SA UG St art ORF1a UUA YAUUUG UGUU AGUU AHM GCUU AUA UUUUC GU UU AA GC SC G C A U TRS-L A U U A A U R Y A U U A A U A U A U K C 300 5’GCACUUA UUUU AACUCYGUCUUCGGACACCAAYCUCAACUAAACAG CAUUCAAG CAUGUGACAC 3’ 50 100 HCoV 229E .A.-.-.C.U.U(A(A(G(U(A.C.C.U.U.A(U(C(U(A(U(C.-.-.-.-.-.U.A.C .A)G)A)U .-)A)G)A.-.A.A.A-.G.U.U)G)C)U)U)U.U.U(A(G(A(C(U.U.U.G.U.G)U)C)U)A)-.C.U.U.U.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.U.C.U.C.A.A.C.U.A.A.A.C.-. 73 BBHTPBBaCaaGEatottEDtCVCCVVCo oooVNVVV L 61HH53A1KK2UU82 AGGGG-A------CCAAAA-UUCCCCCUUUUUUUUAUUUUUUAAAAAAAAAAAAAAAAAAAAAAGGGGGGGAAAAAU-UUUUAAAAAAAUAUUUUUUAUAUAAUGUAAAAUUUUUUUUGCCCCCCAUUUCCUGAAAAAAUUUUUUUGCCCCCCU------A------G------C------G------UUUUUUUGAGAAAAGCUUCGUC GCAACAUGGGGGGAAAAAAAUUUUUCUA ------UAAAAGACGGGGGGU-AAAGAC-G----UUUUGUGUUCCUUACACAGAAUGUAUUUUCUUAAUUUAUCCUUCUUUUUAUCCCCCCUUUUUUUUUUUUUUUUU-UAUUUCCUUACUCUUUAUAUAAUCAGAGGAUGAGAAGAACACCAGCUCUUCC-UUUGUCCUUUUUUUCUUUUU-----GGUCU--UUGAG--GGUGUGGUCCUCUUCUUCUCCUAAUAUUAG-A-AA-ACCCCACUUUUUUUUCCCCCCUAUGCCCU------G------U------C------U------U------C------G------G------A------C------A------C------C------A------AAUACCUCUCUCCCUUUUUUUCCCCCCCGAAAAAAAAAAAAAACCCCCCCUUUUUUUAAAAAAAAAAAAAAAAAAAAACCCCCCCA------ 77777792642339 HPBBBBHTCaCaaEGaotottDEtVCVCCVVC o oooV2NVVV 2L 961HH5E3A1KK2UU28 (GGGGGG-G(AAAAAAGA(AAAAAAAA(AAAAAAAA(UUUUUUAU(UUUUUUUU(UUUUUUAU.UAU--U-U.G-G-----.U-------.C-------.C-------.UC------.UGU--U-U.CUC---UG(CCC--CUC(UUU--UUU(UUUUUAGA(CUCUUGUU(CUAGGUCG(GUGCCGUG(GGCCCCUC(CUAAAUUC(CGCUUGCG(GUAAAUUG(CACUCCAC(AUAGUAUA(UGUUUUGU(GCG--UAC.UUU--UAU .U-A---GA.UUCC--UU)GCGU--U-)AACA--AC )UUAU--UA)GGUGUGGU)CCGUUUGA)UUCGAACG)GGAUUUA-.G-------.A-------)GCCGGGGA)UUACGGUG)CGAUCCCG)GGUGUGCA)UAUAAGUC)AAAAAAAA)GGGG--GA.UCAU--UG.GUUG--GC.UGGA--UG.AGUA--AU.ACGA--AU.--U-----.--A-----.--U-----.UGUUUUUG.UUUUUUUA.GGGGGGGU)AGAGAAAU)AAGAAAAA)AAAAAAAU)UUUUUUUU)UUUUUUUU)UUUUUUUC)CCCCCCCC.AAGGACGA.UUUCGCUU.UUUUUUCU.--C-----.UACA--AC.GGAGCAAA(GGGGGGGG(GUGUGGUU(UUUUUUUU(UUUUUUUU(GGGGGAGG(CCCCUCUG.AUC-UCAC.AUAUAAAA(CAGUAC-A(AACACCAU(GGCGAACC(UUUUUUU-(UAUAACGA(UGGGCCGC(GCUCUCUU(GCGUUGUC(AAUAGGAC.AUAGCCGU.-C-U----(GGAAACGU(CCCCCCCG(AAAAACAG.AAAAAAAA(GGGGGGGA(UUUUUUUC(GGGGGGGG(CCUUUUUG(UUCCCCUG 111111116666445835921291 HPBBBBHTCaCaaEGaotottDEtVCVCCVVC o oooV2NVVV 2L 961HH5E3A1KK2UU28 (GGGGGGGG.UUUUUUUU(GGGGGA-G(CCCCUU-U(UUUACU-G.GUGUAU-U.UCCGUUUC.CUUUUCGC.CACCCUAU(UGCGAGGA(CGACGUCG(UGGCUGG-(AGGAGUAU(GUGGGUAC.UUUUUUCU.UGUCCAGA.CCCCCAGA.CAUCCGUG(UCUUUCGG(GUGCCACG(GUGCGCAU(UGUUCUGU(UAGU-GUU(GCUUAGAC(GGGCCUGG(CUGAUGGU(GGGGGGGG.UUUUUUUU.UUUUUUUU.CCCCCCCC .CCCCCCUC.GGGGGGGG.UUUUUUUU)CCCCCCCC )AGAUUACC)CCCCGGAC)GCGAU-CU)AUUCUUUA)GUAAAGAU)ACCCGCGU)UUUUGUUU)UAUUUUGC.CCGCAACG.CAUAUA-U.AUGCAA-A.UAUACCAA)UCCCUCCG)CUCCA-AU)UAUCGACC)AGUUGCAG)CA-CUUUC.AC-A--UC.AA-AGGGU.AAAAGUAA.CAGGCCUG.-CUU-U-U)-AUAUG-A)GGGGGAAG)CCCCCCCU.-------A(CCCCCCUG.UU-UUUUC(UUCUUGAG(ACCCUCAA(CCACGAGG(UUCUGCUU(CCGGUGGG(GCCCU-GC(AGUACUUG(GGGGAAGG.G---GG--.UUUUUUUU.UUUUUUUU.CCCUCCCC.CCUUCUUC.GGGGGGGG.UUUUUUUC)CCCCCCCC)UUAUUUAC)CGGGGGCG)GGUCGCUU)UGGACGGA)GGUGCUCC.-------A)UGGGAGUA)UUGUUCUC.UUUUUAAG)GGGGGGUU.UUUUUUUU(GGGGGGGG(UUUUUUUG.GGGGGGGG.GGGGGGUU.AAAAAAAA.AUUAUUAG(GAAAAAGA(CAUGGGCC(ACAUUUAC(AUGCAAAG(AAUUCCCG 222222225665335782297526 HPBBBBHTCaCaaEGaotottDEtVCVCCVVC o oooV2NVVV 2L 961HH5E3A1KK2UU28 (GGGGGGGG.UUUUUUUU.UUUUUUUU.CCCCCCCC.UCCCCCUC.GGGGGGGG.UUUUUUUU)CCCCCCCC)UUAAGGGC)UACGUUUU)UGUAGGUG)GUACCCGU.-------G.-------A)UUUUUUUU.GUUUUUGC.GGGGGGGU.AAAAAAAC.AAAAAAAC)AAAAAAAC)CCCCCCCU)CCCCCCCC)AAGGGGAG)GGAAAAAC)UUUUUUUC.AAAAAAAG)AAAAAAAG)CCCCCCCC.-------C.-------G )UUUUUAUC)GGGGAGGC)UCUUGGCA)UCGUCUUG )CGCAACAG)CGAGGGAA)UCCCGCCG)AUAUUUCA)AAAAAAAA)UUUUUUUU)GGGGGGGG)GGUGUGUA.CCCCCGUG.CUUAGUUU.UAAAUUUU)GGUGCCAC)CCCCCUCC)AAAAAAAA)AAAAAAAA)CCCCCCUA)CCCCCCCC.GAAAUAAA.UUAUUUAA.GGUAGUGU.UUUUUUUU.GCGUGGGC.AAAUAAAA.CCCCCCCA.AAAGACAG.CUCUUCCA 333322331111990348853186 Fig.2. Alignment-basedsecondarystructurepredictionof5(cid:3)genomeregionsofalphacoronaviruses.Thevirusesincludedinthisanalysisrepresentallcurrentlyrecognized speciesinthegenusAlphacoronavirus.ThealignmentwascalculatedbyLocARNA,thestructurebyRNAalifold.TheconsensussequenceisrepresentedusingtheIUPACcode. Colorsareusedtoindicateconservedbasepairs:fromred(conservationofonlyonebase-pairtype)topurple(allsixbase-pairtypesarefound);fromdark(allsequences containthisbasepair)tolightcolors(1or2sequencesareunabletoformthisbasepair).Thegraybarsbelowthealignmentindicatetheextentofsequenceconservationat agivenposition.GrayshadowsareusedtolinkRNAstructureswiththecorrespondingdot-bracketnotationsabovethealignment.Torefinethealignment,ananchoratthe highlyconservedcoreTRS-Lwasused. islocatedattheupstreamendofregionII,aconservedregionin alphacoronaviruseswhilegammacoronaviruseswereproposedto th egamm ac oron avirus3(cid:3)U TR. retain only a few feature s of this PK or to la ck th is structu re ThesecondessentialRNAelementwithinthe(betacoronavirus) altogether (Williams et al., 1999). In a subsequent study using a 3(cid:3) UTR isacla ssicalhai rpin- typeRN Apseud okn ot(PK)structure reverse ge netics app roa ch, the fu nct io nal significa nce of the P K thatwasfirstdiscoveredinBCoVandshowntoberequiredforDI ingenomereplicationwasdemonstratedforMHV(Goebeletal., RNAreplication(Williamsetal.,1999).InBCoV,thePKcomprises 2004a).AlsothemoredistantlyrelatedbetacoronavirusesHCoV- 54ntsandislocatedimmediatelydownstreamoftheBSL.Equiv- HKU1(Wooetal.,2005)andSARS-CoVwereconfirmedtocontain ale nt P K st ru ctures w ere predicte d to be conse rv ed i n bet a- and this P K stru ctu re (Goeb el e t al., 2004 b). Th e 3(cid:3) UTR reg ions of 82 R.Madhugirietal./VirusResearch194(2014)76–89 A B a 5'AC UUSCAUAGUACUUUCUAUCAAL CGAUAGAAAGUGCUUA1AUU1USUU0UUUAGACU0C5LGU0UGGUCUAA2UACUCUGGUCGUU CUTSCCRGGULGASUCGAU4-UCACLGGUAUACUAAAGAAAUUUUCGUGUGAAAUUUCUUUGGAAUAU 150GAGCAAAGUUGGCCAUUAUUGGUGUUGUUGCAGCACUCAGUAAGUACUCUUGCAACAGACGSCUSGCUCACAC3tGGLaU0GUr0A5tUGG UAUOUU CGUGGCRUGGAAAAGGCCAFCcUAUAUUU2C1UUU5GUAA0aCGCGCUGAUUG3AGGC2U'CUGA0UUCA0UCUAUUCGGGCGUCAUaCCACCCGAUGGUGbUCUUC5'ACUUSUACCUAGUACUUCUAUAAL CAUAGAAGUGCUU1AUGAAUUSUUAGACU5LU0GGUCUA2UCUUUACUAUCCTURSAUSUALC1U-UA04GLAC0ACUAGUUAAGUGUGCCUUCCUAUGGGGGAUCGUAGUGG1UG5AAAUU0AGAGCAUGUCAUAGAGAUGUUCUSUGGUUGUUUUAUGACUGAUGCUCAUUCCLCACCAUGAAACU5G AGGUUGCAAUGAAGUGSGGUGCAACCUGUCCUGtGGUCaCCGU3AAUUCUAr0AUUAUtUAGG 0ACc2CUOUGGGUU5AUC R0GGGUGCUUAU2AFCCA0CG1UC0CGAUaGUACUA3UAUG'GCCUCGAUGCCUCCUGUCACGGUbU minimum free energ y = -92.70 kcal/mol minimum fre e ener gy = -82.80 kcal/mol Fig.3. RNAsecondarystructureoftheHCoV-229E5(cid:3)UTR.(A)TheRNAsecondarystructureofthe5(cid:3)UTR+20ntswaspredictedusingRNAfold--noLP.(B)RNAsecondary stru ctu reof the5(cid:3)UTR +20ntsw a spr edictedusin gRNAfo ld- -noL P-C .Structure probingd ata we reused as con strain ts.TheTR S-Lco reseque nceand tra nslat ionalstart codonsareindicated. MHVandSARS-CoV,whichonlyshare38%sequenceidentity,were anextensiveMHVmutagenesisstudy,thefunctionalsignificance shown to be interchangeable, again supporting the conservation ofbothstructureswasdemonstratedconclusively.Becausethetwo of functionally equivalent structures among different betacoro- structures cannot exist simultaneously and, yet, each of them is navirus lineages. Apparently, this conservation does not extend essentialforviralreplication,itwasproposedthatthetwoelements to alpha- and gammacoronaviruses because replacements of the may adopt alternate structures that act as a ‘molecular switch’ MH V3(cid:3)U TRw iththatofTGEVand IBV,resp ectively,didno tg ive cont rolling thetransit ionbetwee ndif feren ts te psofthevir alrepli- risetoviableMHVmutants(Goebeletal.,2004b).Together,these cationcycle(Goebeletal.,2004a).Initialmechanisticinsightinto datasuggestthatcoronavirusesevolvedseveralgenus-specificcis- howthis‘molecularswitch’mightworkwasobtainedinasubse- actingRNAelements.Forexample,thepresenceofaBSLfollowed quentstudythatprovidedevidenceforadirectinteractionbetween byaPK stru ctureislim ite dtobetac oro naviruses ,w h ileo thergen- loop1 ofthe PKw iththee xtreme3 (cid:3)en d ofthe MHVgeno me(Züst era appear to contain only one of these elements, with the PK et al., 2008). The characterization of second-site revertants aris- beingconservedinalphacoronavirusesandtheBSLingammacoro- ingfromMHVmutantswithgeneticallyengineeredoligonucleotide naviruses(Daltonetal.,2001;HsueandMasters,1997;Williams insertionsinloop1revealeddistinctreplacementsattheextreme etal.,199 9)(seeS ect ion 2.6). 3(cid:3)end,the reb yret ai ningspec ificbase -pairingintera cti ons withthe Thestructuresandfunctionallyimportantsubstructuresofboth loop1regionandthusprecludingtheformationofstem1ofthePK. the BSL and PK have been characterized in significant detail for Anothersetofmutantscontainedsecond-sitemutationsthatsug- BCoVandMHV(Goebeletal.,2004a;Hsueetal.,2000;Williams gestedspecificinteractionsofthePKregionwithnsp8andnsp9. etal.,1999).Intheprimarystructure,theBSLandPKregionsover- Basedonthisstudy,amodelwasproposedinwhichtheformation lap by several nucleotides. Formation of the first stem of the PK anddisruptionofthePKbydifferentialbase-pairinginteractions stru ctu rerequ iresbase-pair inginterac tio nsw itht hedo wn stre am with the BSL a nd 3(cid:3)- ter min al genome sequences, respectively, segmentFoftheBSL,therebydestabilizingthelatterstructure.In mayleadtoalternatestructuresthatgoverndifferentstepsofthe A b B 5S'UCACLUUUAUU1CAGUAUAUUAUUGAAGAAAGAAGUUUCUUUUUU1AU0UUA0AUSUUCUAGACUGL5UU0GGGUCUA2SGUCCUALUCGaC4UGUTCUUAUGRUCUUGGCGGCSUUUCACAUUA-CCAUUGLACAAGUCUAGGUAACCUCUACGAAAUUUUAAU2G0UGUGAAAUUUCGUAGU0CAAAUUAUUUCGUAAAAGUUUGUUGUUGGAAUUUUCGUUCAUUUUCGUGUCUCAUCAGGGACGUGCAUA1GAAA5AGAUG0CUAGSAGCUGC2GAL5ACUU0UA5UUACGGAGGCCUUUCCAUAGUUGUAACUUGUUUACAAUcSUtaCrAt OA GRUFG1AaCAC3' 5S'CUACLUUUAU1UCAGUAUAUUAUUGAGAAAAGAAUUCUUUUAUUSUUAGACU5LU0GGUCU2UACUUCUCUCATARCSU-ALAaAAUAACGUUCUUUUGUSAUUUUAGGCUGUCAUCUUGLGUCUAUGGCAGUCUAG4UCGAUCGU1GU0C1UA05AAGAAUU0AGUACAUGAGUAUUAUGAGUCGUUCAGG2UGUCACUUU0ACUUAAAUGUAAGCC0UCGGGCUUAAUAUGCAAUCAAUGUGCCUGUAAUGCUCGUUAAGUCUcUUUACAASGUCAUAGUUCUUGSLGCA2taAAA55rU0tGA A OGGUUURUGGUUFAUAAA1GUUCCaUGAGUCGC3U'AGCUUbUGCC 1 300 300 minimum free energy = -93.00 kcal/mol minimum free energy = -58.60 kcal/mol Fig.4. RNAsecondarystructureoftheHCoV-NL635(cid:3)UTR.(A)TheRNAsecondarystructureofthe5(cid:3)UTR+20ntswaspredictedusingRNAfold--noLP.(B)RNAsecondary stru ctu reof the5(cid:3)UTR +20ntsw a spr edictedusin gRNAfo ld- -noL P-C .Structure probingd ata we reused as con strain ts.TheTR S-Lco reseque nceand tra nslat ionalstart codonsareindicated. R.Madhugirietal./VirusResearch194(2014)76–89 83 initiationandcontinuationofnegative-strandRNAsynthesis(Züst bedifficulttomakereliablepredictionsonstableRNAsecondary etal.,200 8).F urthereviden ce tosupportthis mode lwasobt ained str uctures in this re gion. As described abo ve for the 5 (cid:3) UTR, we inasubsequentMHVreversegeneticsstudybyLiuetal.(Liuetal., thereforedecidedtouseacombinationofsequenceandstructural 2013).Thermodynamicinvestigationsrevealedalimitedstability alignmentsofallcurrentlyrecognizedalphacoronavirusspeciesto ofthePKstructure(Stammleretal.,2011),furthersupportingthe identifyconservedRNAstructures.Thepredictionswerethenfur- structural flexibility of this cis-acting element and, thus, its pro- therrefinedusingstructureprobingdataobtainedforHCoV-229E posedroleasa‘molecularswitch’. andHCoV-NL63. TheregiondownstreamofthePKislesswellconservedamong Thevalidityoftheapproachwasfirsttestedbyanalyzingcon- betacor onavir uses.Itisgen era lly refe rr edto ast he“hyperv ariable served RNAstru ct ural elements inth ebe tacoro nav irus3(cid:3)UT Rfor region(HVR)”and is no tidentica ltothe HV R iden tifiedatthe5(cid:3) which alarg ebodyof informati on has beenobtainedi nprevio us endof the3(cid:3)U TRin IB V(D altonet al., 200 1;W illiamseta l., 1993 ). structu r aland func tio nalstudies(s eea bove ).Asshow n inFig.5, ThebetacoronavirusHVRwaspredictedtocontainacomplexRNA wewereabletodetectconservedRNAstructuralelementsinthe stru cture whose exi stenc e an d function al signific a nce was sup- bet acoro navir us 3(cid:3)UTR, includingt heBS Landthet woSLstru ctu res portedbyenzymaticprobingandMHVDIRNAmutagenesisstudies thatformthePKimmediatelydownstreamoftheBSL.Consistent (Liuetal.,2001).Bycontrast,morerecentstudiesshowedthatlarge withpreviousstudies(Goebeletal.,2004a),ourpredictionssuggest partsoreventheentireHVRregioncanbedeletedwithoutcausing thattheformationofthePKrequiresstructuralrearrangementsat majordefectsinMHVreplication,arguingagainstanimportantrole thebaseoftheBSLtopermitthebase-pairinginteractionsrequired ofthisgenomeregioninviralreplication(Goebeletal.,2007;Züst toformPKstem1,thelatterinvolvingthePK-SL2loopsequence et al.,2 008).Int erestin gly how ever,MHVH VRmut an tsp roved tobe an d the BS L 3(cid:3)-t erm ina l sequ ence (Fig . 5A and B) . Inte restingly, highlyattenuatedinvivo,suggestingapossibleroleinpathogenesis ouranalysesalsorevealedanotherconservedstructuralelement, (Goebeletal.,2007). ashorthairpin,immediatelyupstreamofthePK-SL2.Formationof Abou t 7 0– 80 nts from the 3(cid:3) end of the coronavirus genome, th ishai rpinwou ldcompetew ithbase-p air ing interact ionsrequir ed there is a conse rved octa nucl eotide seq uen ce, 5(cid:3)-GGAA GAGC-3(cid:3), tofo rmthe basal partofth eBS LandthePK stem1,resp ectively whichwasidentifiedinearlycoronavirussequenceanalysesper- (Fig. 5B). Furthermore, the hairpin overlaps partly with the PK formedinthelate1980s(Boursnelletal.,1985;Lappsetal.,1987; loop 1 region that, in a previous study, was suggested to inter- Schreib er et a l., 1 989) a nd subsequ en tly found to be un ive rsally actw it hthee xtrem e3 (cid:3)e ndofthe genom e(Z üstetal.,2 008 ).The conservedacrossallcoronavirusgenera,withonlyveryfewviruses conservationofbothstructureandsequenceofthishairpinsug- containingsingle-sitereplacementsinthissequence(Goebeletal., gestabiologicalfunctionforthiselement.Inthiscontext,itmay 2007). This strict conservation suggests an important functional beworthmentioningthatthehairpinstructureispredictedtobe rolefortheoctanucleotidesequence.Todate,however,thefunction disruptedbythe6-ntinsertioninloop1thatwasreportedprevi- ofthesequencehasnotbeenidentified.Asmentionedabove,the ouslytocauseapoorlyreplicatingandunstablephenotypeinMHV entireHVRincludingtheoctanucleotidesequencecanbedeleted (Goebel et al., 2004a). It remains to be seen if the small hairpin fromtheMHVgenomewithoutcausingmajordefectsinviralrepli- representsyetanotherelementintheintricatenetworkofbase- catio nin vitro (Goebel etal.,20 07).Inli newit hthis,r ep lacem ents pairingint erac tionsbet weenth eB SL,t hePK,an dthe3(cid:3) en dthat ofsinglenucleotideswithintheoctanucleotidemotifweretoler- togetherconstitutethecomplexmolecularswitchproposedbythe atedalthough,inmostcases,theoctanucleotidemutantsexhibited Masterslaboratory(Goebeletal.,2004a).Consistentwithprevious small-plaquephenotypesand/ordelayedsingle-stepgrowthkinet- studies,weidentifiedonlyoneconservedRNAstructuralelement ics. In both high- and low-multiplicity-of-infection experiments, intheHVRdownstreamofPK-SL2.Thisstem-loopcontainedthe octanucleotideandHVRdeletionmutantslaggedbehindthewild- conservedoctanucleotidesequenceinasingle-strandedregion.As typevirusbutreachednear-wildtypetitersatlatertimepointsand pointedoutabove,theroleofthiselementiscurrentlyunclearas hadnodetectabledefectingRNAorsgRNAsynthesis(Goebeletal., boththeHVRandoctanucleotidesequenceprovedtodispensable 2007). forbetacoronavirus(MHV)replicationinvitro(Goebeletal.,2007; MHV and BCoV DI RNA studies provided evidence that the 3(cid:3) Liu etal.,2001).Ove rall,th ealignment -b ased structure p red iction poly(A)t ailp resent at the3(cid:3) endofc oronaviru sgenome sisan oth er algo ri thm sused inouran aly sisledtoconclusio nsthatw ereconsis- essentia lco mponen t ofth ecoro na virus3(cid:3) cis- actingsig na ls,with tentwithre sults ob tain edinpre vio us studiesonb etaco rona virus3(cid:3) a minimum of 5 to 10 adenylate residues being required for DI UTRs,suggestingthattheapproachmightalsobesuitabletomake RNAreplication(SpagnoloandHogue,2000).Thisrequirementcor- reliablepredictionsonconservedRNAstructuralelementsinthe respo ndswellt othemini mal binding siteo fthe poly(A)-bind ing highlyv ariablealph aco ronavirus3 (cid:3)UTR s. protein(PABP)onDIRNAspoly(A)sequences(SpagnoloandHogue, Our alignment-based secondary structure predictions using 2000).Recentstudiesfurthersuggestthat,inthecourseofBCoV representativevirusesfromallcurrentlyrecognizedalphacoron- infecti on,3(cid:3) po ly(A)ta illengt hsvaryb etwe en 30 and65 nt s(Wu avirusspeciesr evealed thec ons ervationo fseveralRN Astructural et al., 201 3). This po ly(A ) tail le ngth variation w as co nfi rme d to elemen tsinth ealphaco rona virus3(cid:3)UTR. Ac ounterp arto fthebeta- occurinbeta-andgammacoronavirusinfectionsandinarangeof coronavirusBSLstructure(Goebeletal.,2004a;HsueandMasters, cellty pe s,both inv itroandinvivo(Shie netal.,201 4).T he b iologic al 1997)could not beidentifi edinth ea lph acorona virus 3(cid:3)U TRwhile significanceoftheseobservationsremainstobedetermined. structuralelementssuitabletoformaPKstructurecouldbeiden- tifiedinallalphacoronaviruses(Fig.6A).Interestingly,despitethe 2.6. Identificationof3(cid:3)terminalRNAstructuralelementsof absen ce of anupstreamBSLin alph acoro naviruses,the format ion HCoV-229EandHCoV-NL63 ofthisputativePKstructureispredictedtorequirethedisruption ofashorthairpinimmediatelyupstreamofPK-SL2,ascenariothat Toidentifyputativecis-actingelementsinthealphacoronavirus is similar but less complex compared to the situation described 3(cid:3)UTR ,weuse darange ofRNAfo ldingalg ori thm stoidentifyRNA ab ovefor beta coron aviruses .Itremains tob ein vestigated infurther structu rale leme n tsinth e HCoV -229Ea ndHCoV-N L6 33(cid:3)-term inal studie s w hether or not alph a coronavi ru ses employ a m o lecular genomeregionsencompassingthelast20ntsfromtheNgeneand switch mechanism similar to what has been described for beta- theentir e3(cid:3)-UT R.Becauseoft hel eng tho fth eses equ en ces( 300 corona viruses(Goe beletal .,2 004a). nts), many local secondary structures with similar free energies The predicted SL2 structure (Fig. 6) could be confirmed by andbasepairprobabilitieswereidentifiedand,thus,itprovedto structure probing data obtained for HCoV-229E and HCoV-NL63 84 R.Madhugirietal./VirusResearch194(2014)76–89 AAC U C G C UG CU C U UU HK K M U A A AC KAR Bulged stem-loop B UN UUA G C C G AU GU UKCAAGA W A G A AWCGGCRWGG GUCSACUC CUUCUGMAAGACA AGUAAUAAC GUUAUKDYG PK-SL2 A U A U U A 5’UAAAA UGCUA3’ 5’UAGUCC GG AWGUCUUYG CRCC3’ ...((((((..(((((((((((..((((...((.....))...))))....)))))))))))))))))... ....(((.(((.....))).))).......(((((((((((...........))))))))))).. BatCoV HKU4-1 29983UAACAAGAGUUGAGGCAACUGCUAGCGUUCAGGUAACCCCUUUACGU-GAUGCAUUUGUCCACUCUUGC--30050 30039--GUCCACUCUUGCACAGAAUGGAA-UCAUGUUAAACUUACAGUGCAAGAAAGUAAG-UUAACCC30099 BatCoV HKU5-1 30177UAACAAGAGUCGAGGCGAUCGCUAGUGUUCUGGAAACCCCAUUACAU-GAUGCAAUUGUCCACUCUUGC--30244 30233--GUCCACUCUUGCACAGAAUGGAA-UCAUGUUUUACUUACAGUGCAAGAAGGUAAGUGAA-CCC30293 BCoV 30745---AGAAUGAACCUUAUGUCGGCACCUGG-UGGUAAGCCCUCGCAGGAAAGUCGGGAUAAGGCACUCUCUA30811 30798UAAGGCACUCUCUAUCAGAAUGGAUGUCUUGCUGCUAUAAUAGAUAGAGAAGGUUAUAGCAGACU30862 SARS-CoV TOR2 29405CACAAGGCAGAUGGGCUAUGUAAACGUUU-UCGCAAUUCCGUUUACG---AUACAUAGUCUACUCUUGUGC29471 29458--GUCUACUCUUGUGCAGAAUGAAU-UCUCG-UAACUAAACAGCACAAGUAGGUUUAGUUAACUU29518 MERS-CoV 29774UAACAAGA-UCGCGGCAAUCGUUUGUGUU-UGGUAACCCCAUCUCAC-CAU-CGCUUGUCCACUCUUGC--29838 29827--GUCCACUCUUGCACAGAAUGGAA-UCAUGUUGUAAUUACAGUGCAAUAAGGUAAUUAUAACCC29888 HCoV HKU1 29648---AGAAUGAAUCCUAAUUCGACACUAGG-UGGUAACCCCUCGCUAU-UAUUCGGAAUAGGACACUCUCUA29713 29700UAGGACACUCUCUAUCAGAAUGAAU-UCUUGCUGUAAUAACAGAUAGAGUAGGUUGUUACAGACU29763 MHV 31036---AGAAUGAAUCCUAUGUCGGCGCUCGG-UGGUAACCCCUCGCGAGAAAGUCGGGAUAGGACACUCUCUA31102 31089UAGGACACUCUCUAUCAGAAUGGAUGUCUUGCUGUCAUAACAGAUAGAGAAGGUUGUGGCAGACC31153 BatCoV HKU9-1 28864---UAGA----GAGACCACGGUU----------UAAUC-------------GCUGUGGCCUACUCUUAU--28902 28891--GCCUACUCUUAUACAGAAUGGAA-UCCU-AGUGUACAGUGGUAUAAGUAAGCUGUGCAUUCGC28951 BatCoV HKU4-130039--GUCCACUCUUGCACAGAAUGGAA-UCAUGUUAAACUUACAGUGCAAGAAAGUAAG-UUAACCC30099 BatCoV HKU5-1 30233--GUCCACUCUUGCACAGAAUGGAA-UCAUGUUUUACUUACAGUGCAAGAAGGUAAGUGAA-CCC30293 C AMCCKHAGCGAGAUCGAG BSMHMBCAECHaoRRoVtVSSVC-- oCCHVooK VVUH 1KTUO9R-21322232099918748708952089887091U--UU-.A--AA-.AGGGGG.GUUGGC.GCCAAC.CUCCCU.AAAAAA(CCCCCC(UUUUUU(CCCCCC(UUUUUU(CUUCCU(UGGUUA(AUCAAU(UGAUUA(CCCCCC(AAAAAA.GGGGGG.AAAAAA.AAAAAA.UUUUUU.GGGGGG.GAGAGG.AAAAAA.UUAUUA.G---G-.UUUUUU.CCCCCC.UUAUUC.UCUUUU.GGGGG-.C-UCCA.UUUUUG.GAGGGU.CAUUUG.UCAACU.AUAAAA.UAUUUC.AAUAAA.AAAAAG.UCCCCU.AAAAAG.GGGGGG)ACUAAU)UAGUUA)ACCAAU)GAAGGA)AAAAAA)GGUGGG)AUAUAU.AAAAAA.GGGGGA)GGGGGG)UUUUUC)UUAUUU.AUAGGG.UAUUUU.AGUUGG.GUAAGC.CUUCCA.AAAAAU.GAAGGU.ACCAAC.CUCCCG.UUCUCC.322232099918858719618655288331 C G CGGAGCUACCU WAGKGRACGUG 5’UAGUCCCUACUU UGGGAAAAUAPUKKD-YSARLC1CC3’ U A G C HVR U A M K C G A U UURDASACGAUAWAGGAAG UCCGUAAGGAGAGAGGACGGGCUCGCWCC GGUAAWAGGUACCUUGGAYCUAGAUUAA A U Octanucleotide G C U U G C K M 5’GUACUG ARUCGUD3’ ...(((((((((.................(((((........................................))))).............(((...))).....))))))).))... BatCoV HKU4-1 30131GUAACUAUAGAGAGU---AAUUU--AAAGACUGUC-----------ACCUCUGCGUGAU------UGCAAGUGAACAGU------------GCCCCUGUGGAAGAGCUCUAUA-GUGUA30214 BatCoV HKU5-1 30327GUAGCUAUAGAGAGA---AGUUU--AAAGACUGUC-----------ACCUCUGCGAGAU------UGCAAGUGAACAGU------------GCCCCCUGGGAAGAGCUCUAUA-GUGUG30410 BCoV 30897GUAUAGUGUUGGAGA---AAGUG--AAAGACUUG------------C-GGAAGUAAUUG----------CCGAACAAGU------------G-CCCAAGGGAAGAGCCAGCAU--GUUA30972 SARS-CoV TOR2 29552ACAUUAGGGAGGACUUGAAAGAGCCACCACAUUUUCAUCGAGGCCACGCGGAGUACGAUCGAGGGUACAGUGAAUAAUGCUAGGGAGAGCUGCCUAUAUGGAAGAG---CCCU-AAUG-29665 MERS-CoV 29921GUAGCUGUAGAGAGA---AUGUU--AAAGACUGUC-----------ACCUCUGCGUGAU------UGCAAGUGAACAGU------------GCCCCCCGGGAAGAGCUCUACA-GUGUG30004 HCoV HKU1 29798UUUGAUUGUUAGAGU---AGUUA--UAAGGUUUAG-----------C-UGUAGU-------------------AUAAAC------------GCCUCC-GGGAAGAGCUAUCA--AUUGU29865 MHV 31188AGAAUGUGUGAGAGA---AGUUAGCAAGGUCCUAC-----------G-UCUAACCAUAA------GAACGGCGAUAGGC------------GCCCCCUGGGAAGAGCUCACAUCAGGGU31273 BatCoV HKU9-1 28982-UAGCUGAUUAGAGU-------------GUGUU---------------AAAGAC---------------UUGUAGAGCG--------------CCUUAGGGAAGAGCUAAUCA---GUA29039 Fig.5. Alignment-basedsecondarystructurepredictionofbetacoronavirus3(cid:3) genomeregions.Thevirusesincludedinthisanalysisrepresentallcurrentlyrecognized lineagesandspeciesinthegenusBetacoronavirus.ThealignmentwasgeneratedusingLocARNAandthestructurewascalculatedusingRNAalifold.Theconsensussequence isrepresentedusingtheIUPACcode.Colorsareusedtoindicateconservedbasepairs:fromred(conservationofonlyonebase-pairtype)topurple(allsixbase-pairtypesare found);fromdark(allsequencescontainthisbasepair)tolightcolors(1or2sequencesareunabletoformthisbasepair).Graybarsbelowthealignmentindicatetheextent ofsequenceconservation.GrayshadowsareusedtolinkRNAstructureswiththecorrespondingdot-bracketnotationsabovethealignment.(A)Alignment-basedsecondary str ucturepr edictionofthe bulg edstem-l oop (BSL )in the 3(cid:3)U TR.(B)Alig nmen t-b asedsecondary structurep redictiono fthep seu doknot(PK )re gioninthe3(cid:3)UTR .Notethat PK-SL1isanalternatestructurethatrequiresbase-pairinginteractionsbetweentheloopregionofPK-SL2andthebasalpartoftheBSLshownin(A).FormationoftheBSL basalpartandPKstructure,respectively,aremutuallyexclusive(seetextfordetails).(C)Alignment-basedsecondarystructurepredictionofthehypervariableregion(HVR) inthe 3(cid:3)U TR.T or efinethea lignment,an anc horatthe highlyco nser ved octa nucleot ide sequencewasuse d. (Fig.7,detailedstructureprobingdatatobepublishedelsewhere). octanucleotidesequenceinasingle-strandedregion.Thelargedis- Furthermore, our structure probing data indicated base-pairing tal part of the stem-loop structure was further corroborated by interactions upstream of SL2 in HCoV-NL63, supporting the for- structureprobingdata(Fig.7,detailstobepublishedelsewhere). mationofthepredictedsmallhairpininthisregion(Fig.7Aand InbothHCoV-229EandHCoV-NL63,theoctanucleotidesequence B).Bycontrast,nosuchinteractionswereseeninHCoV-229E.Also, wasfoundtobelocatedintheloopregion.Ofnote,thecellculture- thestructureprobingdatadidnotsupporttheformationofasta- adaptedHCoV-NL63isolateusedforourstructureprobinganalysis blePKstructure,possiblyreflectingasimilarlylowthermodynamic contained a short deletion apparently acquired upon serial pas- stabilityasdeterminedfortheequivalentPKinbetacoronaviruses sagingincellculture,resultinginasignificantlysmallerloopbut (Stammleretal.,2011).Furtherstudiesincludingreversegenetics retainingtheoctanucleotidesequence(withoneG-to-Areplace- experimentsarerequiredtoconfirmtheexistenceandbiological ment) in an identical position in the loop when compared to significanceofthepredictedalphacoronavirusPKstructure. HCoV-229E(seeFig.7AandB).Thisserendipitousdeletionshows WithrespecttotheHVRdownstreamofPK-SL2,anextensive thatthedistalpartoftheextendedstem-loopstructureisnotessen- stem-loop structure was predicted in our analyses of alpha- tialforHCoV-NL63replicationincellculture.Thedataalsoindicate coronaviru s 3(cid:3) UTRs (Fig. 6B). The stru cture is suppo rte d by a tha t, d espite the d eletion, the o ctan ucleotid e se quen ce r etains a largenumberofcovariantbasepairsandcontainstheconserved positioninaloopregionofthestem-loopstructureandtolerates R.Madhugirietal./VirusResearch194(2014)76–89 85 A B Types of pairs Octanucleotide Incompatiblepairs021 1 2 3 4 5 6 UGAAUAAGAWCUAAGUGACUACGGCCCCUUAAAGUAAAUAGYGUUAAAAGUAGGACGCGAUGCCGAUHKVUWVDNWDUHDBYUKUAUCGUAUHUUAUCG DUAUUKARUUAAAYGGUMCAUAAGUGUAAAAGUUUCYCGGRVUWUWAG H D H GU AAUCACGUGAUA AUAAUG UWUUAU PK-SL2 HVR GUCAU UGGUGUUU U A R U U A U A U A A U 5'AGUC GCCWG UAUU3' 5'U U A U AGGG3' BBHTHPBBaCCaaGEatoottEDtCVVCCVVCo oooVN2VVV L2 691HH53EA1KK2UU82 2222222277678878089905336246942652087645.AG-GC-AA.GG-GU-GC.UUUUAUUU(CCCCCCCC(UUUUUUUU(UUCUUUUU(AGAGAAAG(UCUCUUCU.AAAAAAAA(CCCCCCCC(AAAAUAAA.CCCCACCG.AAAAAUAA.AAAAAAAA)UCUCAUUU)GGGGUGGG)GGGGGGGG)UUUUUUUU)AAAAAAAA)AAAAAAGA)GGGGGGGG.CCCCCCCC.CCACCCCA.AACUUUAC(GGGGGGGG(UUUUUUUU(GGAAAAGG(GGAAUAAU(UUUUUUUA(AAUAUUAA(GAAAAAGU(UUUUAAUA(AGGGGAAG(AUCACUAG(ACUCAAAA.GAAA---G.GGGGGGGG.UUUUUUUU.AGAGAAGA.UCUCUUUC.AAGAAAAA.AAAAAAAA.GGGGGGGG.AAUCCCUC.AAAAAAAA.AGGGAAAA)UGAGUUUC)UAGUAGUC)UUUUCUUC)GAAAUUGU)CUUUUUCA)UUAUAAUU)AAAAAAAU)CCUUAUUG)UCUUUUCC)AAAAAAAA)UUUUUUUU.GAAAAAAA.UGUUUUUU.UCUUUUUU2222222277688878189016342892508241775224 HPBBBBHTCEaaaaCGoDttttoEVVCCCCVV oooo 2VVVVN2 L9H51H6EK1AK3U2U28 2222222277688878189015341781497163997446.UUAUAAUU.AAAAAAAU.CCUUAUUG.UCUUUUCC.AAAAAAAA(UUUUUUUU(GAAAAAAA(UGUUUUUU(UCUUUUUU (AAGGAAAA(CCACCCAG(UUGAUUCG(GGUGGAAA(AUCCCGUA(ACCUCCGG(CAUACCUU(CCACUUCU .UGUGUUUU.AAAAAAAA(GGGGGGGG(GGAGAAAA(UGCCUUGU.GGCGCGGU.AAAAAAAU.AAAAAAAG.CCCCAAAA (GGGGGAGU(CCCUCUUU(UAAAUUCU(AGGGAAAG(GUUUUGGG.UAU-AU-C(ACACUUAA(UCAUGGAA (AUCUCCC-.AUUUACUU(CUAUUUUG(UUCAUAUC(CCACACUU(AAUAGAUA(UUGAUGCG.UCUUAUUA.AUCUCGGU .CA-ACCUU.-A-UUUU-.AACUCAUU(ACGUUCGA(ACGCACUG(UUUAUCGU(GUGUGCUA.UUUAUUUA (GGGGUUGU(CCGCCUUU(UACAUCUU(GCGUGGGA(GGGGGGGG.AAAAAAAA.GGGGGGGG.UUUUUUUA.AAAAAAAA2222222277788878190026447347053742676323 HPBBBBHTaCCaaEaGtoottDtECVVCCVCVo oooV2NVVV 2L 961HH5E3A1KK2UU28 2222222277678878089905336246942652087645AG-GC-AA.GG-GU-GC.UUUUAUUU.CCCCCCCC(UUUUUUUU(UUCUUUUU(AGAGAAAG(UCUCUUCU(AAAAAAAA(CCCCCCCC(AAAAUAAA.CCCCACCG.AAAAAUAA.AAAAAAAA.UCUCAUUU.GGGGUGGG.GGGGGGGG.UUUUUUUU.AAAAAAAA.AAAAAAGA.GGGGGGGG.CCCCCCCC.CCACCCCA.AACUUUAC.GGGGGGGG.UUUUUUUU.GGAAAAGG.GGAAUAAU.UUUUUUUA.AAUAUUAA.GAAAAAGU.UUUUAAUA.AGGGGAAG.AUCACUAG.ACUCAAAA.GAAA---G.GGGGGGGG)UUUUUUUU)AGAGAAGA)UCUCUUUC)AAGAAAAA)AAAAAAAA)GGGGGGGG)AAUCCCUC.AAAAAAAA.AGGGAAAA.UGAGUUUC.UAGUAGUC.UUUUCUUC.GAAAUUGU.CUUUUUCA.UUAUAAUU.AAAAAAAU.CCUUAUUG.UCUUUUCC.AAAAAAAA.UUUUUUUU.GAAAAAAA.UGUUUUUU.UCUUUUUU.2222222277688878189016342892508241775224 HPBBBBHTCEaaaaCGoDttttoEVVCCCCVV oooo 2VVVVN2 L9H51H6EK1AK3U2U28 2222222277788878190026447347053753787434.AAAAAACG.-------U(UUUUUUUU(CUCCCUUU(AAAAAGAA.AAAAAAAA.AAAAAAAA.GGGGGAGG.AAAAAGAA .UUUUUAUU.-CCCCU-C.CCCCCCCC(GGGGGGGG(CCCCCCCC(AUUUUUAU(UUUUUUUA.U---AUAC .GGGGGGGG.AAAAAAGA.CCCCCCCC)GGGGGGGG)AAAAAACA)GGGGGGGG)CCCCCCCC.CCCCCCCC.AUUUUUAA .A----AAA.CAAAAACC.AUUUUUAA.AAAAAGAA)UUUUUUUU)GGGGGGGG)GGGGGGGG.AAAAAAAA .AAAAAAAA.GGGGGGGG.AAAAAAAA.GGGGGGGG)CCCCCCCC)CGCAUCCU)AUGUAGAA)GGUGGUAA)UCCCAUCC .CCAAAUAG)AACUCGAU)UGAGAGCC)UGCAUAAU)UUCAAGUG.G-UAUUAG.UACAGGUA.CUGAUCCU )UUUUGCUC)UUAUCUAU)GGUGUGAA)AAGUAUAG)GCUACAAU.AU-U---G.CUAAAGAA.CAUUUUUU)UAGUGGGU2222222277788878291127453803618328243193 5'AAGCUAUUAUACC GGUAUAAACPAAHAKU-DSUWLU1UAUU AUAUU3' HPBBBBHTCEaaaaCGoDttttoEVVCCCCVV oooo 2VVVVN2 L9H51H6EK1AK3U2U28 2222222277788878291127453803619339354204)AGUUCUUG)UGUGUUUU)CAGAAAUU)UCCCUUUU)AUUUAAGA.-------A.-------A)GGGAGA-A)UUCUUUUU .---C--CG.UUUUUUUU.AAAAAAGA.GGGGGGGA.UUUUUUUA.AAAAAAAA)AAGAGACU)CCUCUUUU )UUUUUUUG.GGGGGGGU.CAUAUUUU.UAUAAAUU.AGAGGGAG.AAAAAAAA.UCUCUUUA)GCUCGAGA)GUAUGGAA )AGGAGGUU.--U---A-.--U-UUUU)AAGGGG-U)CCACUUUU)GGUUGAGC)GGUGGGUC)UUCCUUUU .UGUUUUUU.UUUUUUUU.CUUUUUUU)GGGGGGGG)AAAAAAAA)UUCUUUUU)AAAAAAAA.UUGGGGUG.GGUGGGGU.GGGGGGGG.AAAAAAAA.UUUUUUUU.AAAAUUAA.CCCCCCCC2222222278788878201137557347053851787530 A G U U G A G A U U A A AGCC WGUR Fig.6. Alignment-basedsecondarystructurepredictionofalphacoronavirus3(cid:3)-terminalgenomeregions.Thevirusesincludedinthisanalysisrepresentallcurrentlyrecog- nizedspeciesinthegenusAlphacoronavirus.ThealignmentwascalculatedbyLocARNA,thestructurebyRNAalifold.TheconsensussequenceisrepresentedusingtheIUPAC code.Colorsareusedtoindicateconservedbasepairs:fromred(conservationofonlyonebase-pairtype)topurple(allsixbase-pairtypesarefound);fromdark(allsequences containthisbasepair)tolightcolors(1or2sequencesareunabletoformthisbasepair).Graybarsbelowthealignmentindicatetheextentofsequenceconservationata givenposition.GrayshadowsareusedtolinkRNAstructureswiththecorrespondingdot-bracketnotationsabovethealignment.(A)Alignment-basedsecondarystructure predic tionofth epse udoknot (PK )regio n inth e3(cid:3)U TR.Forma tion ofth estemofPK-S L1requiresb ase-pairin ginte ract ionswithth elo opregionofSL2. Formation ofthePK andthetwoSLstructuresshownabovethealignmentaremutuallyexclusive(seetextfordetails).(B)Alignment-basedsecondarystructurepredictionofthehypervariable regi on( HVR )in the3(cid:3)UTR .Torefi nethe ali gnment,an anc horatthe highlyco nser ved oct anucleot ide sequencewasuse d. A B PK-S1PK 271UG0A 0AUGCAGGSUGGUAGUAAAALUUUGCUACUA2AG2AAAACAGAUG7AAACUAA1UCU5CGAUGGUAC0GAGGUAUACUUUCUGAACAGAACUCUUAAGCAUAGGCUUCUUUUGCAUGGUCUAAAGUOCAGACUAUcACA tAGCaGGAUnGGUCuACAAACcl2e7o20ti0de PK-S1PKUACCUCAACAUGAGAGU27400UGSGUGGAUAAAAU ALAGUUUUAUCC2GAUA2745UAGG0UUCCAUGUUAACUUUUUGUGUUGUUGGUAAAAAGUUAUACAACAACCUUGAUGUACAAG2O75c0t0anucleotide 5’GUCUUAUACACAAGU CA UG AU GUU GA ACCG GU UGA CUAA U3’ 5’UUAGU GC CAUG AU A UCA UGU CUG G3’ 27066 27250 27424 27445 27517 Fig.7. RNAsecondarystructurepredictionsof3(cid:3)-terminalgenomeregionsofHCoV-229E(A)andHCoV-NL63(B).PredictionsweregeneratedusingRNAfold--noLP-C.As constraints,structureprobingdatawereused.Formationofthepredictedpseudoknot(PK)requiresbase-pairinginteractionsbetweentheloopregionofSL2andanupstream sequence(and,possibly,structuralrearrangements),resultingintheformationofPKstem1(PK-S1)asindicated.Alsoshownistheoctanucleotidesequencethatisconserved acrossallgeneraoftheCoronavirinae.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.