Math201(IntroductiontoAnalysis) Fall2004-2005 Instructor: Dr. KinY.Li Office: Room3471 OfficePhone: 23587420 e-mailaddress: [email protected] OfficeHours: Tu.3:30pm-4:30pm(orbyappointments) Prerequisite: A-levelMathorOneVariableCalculus WebsiteforLectureNotesandPracticeExercises: http://www.math.ust.hk/ makyli/UG.html (cid:0) GradeScheme: Homeworks(4%),TutorialPresentations(6%),Midterm(40%),FinalExamination(50%) All records of grades will be put on the website http://grading.math.ust.hk/checkgrade/ as soon as they are available. Thiscourseisessentiallygradedbycurvewithoneexception,namelystudentswhoachieve40%or lessof theoverallgradewill failthecourse. Students whotakethesame midtermwill begrouped underthe samecurve. Students should makecopies of homeworksbefore submittingtheoriginals. In case homeworksare not received,studentswillberequiredtoresubmitcopieswithinashortperiodoftime(maybelessthanaday). Fortutorialpresentations,studentswillformgroups(of1to3students)andpresentsolutionstoassignedproblems inthetutorialsessions. Allmembersofagroupmustattendthesessionstoassistinansweringpossiblequestionsfrom presentations. Markswillbedeductedforfailuretopresentsolutionsorforabsenceinsupportinghis/hergroup. CourseDescription: This is the first of tworequired courses on analysisfor Math majors. It is to be followedby Math 301 (Real Analysis). This course will focus on the proofs of basic theorems of analysis, as appeared in one variable calculus. Along the way to establish the proofs, many new concepts will be introduced. These include countability,sequencesandseriesofnumbers,offunctions,supremum/infimum,Cauchycondition,Riemannintegrals andimproperintegrals. Understandingthemandtheirpropertiesareimportantforthedevelopmentofthepresentand furthercourses. Textbooks: KennethA.Ross,ElementaryAnalysis: TheTheoryofCalculus,Springer-Verlag,1980. RobertBartleandDonaldSherbert,IntroductiontoRealAnalysis,3rded.,Wiley,2000. Rossisforstudentswhoaretakingthiscourseforthefirsttime. StudentswhoarerepeatingmayuseeitherRoss orBartleandSherbert. References: 1. J.A.Fridy,IntroductoryAnalysis 2nded.,AcademicPress,2000. (cid:1) 2. ManfredStoll,IntroductiontoRealAnalysis,AddisonWesley,1997. 3. WalterRudin,PrinciplesofMathematicalAnalysis,3rded.,McGraw-Hill,1976. 4. TomApostol,MathematicalAnalysis,2nded.,Addison-Wesley,1974. *5. ChineseSolutionManualtoTomApostol’sMathematicalAnalysis,2nded. Reminders: Studentsarehighlyencouragedtocometoofficehoursforconsultation. Thisisadifficultcoursefor many, but not all students. Although there are lecture notes, students should attend all lectures and tutorials as lecturesnotesareonlybriefrecordsofmaterialscoveredinclass,whichmaycontaintypographicalerrors. Ofcourse, questionsfromstudentsandanswersfrominstructorsorotherdigressionswillnotberecorded. Studentsareadvised totakeyourownnotes. Allmaterialspresentedinlecturesandtutorialsaswellasproperclassconductarethe students’ responsibility. Theinstructorreserves the right to make any changes to the coursethroughout the semester. Theonlywaytosucceedinthiscourseistodothework. 1 ObjectivesoftheCourse Theobjectivesofthecoursearetolearnanalysisandlearnproofs. Questions: Whatisanalysis? Howisitdifferentfromotherbranchesofmathematics? Analysis is the branch of mathematics that studies limit and concepts derived from limit, such as continuity, differentiation and integration, while geometry deals with figures, algebra deals with equations and inequalities involvingaddition,subtraction,multiplication,divisionandnumbertheorystudiesintegers. When we try to solve problems involving real or complex numbers, such as finding roots of polynomials or solvingdifferentialequations,wemaynotgettherightanswersthefirsttime. However, wecangetapproximations andthelimitsoftheseapproximations,wehope,willgiveustherightanswers. Atleast,wecanknowsolutionsexist eventhoughwemaynotbeabletowritethemexplicitly. Problems involving integers can be much harder since integers are discrete, i.e. there are minimum distance separatingdistinctintegerssothatonecannotfindintegersarbitrarilyclosetoanotherinteger. 2x x2 (cid:0) Trytoseeifthereisarealsolutiontotheequation 987654321 Thentrytoseeifthereisaninteger (cid:2) 4x4 (cid:1) 1 (cid:3) solution. Whatarethedifferencesinthewayyousolvethesetwoproblems? Question: Whyshouldwelearnproofs? Astatementistruenotbecauseyourteachertellsyouitistrue. Ateachercanmakemistakes! Therewerefamous mathematicianswhomadeconjecturesthatwerediscoveredtobewrongyearslater. Howcanwebecertainthefacts welearnedaretrue? Howcanwejudgewhenmorethanoneproposedsolutionsaregiven,whichiscorrect? x2sin 1 Supposewe wanttofind lim x Sincethe numeratoris between x2 and x2 thenumeratorhaslimit0. (cid:0) x 0 sinx (cid:3) (cid:1) (cid:4) x2sin1 2xsin1 cos1 The denominator also has limit 0. So, by l’Hopital’srule, lim x lim x (cid:0) x However, the new (cid:2) x 0 sinx x 0 cosx (cid:3) numeratordoesnothavealimitbecausecos 1 hasnolimitas(cid:4) x 0 whilet(cid:4)henewdenominatorhaslimit1. Sothe x (cid:5) (cid:1) limitoftheoriginalproblemdoesnotexist. Isthisreasoningcorrect? No. Whereisthemistake? Sometimesweexplainfactsbyexamplesorpictures.Forinstance,thestatementthateveryodddegreepolynomial withrealcoefficientsmusthaveatleastonerootisoftenexplainedbysomeexamplesorsomepictures. Inourlifetime, wecanonlydofinitelymanyexamplesanddrawfinitelymanypictures. Shouldwebelievesomethingistruebyseeing afewpicturesorexamples? Draw the graphs of a few continuous functions on [0 1] Do you think every continuous function on [0 1] (cid:1) (cid:3) (cid:1) is differentiable in at least one point on 0 1 ? Or do you think there exists a continuous function on [0 1] not (cid:6) (cid:1) (cid:7) (cid:1) differentiableatanypointof 0 1 ? (cid:6) (cid:1) (cid:7) Consider the function f n (cid:2) n2 (cid:0) n (cid:1) 41 Note f 1 (cid:2) 41 f 2 (cid:2) 43 f 3 (cid:2) 47 f 4 (cid:2) 53 f 5 (cid:2) (cid:6) (cid:7) (cid:3) (cid:6) (cid:7) (cid:1) (cid:6) (cid:7) (cid:1) (cid:6) (cid:7) (cid:1) (cid:6) (cid:7) (cid:1) (cid:6) (cid:7) 61 f 6 71 f 7 83 f 8 97 f 9 113 f 10 131areprimenumbers. Shouldyoubelievethat f n (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:1) (cid:6) (cid:7) (cid:1) (cid:6) (cid:7) (cid:1) (cid:6) (cid:7) (cid:1) (cid:6) (cid:7) (cid:1) (cid:6) (cid:7) (cid:6) (cid:7) isaprimenumberforeverypositiveintegern? Whatisthefirstnthat f n isnotprime? (cid:6) (cid:7) In order to have confident, you have to be able to judge the facts you learned are absolutely correct. Almost correctisnotgoodenoughinmathematics. 2 Chapter1. Logic Toreasoncorrectly, wehave tofollowsomerules. Theserulesofreasoningarewhatwecalledlogic. Wewill onlyneedafewoftheserules,mainlytodealwithtakingoppositeofstatementsandtohandleconditionalstatements. Wewillusethesymbol (cid:0) (or )todenotetheword“not”. Also,wewillusethesymbol(cid:1) todenote“forall”, (cid:0) “forany”,“forevery”. Similarly,thesymbol willdenote“thereis(atleastone)”,“thereexists”,“thereare(some)” (cid:2) andusuallyfollowedby“suchthat”. Thesymbols(cid:1) and arecalledquantifiers. (cid:2) Negation. Belowwewilllookatrulesofnegation(i.e. takingopposite). Theyareneededwhenwedoindirect proofs(orproofsbycontradiction). Foranyexpression p wehave p p (cid:0) (cid:0) (cid:2) (cid:1) (cid:6) (cid:7) (cid:3) p q Examples. (1) expression: (cid:3)x(cid:4)(cid:6)(cid:5) 0(cid:7) and (cid:3)x(cid:4)(cid:6)(cid:5) 1(cid:7) (cid:8) (cid:9) oppositeexpression: x 0 or x 1 (cid:10) (cid:11) rule: p and q p or q (cid:0) (cid:2) (cid:0) (cid:0) (cid:6) (cid:7) (cid:6) (cid:7) (cid:6) (cid:7) (2) expression: x 0 or x 1 (cid:9) (cid:8) oppositeexpression: x 0 and x 1 (cid:11) (cid:10) rule: p or q p and q (cid:0) (cid:2) (cid:0) (cid:0) (cid:6) (cid:7) (cid:6) (cid:7) (cid:6) (cid:7) (3) statement: Foreveryx 0 x hasasquareroot. (True) (cid:11) (cid:1) quantifiedstatement: (cid:1) x 0 x hasasquareroot (cid:11) (cid:6) (cid:7) (cid:3) oppositestatement: Thereexistsx 0suchthatx doesnothaveasquareroot. (False) (cid:11) quantifiedoppositestatement: x 0 x hasasquareroot (cid:0) (cid:2) (cid:11) (cid:6) (cid:7) (cid:3) (4) statement: Foreveryx 0 thereis y 0suchthat y2 x (True) (cid:2) (cid:11) (cid:1) (cid:11) (cid:3) quantifiedstatement: (cid:1) x 0 y 0 y2 (cid:2) x (cid:11) (cid:1) (cid:2) (cid:11) (cid:6) (cid:7) (cid:3) oppositestatement: Thereexistsx 0suchthatforevery y 0 y2 x (False) (cid:11) (cid:11) (cid:1) (cid:2)(cid:12) (cid:3) quantifiedoppositestatement: x 0 (cid:1) y 0 (cid:0) y2 (cid:2) x (cid:2) (cid:11) (cid:1) (cid:11) (cid:6) (cid:7) (cid:3) Fromexamples(3)and(4),weseethattherulefornegatingstatementswithquantifiersisfirstswitchevery (cid:1) to andevery to(cid:1) ,thennegatetheremainingpartofthestatement. (cid:2) (cid:2) If-thenStatements. If-thenstatementsoccurfrequentlyinmathematics. Wewillneedtoknowsomeequivalent waysofexpressinganif-thenstatementtodoproofs. Thestatement“if p thenq”mayalsobestatedas“pimpliesq”, (cid:1) “ponlyifq”,“p issufficientforq”,“q isnecessaryfor p”andiscommonlydenotedby“p q”. Forexample, the statement“if x (cid:2) 3and y (cid:2) 4 then x2 (cid:1) y2 (cid:2) 25”may alsobe stated as“x (cid:2) 3 and y(cid:13)(cid:15)(cid:2)(cid:14) 4 aresufficient for x2 (cid:1) y2 (cid:2) 25”or“x2 (cid:1) y2 (cid:2) 25is(cid:1)necessaryforx (cid:2) 3and y (cid:2) 4”. Example. (5) statement: Ifx 0 then x (cid:2) x (True) (cid:11) (cid:1) (cid:16) (cid:16) (cid:3) oppositestatement: x 0 and x x (False) (cid:11) (cid:16) (cid:16) (cid:2)(cid:12) (cid:3) rule: p q p and q (cid:0) (cid:2) (cid:0) (cid:6) (cid:13)(cid:15)(cid:14) (cid:7) (cid:6) (cid:7) Remark. Note p q p q (cid:2) (cid:0) (cid:0) (cid:13)(cid:15)(cid:14) (cid:6) (cid:6) (cid:13)(cid:15)(cid:14) (cid:7) (cid:7) p and q (cid:2) (cid:0) (cid:0) (cid:6) (cid:6) (cid:7) (cid:7) p or q (cid:2) (cid:0) (cid:0) (cid:0) (cid:6) (cid:7) (cid:6) (cid:7) p or q (cid:2) (cid:0) (cid:6) (cid:7) (cid:3) 3 Forthestatement“if p thenq” p q therearetworelatedstatements: theconverseofthestatementis“if (cid:1) (cid:6) (cid:13)(cid:15)(cid:14) (cid:7) (cid:1) q,then p”(q p)andthecontrapositiveofthestatementis“if q then p ”( q p). (cid:0) (cid:0) (cid:0) (cid:0) (cid:13)(cid:15)(cid:14) (cid:6) (cid:7) (cid:1) (cid:6) (cid:7) (cid:13)(cid:15)(cid:14) Examples. (6) statement: Ifx 3 thenx2 9 (True) (cid:2) (cid:0) (cid:2) (cid:1) (cid:3) converse: Ifx2 9 thenx 3 (False,asx maybe3.) (cid:2) (cid:2) (cid:0) (cid:1) (cid:3) contrapositive: Ifx2 9 thenx 3 (True) (cid:2)(cid:12) (cid:1) (cid:2)(cid:12) (cid:0) (cid:3) (7) statement: x 3 2x 6 (True) (cid:2) (cid:0) (cid:2) (cid:0) (cid:13)(cid:15)(cid:14) converse: 2x 6 x 3 (True) (cid:2) (cid:0) (cid:2) (cid:0) (cid:13)(cid:15)(cid:14) contrapositive: 2x 6 x 3 (True) (cid:2)(cid:12) (cid:0) (cid:2)(cid:12) (cid:0) (cid:13)(cid:15)(cid:14) (8) statement: If x 3 thenx 3 (False,asx maybe3.) (cid:2) (cid:2) (cid:0) (cid:16) (cid:16) (cid:1) (cid:3) converse: Ifx 3 then x 3 (True) (cid:2) (cid:0) (cid:2) (cid:1) (cid:16) (cid:16) (cid:3) contrapositive: Ifx 3 then x 3 (False,asx maybe3.) (cid:2)(cid:12) (cid:0) (cid:1) (cid:16) (cid:16) (cid:2)(cid:12) (cid:3) Remarks. Examples (6) and (7) showed thatthe converse of an if-then statementis not the sameas the statement nor the opposite of the statement in general. Examples (6), (7) and (8) showed that an if-then statement and its contrapositiveareeitherbothtrueorbothfalse. Infact,thisisalwaysthecasebecausebytheremarkonthelastpage, q p q or p (cid:0) (cid:0) (cid:2) (cid:0) (cid:0) (cid:0) (cid:6) (cid:7) (cid:13)(cid:15)(cid:14) (cid:6) (cid:7) (cid:6) (cid:7) (cid:6) (cid:7) q or p (cid:2) (cid:0) (cid:6) (cid:7) p or q (cid:2) (cid:0) (cid:6) (cid:7) p q (cid:2) (cid:13)(cid:15)(cid:14) (cid:3) Soanif-thenstatementanditscontrapositivestatementareequivalent. Finally,weintroducetheterminology“pifandonlyifq”tomean“if p thenq”and“ifq then p”. Thestatement (cid:1) (cid:1) “pifandonlyifq”isthesameas“pisnecessaryandsufficientforq”. Weabbreviate“pifandonlyifq”by“p (cid:1) (cid:14) q”. So p (cid:1) q means p q andq p”. Thephrase“ifandonlyif”isoftenabbreviatedas“iff”. (cid:14) (cid:13)(cid:15)(cid:14) (cid:13)(cid:15)(cid:14) Caution! Note (cid:1)(cid:3)(cid:2) (cid:1)(cid:5)(cid:4) (cid:2) (cid:1)(cid:5)(cid:4)(cid:15)(cid:1)(cid:3)(cid:2) and (cid:2) (cid:2) (cid:2) (cid:4) (cid:2) (cid:2) (cid:4) (cid:2) (cid:2) (cid:1) but (cid:1)(cid:3)(cid:2) (cid:2) (cid:4) (cid:2)(cid:12) (cid:2) (cid:4)(cid:15)(cid:1)(cid:3)(cid:2) (cid:3) For example, “every studentis assigned a number”isthe sameas“(cid:1) student, numbersuchthatthestudentisassignedthenumber.” Thisstatementimplies (cid:2) differentstudentsmaybeassignedpossiblydifferentnumbers. However,ifweswitchtheorderofthequantifiers,the statementbecomes“ numbersuchthat(cid:1) student,thestudentisassignedthenumber.” Thisstatementimpliesthere (cid:2) isanumberandeverystudentisassignedthatsamenumber! 4 Chapter2. Sets Toreadandwritemathematicalexpressionsaccuratelyandconcisely, wewillintroducethelanguageofsets. A setisacollectionof“objects”(usuallynumbers,orderedpairs,functions,etc.) IfobjectxisinasetS,thenwesayxis anelement(oramember)ofSandwritex S Ifx isnotanelementofS,thenwewritex S Asethavingfinitely (cid:0) (cid:3) (cid:0)(cid:12) (cid:3) manyelementsiscalledafiniteset,otherwiseitiscalledaninfinite set. Theemptysetisthesethavingnoobjectsand isdenotedby(cid:1) (cid:3) Asetmaybeshownbylistingitselementsenclosedinbraces(eg. 1 2 3 isasetcontainingtheobjects1 2 3 the (cid:2) (cid:1) (cid:1) (cid:3) (cid:1) (cid:1) (cid:1) positiveinteger (cid:2) 1 2 3 ,theinteger (cid:2) (cid:0) 2 (cid:0) 1 0 1 2 ,theemptyset (cid:1) (cid:2) )orbydescription enclosedinbrac(cid:4)es(eg(cid:2). t(cid:1)he(cid:1) ra(cid:1)ti(cid:3)o(cid:3) n(cid:3)(cid:3)alnumbers (cid:5) (cid:2)m(cid:3) (cid:3):(cid:3) m(cid:1) (cid:1) n(cid:1) (cid:1) (cid:1) t(cid:1)h(cid:3)e(cid:3) r(cid:3)e(cid:3) alnumbers x :(cid:2)(cid:6)(cid:3)x isarealnumber (cid:7) (cid:2) (cid:2) n (cid:0)(cid:8)(cid:5) (cid:1) (cid:0)(cid:9)(cid:4)(cid:9)(cid:3) (cid:1) (cid:10) (cid:2) (cid:2) (cid:3) andthecomplexnumbers (cid:2) x (cid:1) iy : x y )Indescribingsets,theusualconventionistoputtheformofthe (cid:11) (cid:2) (cid:1) (cid:0)(cid:8)(cid:10)(cid:9)(cid:3) (cid:3) objectsontheleftsideofthecolonandtostatetheconditionsontheobjectsontherightsideofthecolon. Itisalso commontouseaverticalbarinplaceofcoloninsetdescriptions. Examples. (i)Theclosedintervalwithendpointsa bis[a b] x : x and a x b (cid:2) (cid:1) (cid:1) (cid:2) (cid:0)(cid:12)(cid:10) (cid:10) (cid:10) (cid:3) (cid:3) (ii) Thesetofsquarenumbersis 1 4 9 16 25 n2 :n (cid:2) (cid:2) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:3) (cid:3) (cid:3)(cid:3) (cid:2) (cid:0)(cid:9)(cid:4)(cid:9)(cid:3) (cid:3) (iii) Thesetofallpositiverealnumbersis x : x and x 0 (Ifwewanttoemphasizethisisasubset (cid:2) (cid:10)(cid:14)(cid:13) (cid:2) (cid:0)(cid:8)(cid:10) (cid:8) (cid:3) (cid:3) of wemaystressx isrealintheformoftheobjectsandwrite x : x 0 Ifnumbersarealways (cid:2) (cid:10) (cid:1) (cid:10)(cid:14)(cid:13) (cid:2) (cid:0)(cid:12)(cid:10) (cid:8) (cid:3) (cid:3) takentomeanrealnumbers,thenwemaywritesimply x : x 0 ) (cid:2) (cid:10)(cid:14)(cid:13) (cid:2) (cid:8) (cid:3) (cid:3) (iv) Thesetofpoints(ororderedpairs)ontheline withequationy mx is x mx :x m (cid:2) (cid:15) (cid:2) (cid:6) (cid:1) (cid:7) (cid:0)(cid:12)(cid:10)(cid:9)(cid:3) (cid:3) For sets A B wesay A is asubset of B (or B contains A) iffevery elementof A is also an elementof B In (cid:1) (cid:1) (cid:3) that case, we write A B (For the caseof the empty set, wehave (cid:1) S for every set S ) Two sets A and B are (cid:16) (cid:3) (cid:16) (cid:3) equalifand onlyifthey havethesameelements(i.e. A B means A B and B A) So A B ifandonly if (cid:2) (cid:2) (cid:16) (cid:16) (cid:3) (x A (cid:1) x B). If A B and A B thenwesay Aisapropersubsetof B andwrite A B (Forexample, (cid:0) (cid:14) (cid:0) (cid:16) (cid:2)(cid:12) (cid:1) (cid:17) (cid:3) if A 1 2 B 1 2 3 C 1 1 2 3 then A B is true, but B C is false. In fact, B C Repeated (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:1) (cid:3) (cid:1) (cid:2) (cid:1) (cid:1) (cid:3) (cid:1) (cid:2) (cid:1) (cid:1) (cid:1) (cid:3) (cid:1) (cid:17) (cid:17) (cid:3) elementsarecountedonlyonetimesothatC has3elements,not4elements.) For aset S wecancollect allitssubsets. This iscalledthepower set of S and isdenotedby P S or 2S For (cid:1) (cid:6) (cid:7) (cid:3) examples, P (cid:1) (cid:2) (cid:1) P 0 (cid:2) (cid:1) 0 and P 0 1 (cid:2) (cid:1) 0 1 0 1 For aset withn elements,itspower set will have(cid:6)2n(cid:7) elem(cid:2) e(cid:3)n(cid:1) t. (cid:6)(cid:6)T(cid:2) h(cid:3)i(cid:7)s is t(cid:2)he(cid:1)(cid:18)r(cid:2)ea(cid:3)(cid:6)s(cid:3)onfor t(cid:6)(cid:6)h(cid:2)e(cid:1)alt(cid:3)e(cid:7) rnati(cid:2)ve(cid:1)(cid:18)(cid:2)no(cid:3)t(cid:1)(cid:18)a(cid:2)tio(cid:3)n(cid:1)(cid:18)(cid:2)2S(cid:1) fo(cid:3)(cid:6)(cid:3)r(cid:3) the powerset of S Power set is one (cid:3) operationofaset. Thereareafewothercommonoperationsofsets. Definitions. Forsets A A A 1 2 n (cid:1) (cid:1) (cid:3) (cid:3) (cid:3) (cid:1) (cid:1) (i) theirunionis A A A x :x A orx A or orx A 1 2 n (cid:2) 1 2 n (cid:19) (cid:19)(cid:21)(cid:20)(cid:22)(cid:20)(cid:22)(cid:20)(cid:22)(cid:19) (cid:2) (cid:0) (cid:0) (cid:20)(cid:22)(cid:20)(cid:22)(cid:20) (cid:0) (cid:3) (cid:1) (ii) theirintersectionis A A A x :x A andx A and andx A 1 2 n (cid:2) 1 2 n (cid:23) (cid:23)(cid:21)(cid:20)(cid:22)(cid:20)(cid:22)(cid:20)(cid:22)(cid:23) (cid:2) (cid:0) (cid:0) (cid:20)(cid:22)(cid:20)(cid:22)(cid:20) (cid:0) (cid:3) (cid:1) (iii) theirCartesianproductis A A A x x x :x A andx A and andx A 1 2 n (cid:2) 1 2 n 1 1 2 2 n n (cid:24) (cid:24)(cid:25)(cid:20)(cid:22)(cid:20)(cid:22)(cid:20)(cid:26)(cid:24) (cid:2) (cid:6) (cid:1) (cid:1) (cid:3) (cid:3) (cid:3) (cid:1) (cid:7) (cid:0) (cid:0) (cid:20)(cid:22)(cid:20)(cid:22)(cid:20) (cid:0) (cid:3) (cid:1) (iv) thecomplementof A in A is A A x :x A andx A 2 1 1 (cid:27) 2 (cid:2) (cid:2) (cid:0) 1 (cid:0)(cid:12) 2(cid:3) (cid:3) Examples. (i) 1 2 3 3 4 1 2 3 4 1 2 3 2 3 4 2 3 1 2 3 2 3 4 1 (cid:2) (cid:2) (cid:2) (cid:2) (cid:1) (cid:1) (cid:3) (cid:19) (cid:2) (cid:1) (cid:3) (cid:2) (cid:1) (cid:1) (cid:1) (cid:3) (cid:1)(cid:28)(cid:2) (cid:1) (cid:1) (cid:3) (cid:23) (cid:2) (cid:1) (cid:1) (cid:3) (cid:2) (cid:1) (cid:3) (cid:1)(cid:29)(cid:2) (cid:1) (cid:1) (cid:3) (cid:27) (cid:2) (cid:1) (cid:1) (cid:3) (cid:2) (cid:3) (cid:3) (ii) [ 2 4] 1 2 3 4 [0 2] [1 5] [4 6] [0 6] (cid:0) (cid:2) (cid:2) (cid:1) (cid:23) (cid:4) (cid:2) (cid:1) (cid:1) (cid:1) (cid:3) (cid:1) (cid:1) (cid:19) (cid:1) (cid:19) (cid:1) (cid:1) (cid:3) (iii) [0 7] n2 :n 0 1 2 3 4 5 6 7 1 4 9 16 25 0 2 3 5 6 7 (cid:2) (cid:2) (cid:6) (cid:1) (cid:23) (cid:5) (cid:7) (cid:27) (cid:2) (cid:0)(cid:9)(cid:4)(cid:9)(cid:3) (cid:2) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:3) (cid:27) (cid:2) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:3) (cid:3) (cid:3)(cid:3) (cid:2) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:3) (cid:3) (iv) x y z :x y z a b :aisrationalandbisirrational (cid:2) (cid:2) (cid:10) (cid:24) (cid:10) (cid:24) (cid:10) (cid:2) (cid:6) (cid:1) (cid:1) (cid:7) (cid:1) (cid:1) (cid:0)(cid:12)(cid:10)(cid:9)(cid:3) (cid:1)(cid:30)(cid:7) (cid:24) (cid:6)(cid:31)(cid:10) (cid:27) (cid:7) (cid:7) (cid:2) (cid:6) (cid:1) (cid:7) (cid:3) (cid:3) Remarks. (i)Forthecaseoftheemptyset,wehave A (cid:1) (cid:2) A (cid:2) (cid:1) A A (cid:1) (cid:2) (cid:1) (cid:2) (cid:1) A A (cid:1) (cid:2) (cid:1) (cid:2) (cid:1) A A (cid:1) (cid:2) A and (cid:1) A (cid:2) (cid:1) (cid:19) (cid:19) (cid:1) (cid:23) (cid:23) (cid:1) (cid:24) (cid:24) (cid:1) (cid:27) (cid:27) (cid:3) 5 (ii) Thenotionsofunion,intersectionandCartesianproductmaybeextendedtoinfinitelymanysetssimilarly. The unionisthesetofobjectsinatleastoneofthesets. Theintersectionisthesetofobjectsineveryoneofthesets. TheCartesianproductisthesetoforderedtuplessuchthatthei-thcoordinatemustbelongtothei-thset. n (cid:1) (iii) Theset A A A maybewrittenas A Ifforeverypositiveintegerk thereisaset A thenthe 1 2 n k k (cid:19) (cid:19) (cid:20)(cid:22)(cid:20)(cid:22)(cid:20)(cid:18)(cid:19) (cid:3) (cid:1) (cid:1) k 1 (cid:2) (cid:1) (cid:1) notation A A A maybeabbreviatedas A or A Ifforevery x S thereisaset A then 1 (cid:19) 2 (cid:19) 3 (cid:19) (cid:20)(cid:22)(cid:20)(cid:22)(cid:20) (cid:3) k k(cid:3) (cid:0) (cid:1) x(cid:1) k(cid:2) 1 (cid:1) k(cid:4) (cid:4) theunionofallthesets A ’sforall x S isdenotedby A Similarabbreviationsexist forintersectionand x x (cid:0) (cid:3) x S Cartesianproduct. (cid:4) Examples. (i) [1 2] [2 3] [3 4] [4 5] (cid:2) [1 (cid:1)(cid:6)(cid:5) (cid:2) (cid:6) (cid:1) (cid:19) (cid:1) (cid:19) (cid:1) (cid:19) (cid:1) (cid:19)(cid:21)(cid:20)(cid:22)(cid:20)(cid:22)(cid:20)(cid:7) (cid:23) (cid:5) (cid:1) (cid:7) (cid:23) (cid:5) (cid:4) (cid:3) (cid:8) 1 (cid:8) 1 (cid:8) 1 (cid:8) 1 (ii) 0 1(cid:1) (cid:2) [0 2 0 1 0 1 0 1 (cid:2) [0 1] (cid:7) (cid:1) n (cid:1) (cid:7) (cid:23) (cid:1) 2 (cid:23) (cid:1) 3 (cid:23) (cid:1) 4 (cid:23)(cid:21)(cid:20)(cid:22)(cid:20)(cid:22)(cid:20) (cid:1) (cid:3) n (cid:9) (cid:9) (cid:9) (cid:9) (cid:4) (cid:4) (iii) Foreveryk let A 0 1 then k (cid:2) (cid:0)(cid:9)(cid:4) (cid:1) (cid:2) (cid:1) (cid:3) (cid:1) A A A x x x : eachx is0or1fork 1 2 3 1 2 3 (cid:2) 1 2 3 k (cid:2) (cid:24) (cid:24) (cid:24)(cid:25)(cid:20)(cid:22)(cid:20)(cid:22)(cid:20) (cid:2) (cid:6) (cid:1) (cid:1) (cid:1) (cid:3) (cid:3) (cid:3)(cid:7) (cid:1) (cid:1) (cid:1) (cid:3) (cid:3) (cid:3)(cid:3) (cid:3) (iv) Foreachm let bethelinewithequationy mxontheplane,then (cid:1) 2 0 y : y y 0 (cid:0)(cid:12)(cid:10) (cid:1) (cid:15) m (cid:2) (cid:15) m (cid:2) (cid:10) (cid:27) (cid:2) (cid:6) (cid:1) (cid:7) (cid:0)(cid:12)(cid:10) (cid:1) (cid:2)(cid:12) (cid:3) m (cid:4) (cid:10) and 0 0 m (cid:2) (cid:7) (cid:15) (cid:2) (cid:6) (cid:1) (cid:7) (cid:3) (cid:3) m (cid:4) (cid:10) Weshallsaythatsetsaredisjointifftheirintersectionistheemptyset. Also,wesaytheyaremutuallydisjointiff theintersectionofeverypairofthemistheemptyset. Arelationonaset E isanysubsetof E E Thefollowingis animportantconceptthatisneededinalmostallbranchesofmathematics. Itisatooltodivide((cid:24)orpa(cid:3) rtition)thesetof objectsweliketostudyintomutuallydisjointsubsets. Definition. Anequivalencerelation Ronaset E isasubset R of E E suchthat (cid:24) (a) (reflexiveproperty)foreveryx E x x R (cid:0) (cid:1) (cid:6) (cid:1) (cid:7) (cid:0) (cid:1) (b) (symmetricproperty)if x y R then y x R (cid:6) (cid:1) (cid:7) (cid:0) (cid:1) (cid:6) (cid:1) (cid:7) (cid:0) (cid:1) (c) (transitiveproperty)if x y y z R then x z R (cid:6) (cid:1) (cid:7) (cid:1) (cid:6) (cid:1) (cid:7) (cid:0) (cid:1) (cid:6) (cid:1) (cid:7) (cid:0) (cid:3) We write x y if x y R For each x E let [x] y : x y This is called the equivalence class (cid:0) (cid:2) (cid:0) (cid:6) (cid:1) (cid:7) (cid:0) (cid:3) (cid:0) (cid:1) (cid:1) (cid:2) (cid:3) (cid:3) containing x Note that every x [x] by (a) so that [x] E If x y then [x] [y] because by (b)and (c), (cid:2) (cid:0) (cid:2) (cid:3) (cid:0) (cid:3) (cid:1) x E lzea(cid:0) d[txo]x(cid:1) (cid:14) zanzd(cid:0) z x y(cid:1) (cid:14)whiczh(cid:0) imyply(cid:1) x(cid:14) zy(cid:0) a[cyo]n(cid:3) tIrfaxd(cid:4)ic(cid:0)(cid:12)tioyn(cid:1).thSeone[vxe]ry(cid:23) p[ayi]ro(cid:2) fe(cid:1)qbueivcaaluesneceascsluamssiensgazre(cid:0)ei[txhe]r(cid:23) th[ey]sawmilel (cid:0) (cid:0) (cid:0) (cid:1) (cid:1) ordisjoint. Therefore,Rpartitionstheset E intomutuallydisjointequivalenceclasses. Examples. (1) (Geometry) For triangles T and T define T T if and only if T is similar to T This is an 1 2 1 (cid:0) 2 1 2 (cid:1) (cid:3) equivalencerelationonthesetofalltrianglesasthethreepropertiesabovearesatisfied. ForatriangleT [T]istheset (cid:1) ofalltrianglessimilartoT (cid:3) (2)(Arithmetic)Forintegersm andn definem n ifandonlyifm n iseven. Again,properties(a),(b),(c)can (cid:0) (cid:0) (cid:1) easily be verified. So this is also an equivalence relationon There are exactly two equivalenceclasses, namely (cid:5) (cid:3) [0] 4 2 0 2 4 (evenintegers)and[1] 5 3 1 1 3 5 (oddintegers). Twointegers (cid:2) (cid:0) (cid:0) (cid:2) (cid:0) (cid:0) (cid:0) (cid:2) (cid:3) (cid:3) (cid:3) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:3) (cid:3) (cid:3)(cid:3) (cid:2) (cid:3) (cid:3) (cid:3) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:3) (cid:3) (cid:3)(cid:3) inthesameequivalenceclassissaidtobeofthesameparity. (3)Somepeoplethinkthatproperties(b)and(c)implyproperty(a)byusing(b),thenlettingz x in(c)toconclude (cid:2) x x R Thisisfalseasshownbythecounterexamplethat E 0 1 and R 1 1 whichsatisfiesproperties (cid:2) (cid:2) (cid:6) (cid:1) (cid:7) (cid:0) (cid:3) (cid:2) (cid:1) (cid:3) (cid:2) (cid:6) (cid:1) (cid:7) (cid:3) (cid:1) (b)and(c),butnotproperty(a). Rfailsproperty(a)because0 E but 0 0 Ras0isnotinanyorderedpairinR (cid:0) (cid:1) (cid:6) (cid:1) (cid:7) (cid:0)(cid:12) (cid:3) 6 Afunction(ormapormapping) f fromaset Atoaset B (denotedby f : A B)isamethodofassigningto (cid:5) everya Aexactlyoneb B Thisbisdenotedby f a andiscalledthevalueof f ata Thus,afunctionmustbe (cid:0) (cid:0) (cid:3) (cid:6) (cid:7) (cid:3) well-definedinthesensethatifa a then f a f a Theset Aiscalledthedomainof f (denotedbydom f) (cid:2) (cid:2) (cid:0)(cid:1) (cid:6) (cid:7) (cid:6) (cid:0)(cid:7) (cid:3) andtheset Biscalledthecodomainof f (denotedbycodom f). Wesay f isaB-valuedfunction(eg. ifB then (cid:2) (cid:10) (cid:1) wesay f isareal-valuedfunction.) WhenthecodomainBisnotemphasized,thenwemaysimplysay f isafunction on A Theimageorrangeof f (denotedby f A orim f orran f)istheset f x :x A (Toemphasizethisisa subse(cid:3)tof B wealsowriteitas f x B : x(cid:6) (cid:7) A ) Theset G (cid:1) x f x (cid:2) :x(cid:6) (cid:7) A (cid:0)isca(cid:3)l(cid:3)ledthegraphof f Two (cid:2) (cid:1) (cid:2) (cid:6) (cid:7) (cid:0) (cid:0) (cid:3) (cid:3) (cid:2) (cid:1) (cid:6) (cid:7)(cid:3)(cid:2) (cid:0) (cid:3) (cid:3) functionsareequalifandonlyiftheyhavethesamegraphs. Inparticular,thedomainsofequalfunctionsarethesame set. Examples. The function f : given by f x x2 has dom f codom f Also, ran f (cid:2) (cid:2) (cid:2) (cid:2) 0 1 4 9 16 Thisisdiffer(cid:5)ent(cid:5) fro(cid:10)mthefunction(cid:6)g(cid:7): givenbyg x (cid:5) (cid:1) x2 becausedom(cid:10) (cid:3)g dom f (cid:2) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:3) (cid:3) (cid:3)(cid:3) (cid:3) (cid:10) (cid:5) (cid:10) (cid:6) (cid:7) (cid:2) (cid:2) (cid:10) (cid:2)(cid:12) (cid:3) Also,afunctionmayhavemorethanonepartsinitsdefinition,eg. theabsolutevaluefunctionh : definedby x ifx 0 (cid:10) (cid:5) (cid:10) h(cid:6) x(cid:7) (cid:2)(cid:5)(cid:4) (cid:0) x ifx (cid:11) 0 (cid:3) Becarefulindefiningfunctions. Thefollowingisbad: letxn (cid:2) (cid:6) (cid:0) 1(cid:7) n andi(cid:6) xn(cid:7) (cid:2) n(cid:3) The ruleisnotwell-defin(cid:9)edbecausex 1 x buti x 1 3 i x 1 (cid:2) (cid:0) (cid:2) 3(cid:1) (cid:6) 1(cid:7) (cid:2) (cid:2)(cid:12) (cid:2) (cid:6) 3(cid:7) (cid:3) Definitions. (i)Theidentityfunctiononaset Sis I : S Sgivenby I x x forallx S S S (cid:2) (cid:5) (cid:6) (cid:7) (cid:0) (cid:3) (ii) Let f : A B g : B C be functions and f A B The composition of g by f is the function (cid:5) (cid:1) (cid:0) (cid:5) (cid:6) (cid:7) (cid:16) (cid:0)(cid:3) g f : A C definedby g f x g f x forallx A (cid:2) (cid:6) (cid:5) (cid:6) (cid:6) (cid:7) (cid:6) (cid:7) (cid:6) (cid:6) (cid:7) (cid:7) (cid:0) (cid:3) (iii) Let f : A BbeafunctionandC A Thefunction f :C Bdefinedby f x f x foreveryx C C C (cid:2) (cid:5) (cid:16) (cid:3) (cid:16) (cid:5) (cid:16) (cid:6) (cid:7) (cid:6) (cid:7) (cid:0) iscalledtherestrictionof f toC (cid:3) (iv) Afunction f : A B issurjective(oronto)iff f A B (cid:2) (cid:5) (cid:6) (cid:7) (cid:3) (v) Afunction f : A B isinjective(orone-to-one)iff f x f y impliesx y (cid:2) (cid:2) (cid:5) (cid:6) (cid:7) (cid:6) (cid:7) (cid:3) (vi) Afunction f : A B isabijection(oraone-to-onecorrespondence)iffitisinjectiveandsurjective. (cid:5) (vii) For an injectivefunction f : A B the inverse function of f is the function f 1 : f A A definedby f 1 y x (cid:1) f x y (cid:5) (cid:1) (cid:7) (cid:6) (cid:7) (cid:5) (cid:2) (cid:2) (cid:7) (cid:6) (cid:7) (cid:14) (cid:6) (cid:7) (cid:3) Remarks. Afunction f : A Bissurjectivemeans f A B whichisthesameassayingeveryb Bisan f a (cid:2) (cid:5) (cid:6) (cid:7) (cid:1) (cid:0) (cid:6) (cid:7) foratleastonea A Inthissense,thevaluesof f donotomitanythingin B Wewilllooselysay f doesnotomit (cid:0) (cid:3) (cid:3) anyelementof B forconvenience. However, theremaypossiblybemorethanonea Athatareassignedthesame (cid:0) b B Hence,therangeof f mayrepeatsomeelementsof B If Aand Barefinitesets,then f surjectiveimpliesthe (cid:0) (cid:3) (cid:3) numberofelementsin Aisgreaterthanorequaltothenumberofelementsin B (cid:3) Next, afunction f : A B isinjectivemeans,inthecontrapositivesense, that x y implies f x f y (cid:5) (cid:2)(cid:12) (cid:6) (cid:7) (cid:2)(cid:12) (cid:6) (cid:7) (cid:1) which wemay looselysay f doesnot repeat any elementof B However, f may omitelements of B asthere may (cid:3) possibly be elements in B thatare not in the range of f So if A and B are finitesets, then f injectiveimpliesthe (cid:3) numberofelementsin Aislessthanorequaltothenumberofelementsin B (cid:3) Therefore,abijectionfrom Ato B isafunctionwhosevaluesdonotomitnorrepeatanyelementof B If Aand (cid:3) B arefinitesets,then f bijectiveimpliesthenumberofelementsin Aand B arethesame. Remarks(Exercises). (a)Let f : A B beafunction. Wehave f isabijectionifandonlyifthereisafunction (cid:5) g : B Asuchthatg f I and f g I (Infact,for f bijective,wehaveg f 1isbijective.) (cid:2) A (cid:2) B (cid:2) (cid:5) (cid:6) (cid:6) (cid:3) (cid:7) (b)If f : A Bandh : B C arebijections,thenh f : A C isabijection. (cid:5) (cid:5) (cid:6) (cid:5) (c)Let A B besubsetsof and f : A Bbeafunction. Ifforeveryb B thehorizontalliney bintersectsthe (cid:2) (cid:1) (cid:10) (cid:5) (cid:0) (cid:1) graphof f exactlyonce,then f isabijection. Todealwith thenumberof elementsinaset, weintroducethefollowingconcept. Forsets S and S wewill 1 2 (cid:1) define S S and say they have the same cardinality (or the same cardinal number) if and only if there exists a 1 (cid:0) 2 bijectionfromS toS Thisiseasilycheckedtobeanequivalencerelationonthecollectionofallsets. ForasetS the 1 2 (cid:3) (cid:1) equivalenceclass[S]isoftencalledthecardinalnumberof SandisdenotedbycardS or S Thisisawaytoassign (cid:16) (cid:16)(cid:3) asymbolforthenumberofelementsinaset. Itiscommontodenote,forapositiveintegern card 1 2 n n (cid:2) (cid:1) (cid:2) (cid:1) (cid:1) (cid:3) (cid:3) (cid:3) (cid:1) (cid:3) (cid:1) card (readaleph-naught)andcard c(oftencalledthecardinalityofthecontinuum). (cid:2)(cid:9)(cid:8) 0 (cid:2) (cid:4) (cid:10) 7 Chapter3. Countability Oftenwecomparetwosetstoseeiftheyaredifferent. Incasebothareinfinitesets,thentheconceptofcountable setsmayhelptodistinguishtheseinfinitesets. Definitions. Aset S iscountablyinfiniteiffthereexistsabijection f : S (i.e. and S havethesamecardinal (cid:4) (cid:5) (cid:4) number )Asetiscountableiffitisafiniteorcountablyinfiniteset. Asetisuncountableiffitisnotcountable. (cid:8) 0 (cid:3) Remarks. Suppose f: S isabijection. Then f isinjectivemeans f 1 f 2 f 3 arealldistinctand f (cid:4) (cid:5) (cid:6) (cid:7) (cid:1) (cid:6) (cid:7) (cid:1) (cid:6) (cid:7) (cid:1) (cid:3) (cid:3) (cid:3) issurjectivemeans f 1 f 2 f 3 S Son f n S isaone-to-onecorrespondencebetween (cid:2) (cid:2) (cid:6) (cid:7) (cid:1) (cid:6) (cid:7) (cid:1) (cid:6) (cid:7) (cid:1) (cid:3) (cid:3) (cid:3)(cid:31)(cid:3) (cid:3) (cid:0) (cid:4)(cid:1)(cid:0) (cid:6) (cid:7)(cid:9)(cid:0) (cid:4) and S Therefore,theelementsof S canbelistedinan“orderly”way(as f 1 f 2 f 3 )withoutrepetitionor (cid:3) (cid:6) (cid:7) (cid:1) (cid:6) (cid:7) (cid:1) (cid:6) (cid:7) (cid:1) (cid:3) (cid:3) (cid:3) omission. Conversely,iftheelementsof S canbelistedass s withoutrepetitionoromission,then f : S 1 2 (cid:1) (cid:1) (cid:3) (cid:3) (cid:3) (cid:4) (cid:5) definedby f n s willbeabijectionasnorepetitionimpliesinjectivityandnoomissionimpliessurjectivity. (cid:2) n (cid:6) (cid:7) BijectionTheorem. Letg:S T beabijection. SiscountableifandonlyifT iscountable. (cid:5) (Reasons. Thetheoremistruebecause S countableimpliesthereisabijectivefunction f : S whichimplies h g f : T isbijective,i.e.T iscountable. Fortheconverse,hisbijectiveimplies f (cid:4) (cid:5)g 1 (cid:1) hisbijective.) (cid:2) (cid:2) (cid:6) (cid:4) (cid:5) (cid:7) (cid:6) Remarks. Similarly,takingcontrapositive,SisuncountableifandonlyifT isuncountable. BasicExamples. (1) iscountablyinfinite(becausetheidentityfunction I n nisabijection). (cid:2) (cid:4) (cid:6) (cid:7) (cid:4) (2) iscountablyinfinitebecausethefollowingfunctionisabijection(one-to-onecorrespondence): (cid:5) 1 2 3 4 5 6 7 8 9 (cid:2) (cid:4) (cid:2) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:3) (cid:3) (cid:3) (cid:3) f (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:3) (cid:3) (cid:3) 0 1 1 2 2 3 3 4 4 (cid:2) (cid:0) (cid:0) (cid:0) (cid:0) (cid:5) (cid:2) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) n ifniseven Thefunction f : isgivenby f n 2 anditsinversefunctiong: isgiven (cid:4) (cid:5) (cid:5) (cid:6) (cid:7) (cid:2) (cid:0) (cid:6) n(cid:7)21(cid:7) ifnisodd (cid:5) (cid:5) (cid:4) (cid:3) 2m ifm 0 byg(cid:6)m(cid:7) (cid:2) 1(cid:0) 2m ifm (cid:8) 0(cid:3) Justcheckg (cid:6) f (cid:2) I(cid:4) and f (cid:6) g (cid:2) I(cid:5) (cid:3) (cid:10) (3) m n :m n iscountablyinfinite. 1 1 1 2 1 3 1 4 (cid:2) (cid:4) (cid:24) (cid:4) (cid:2) (cid:6) (cid:1) (cid:7) (cid:1) (cid:0)(cid:12)(cid:4)(cid:9)(cid:3) (cid:6) (cid:1) (cid:7) (cid:6) (cid:1) (cid:7) (cid:6) (cid:1) (cid:7) (cid:6) (cid:1) (cid:7) (DiagonalCountingScheme)Usingthediagramontheright,de- fifn4e f:(cid:4) 3(cid:5) 1(cid:4), f(cid:24) 5(cid:4) by f2(cid:6)12(cid:7) ,(cid:2) f(cid:6)16(cid:1) 1(cid:7) , f1(cid:6)23(cid:7) (cid:2), (cid:6)2,(cid:1) t1h(cid:7)e,nff(cid:6)3i(cid:7)s(cid:2)inj(cid:6)e1c(cid:1)ti2v(cid:7)e, (cid:6)2(cid:1) 1(cid:7) (cid:6)2(cid:1) 2(cid:7) (cid:6)2(cid:1) 3(cid:7) (cid:3)(cid:3)(cid:3) be(cid:6)ca(cid:7)us(cid:2) en(cid:6) o(cid:1)or(cid:7)dere(cid:6)d(cid:7)pa(cid:2)iri(cid:6)sr(cid:1)ep(cid:7)eate(cid:6)d.(cid:7) A(cid:2) lso(cid:6) ,(cid:1)f i(cid:7)ss(cid:3) u(cid:3) r(cid:3)jectivebecause (cid:3)(cid:3)(cid:3) 3 1 3 2 (cid:3) (cid:3) (cid:3) (cid:3) (cid:6) (cid:1) (cid:7) (cid:6) (cid:1) (cid:7) (cid:3) (cid:3) m n (cid:2) f m(cid:5)(cid:13) n(cid:7) 2k (cid:1) n (cid:2) f (cid:6)m (cid:1) n (cid:0) 2(cid:7) (cid:6)m (cid:1) n (cid:0) 1(cid:7) (cid:1) n (cid:3)(cid:3)(cid:3) (cid:3)(cid:3)(cid:3) (cid:6) (cid:1) (cid:7) (cid:4) (cid:6) (cid:7) 2 (cid:8) (cid:3) k(cid:2) 0 (cid:6)4(cid:1) 1(cid:7) (cid:3)(cid:3)(cid:3) (cid:3)(cid:3)(cid:3) (cid:3)(cid:3)(cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (4) Theopeninterval 0 1 x: x and 0 x 1 isuncountable. Also, isuncountable. (cid:2) (cid:6) (cid:1) (cid:7) (cid:2) (cid:0)(cid:12)(cid:10) (cid:9) (cid:9) (cid:3) (cid:10) f 1 0a a a a Suppose 0 1 is countably infinite and f: 0 1 is a bijection as (cid:2) 11 12 13 14 (cid:6) (cid:7) (cid:3) (cid:3) (cid:3) (cid:3) (cid:6) (cid:1) (cid:7) (cid:4) (cid:5) (cid:6) (cid:1) (cid:7) f 2 0a a a a shown on the left. Consider the number x whose decimal representation is (cid:2) 21 22 23 24 (cid:6) (cid:7) (cid:3) (cid:3) (cid:3) (cid:3) ff(cid:6)34(cid:7) (cid:2)(cid:2) 00(cid:3)aa3411aa3422aa3433aa3444(cid:3) (cid:3) (cid:3) 0(cid:3)b1b2b3b4(cid:3) (cid:3) (cid:3),wherebn (cid:2) (cid:3) 21 iiffaannnn (cid:2)(cid:2)(cid:12) 11. Then0 (cid:9) x (cid:9) 1andx (cid:2)(cid:12) f(cid:6)n(cid:7) (cid:6) (cid:7) (cid:3) (cid:3) (cid:3) (cid:3) forallnbecauseb a . So f cannotbesurjective,acontradiction. Next (cid:3)(cid:3)(cid:3) (cid:3)(cid:3)(cid:3) isuncountablebecnau(cid:2)(cid:12)setnann(cid:9) (cid:6) x (cid:0) 12(cid:7) providesabijectionfrom (cid:6)0(cid:1) 1(cid:7) onto(cid:10) (cid:10)(cid:3) Todeterminethecountabilityofmorecomplicatedsets,wewillneedthetheoremsbelow. 8 Countable Subset Theorem. Let A B If B is countable, then A is countable. (Taking contrapositive, if A is (cid:16) (cid:3) uncountable,thenB isuncountable.) (cid:1) CountableUnionTheorem. IfA iscountableforeveryn then A iscountable. Ingeneral,ifSiscountable n n (cid:0)(cid:12)(cid:4) (cid:1) n (cid:4) (cid:4) (cid:1) (cid:1) (say f : S isabijection)and A iscountableforeverys S then A A iscountable. (Briefly, s s (cid:2) f n (cid:4) (cid:5) (cid:0) (cid:1) (cid:0) (cid:1) countableunionofcountablesetsiscountable.) s(cid:4) S n(cid:4) (cid:4) ProductTheorem. IfA,Barecountable,thenA B a b : a A b B iscountable. Infact,ifA A A (cid:2) 1 2 n arecountable,then A A A iscount(cid:24)able(b(cid:2)y(cid:6) m(cid:1)ath(cid:7) ema(cid:0)tica(cid:1)lind(cid:0) uct(cid:3)ion). (cid:1) (cid:1) (cid:3) (cid:3) (cid:3) (cid:1) 1 2 n (cid:24) (cid:24)(cid:25)(cid:20)(cid:22)(cid:20)(cid:22)(cid:20)(cid:26)(cid:24) (SketchofReasons. Forthecountablesubsettheorem,if B iscountable,thenwecanlisttheelementsof B andto counttheelementsof A, wecanskipoverthoseelementsof B thatarenotin A Forthecountableuniontheorem,if (cid:3) welisttheelementsof A inthefirstrow,theelementsofA inthesecondrow, thenwecancountalltheelements 1 2 (cid:3) (cid:3) (cid:3) (cid:1) byusingthediagonalcountingscheme. As fortheproducttheorem,wecanimitatetheexampleof andalso usethediagonalcountingscheme.) (cid:4) (cid:24) (cid:4) m (cid:2) m Examples. (5) S whereS :m Foreveryn thefunction f : S givenby f m (cid:7) (cid:2) n(cid:3)(cid:19) 1 n(cid:1) n (cid:2)(cid:5)(cid:4) n (cid:0)(cid:8)(cid:5) (cid:3) (cid:0)(cid:12)(cid:4) (cid:1) n (cid:5) (cid:5) n n(cid:6) (cid:7) (cid:2) n (cid:2) isabijection(with f 1 m m),soS iscountablebythebijectiontheorem. Therefore, iscountablebythe n(cid:7) (cid:3) n (cid:2) n (cid:7) countableuniontheorem. ((cid:9)Thensubsetsof like 0 0 0 1 arealsocountable.) (cid:7) (cid:5) (cid:27) (cid:2) (cid:3) (cid:1) (cid:4) (cid:19) (cid:2) (cid:3) (cid:1)(cid:22)(cid:7) (cid:23) (cid:6) (cid:1) (cid:7) (6) is uncountable. (In fact, if A is uncountable and B is countable, then A B is uncountable as A B (cid:10)cou(cid:27) n(cid:7)tableimplies A B A B Acountablebythecountableuniontheore(cid:27)m,whichisacontradictio(cid:27)n). (cid:2) (cid:6) (cid:23) (cid:7) (cid:19) (cid:6) (cid:27) (cid:7) (7) (cid:2) x (cid:1) iy :x y contains and isuncountable,sobythecountablesubsettheorem, isuncountable. (cid:11) (cid:2) (cid:1) (cid:0)(cid:9)(cid:10)(cid:9)(cid:3) (cid:10) (cid:10) (cid:11) (8) Showthattheset A r m :m r 0 1 isuncountable,butthesetB r m :m r 0 1 (cid:2) (cid:2) iscountable. (cid:2) (cid:4) (cid:0)(cid:12)(cid:4) (cid:1) (cid:0) (cid:6) (cid:1) (cid:7) (cid:3) (cid:2) (cid:4) (cid:0)(cid:12)(cid:4) (cid:1) (cid:0)(cid:12)(cid:7) (cid:23) (cid:6) (cid:1) (cid:7) (cid:3) Solution. Takingm 1 weseethat 0 1 A Since 0 1 isuncountable, A isuncountable. Next wewill (cid:2) (cid:1) (cid:1) (cid:6) (cid:1) (cid:7) (cid:16) (cid:3) (cid:6) (cid:1) (cid:7) (cid:1) observe that B B where B r m : r 0 1 r m for each m Since (cid:2) m m (cid:2) (cid:2) (cid:1) (cid:2) (cid:4) (cid:0) (cid:7) (cid:23) (cid:6) (cid:1) (cid:7) (cid:3) (cid:2) (cid:4) (cid:3) (cid:0)(cid:25)(cid:4) (cid:3) m r 01 (cid:4) (cid:4) (cid:4) (cid:7)(cid:6)(cid:5)(cid:7)(cid:0) (cid:8) (cid:1) 0 1 iscountableand r m has1elementforeveryr 0 1 B iscountablebythecountableunion m t(cid:7)he(cid:23)or(cid:6)em(cid:1) .(cid:7) Finally, since i(cid:2)s(cid:4)coun(cid:3) tableand B is countable(cid:0)(cid:8)fo(cid:7) r(cid:23)ev(cid:6)er(cid:1)y m(cid:7) (cid:1) B is countableby the countable m (cid:4) (cid:0) (cid:4) (cid:1) uniontheorem. (9) ShowthatthesetL ofalllineswithequationy (cid:2) mx (cid:1) b wherem b iscountable. (cid:1) (cid:1) (cid:0)(cid:8)(cid:7) (cid:1) Solution. Notethatforeachpairm bofrationalnumbers,thereisauniqueliney (cid:2) mx (cid:1) binthesetL Sothe function f : L definedb(cid:1)yletting f m b betheline y (cid:2) mx (cid:1) b(with f 1sendingtheline(cid:3)backto m b )isabi(cid:7)jec(cid:24) tio(cid:7) n.(cid:5) Since iscountable(cid:6) by(cid:1) th(cid:7) eproducttheorem,sothesetL is(cid:7) countablebythebijection t(cid:6)he(cid:1)ore(cid:7) m. (cid:7) (cid:24) (cid:7) (10) Showthatif A 0 1 foreveryn then A A A isuncountable. (Inparticular,thisshowsthat n (cid:2) 1 2 3 theproducttheorem(cid:2) i(cid:1)sn(cid:3)ottrueforinfi(cid:0)(cid:12)n(cid:4)te(cid:1)lymanyc(cid:24)ounta(cid:24)blese(cid:24)(cid:21)ts.(cid:20)(cid:22))(cid:20)(cid:22)(cid:20) Solution. Assume A A A a a a : eacha 0or1 is countable and f : 1 2 3 (cid:2) 1 2 3 i (cid:2) A A A isa(cid:24)biject(cid:24)ion. Fo(cid:24) llo(cid:20)(cid:22)(cid:20)(cid:22)w(cid:20)inge(cid:2)x(cid:6) am(cid:1) ple(cid:1) (4)(cid:1),(cid:3)w(cid:3) (cid:3)e(cid:7) canchangethen-th(cid:3)coordinateof f n (from(cid:4) 0(cid:5)to 1 2 3 1or(cid:24) from(cid:24)1to0(cid:24))t(cid:20)(cid:22)o(cid:20)(cid:22)(cid:20)produceanelementof A A A notequaltoany f n whichisa(cid:6)co(cid:7)ntradiction. 1 2 3 Soitmustbeuncountable. (cid:24) (cid:24) (cid:24)(cid:25)(cid:20)(cid:22)(cid:20)(cid:22)(cid:20) (cid:6) (cid:7) (cid:1) (11) Showthatthepowerset P ofallsubsetsof isuncountable. (cid:6)(cid:31)(cid:4) (cid:7) (cid:4) Solution. As in example (10), let A 0 1 forevery n Define g : P A A A by n (cid:2) 1 2 3 (cid:3) 1 (cid:2) if(cid:1) m(cid:3) S (cid:0)(cid:21)(cid:4) (cid:3) (cid:6)(cid:31)(cid:4) (cid:7) (cid:5) (cid:24) (cid:24) (cid:24) (cid:20)(cid:22)(cid:20)(cid:22)(cid:20) g(cid:6) S(cid:7) (cid:2) (cid:6)a1(cid:1) a2(cid:1) a3(cid:1) (cid:3) (cid:3) (cid:3)(cid:7) (cid:1) wheream (cid:2) 0 ifm (cid:0)(cid:12) S (cid:3) (Forexample, g(cid:6)(cid:6)(cid:2)1(cid:1) 3(cid:1) 5(cid:1) (cid:3) (cid:3) (cid:3)(cid:3) (cid:7) (cid:2) (cid:6)1(cid:1) 0(cid:1) 1(cid:1) 0(cid:1) 1(cid:1) (cid:3) (cid:3) (cid:3)(cid:7) (cid:3))Note (cid:0) ghastheinversefunctiong 1(cid:1) a a a m :a 1 Hencegisabijection. SinceA A A 1 2 3 (cid:2) m (cid:2) 1 2 3 isuncountable,so P isu(cid:7) nc(cid:6)oun(cid:1)tab(cid:1)leb(cid:1)y(cid:3) t(cid:3)h(cid:3)(cid:7)(cid:3)e(cid:2) bije(cid:2)ctiontheorem(cid:3) (cid:3) . (cid:24) (cid:24) (cid:24)(cid:8)(cid:20)(cid:22)(cid:20)(cid:22)(cid:20) (cid:6)(cid:31)(cid:4) (cid:7) 9 (12) ShowthatthesetSofallpolynomialswithintegercoefficientsiscountable. Solution. LetS Forn thesetofS ofallpolynomialsofdegreenwithintegercoefficientsiscountable 0 (cid:2) n becausethefunction(cid:5) f(cid:3) : Sn (cid:0)(cid:12)(cid:4) (cid:1) 0 definedby f anxn(cid:1) an 1xn 1(cid:1) (cid:1) a0 (cid:2) an an 1 a0 isabijectionand 0 (cid:5) (cid:6) (cid:5) (cid:27) (cid:2) (cid:3) (cid:7) (cid:24) (cid:5) is(cid:24) c(cid:20)(cid:22)o(cid:20)(cid:22)u(cid:20) (cid:24)nt(cid:5)ablebythepro(cid:6)ducttheor(cid:7)em.(cid:7)So,(cid:20)(cid:22)S(cid:20)(cid:22)(cid:20)(cid:2) S0(cid:7) (cid:1) (cid:6) S(cid:1) nis(cid:7) c(cid:1)o(cid:3)u(cid:3)n(cid:3)t(cid:1)able(cid:7) (cid:6) (cid:5) (cid:27) (cid:2) (cid:3) (cid:7) (cid:24) (cid:5) (cid:24)(cid:21)(cid:20)(cid:22)(cid:20)(cid:22)(cid:20)(cid:30)(cid:24) (cid:5) (cid:19) n bythecountableuniontheorem. (cid:4) (cid:4) (13) Showthatthereexistsarealnumber,whichisnotarootofanynonconstantpolynomialwithintegercoefficients. Solution. For each polynomial f with integer coefficients, let R denotesthe set of roots of f Then R has f f (cid:3) at most deg f elements, hence R is countable. Let S be the set of all nonconstantpolynomials with integer f (cid:1) (cid:0) (cid:1) coefficients,whichisthesubset S ofSinthelastexample. Then R isthesetofallrootsofnonconstant n f polynomialswithintegercoefficni(cid:4)e(cid:4)nts. Itiscountablebythecountablfe(cid:4) Su(cid:1)niontheorem. Since isuncountable, (cid:1) (cid:10) R isuncountablebythefactinexample(6). Sothereexistuncountablymanyrealnumbers,whichare f (cid:10) (cid:27) f S(cid:1) (cid:4) notrootsofanynonconstantpolynomialwithintegercoefficients. Remarks. Anynumberwhichis arootofanonconstantpolynomialwith integercoefficientsiscalledan algebraic number. Anumberwhichisnotarootofanynonconstantpolynomialwithintegercoefficientsiscalledatranscendental number. Arethereany algebraicnumbers? Arethere anytranscendentalnumbers? Ifso, aretherefinitelymany or countablymanysuchnumbers? Sinceevery rationalnumber a istheroot ofthepolynomialbx a every rationalnumberisalgebraic. There b (cid:0) (cid:1) are irrational numbers like (cid:2) 2 which are algebraic because they are the roots of x2 (cid:0) 2 Using the identity cos3 4cos3 3cos the(cid:4) irr(cid:1)ationalnumbercos20 iseasilyseentobealgebraicasitisaro(cid:3) otof8x3 6x 1 (cid:2) (cid:0) (cid:0) (cid:0) (cid:3) (cid:3) (cid:3) (cid:1) (cid:4) (cid:3) Example(12)andthefactthateverynonconstantpolynomialhasfinitelymanyrootsshowedthereareonlycountably many algebraicnumbers. Example(13)showedthatthere areuncountablymany transcendentalrealnumbers. Itis quitedifficulttoproveaparticularnumberistranscendental. Inanumbertheorycourse,itwillbeshownthat ande (cid:9) aretranscendental. Thefollowingareadditionalusefulfactsconcerningcountability. Theorem. (1) (InjectionTheorem)Let f : A B beinjective. If B iscountable,then Aiscountable. (Takingcontrapositive, (cid:5) if Aisuncountable,then Bisuncountable.) (2) (SurjectionTheorem)Letg: A Bbesurjective. IfAiscountable,thenBiscountable. (Takingcontrapositive, (cid:5) if B isuncountable,then Aisuncountable.) (Reasons. For the first statement, observe that the function h : A f A defined by h x f x is injective (cid:2) (cid:5) (cid:6) (cid:7) (cid:6) (cid:7) (cid:6) (cid:7) (because f isinjective)andsurjective(becauseh A f A ). Soh isabijection. If B iscountable,then f A is (cid:2) (cid:6) (cid:7) (cid:6) (cid:7) (cid:6) (cid:7) countablebythecountablesubsettheorem,whichimplies Aiscountablebythebijectiontheorem. (cid:1) Forthesecondstatement,observethat B g A g x If Aiscountable,thenitisacountableunionof (cid:2) (cid:2) (cid:6) (cid:7) (cid:2) (cid:6) (cid:7) (cid:3) (cid:3) x A countablesets. Bythecountableuniontheorem, Biscount(cid:4)able.) AFamousOpenProbleminMathematics For twosets A and B it is commontodefinecard A card B ifand onlyifthere exists an injectivefunction (cid:1) (cid:10) f : A B Thisisawaytoindicate Bhasatleastasmanyelementsas A (cid:5) (cid:3) (cid:3) ContinuumHypothesis. IfSisuncountable,thencard cardS (Thismeanseveryuncountablesethasatleastas (cid:10) (cid:10) (cid:3) manyelementsastherealnumbers.) In1940,KurtGo¨delshowedthattheoppositestatementwouldnotleadtoanycontradiction. In1966,PaulCohen wontheFields’Medalforshowingthestatementalsowouldnotleadtoanycontradiction. Soproofbycontradiction maynotbeappliedtoeverystatement. 10
Description: