ebook img

2. ALMA Band10 receiver PDF

162 Pages·2017·4.55 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 2. ALMA Band10 receiver

Title Development and improvement of ALMA Band 10 receiver Author(s) 藤井, 泰範 Editor(s) Citation Issue Date 2017-02 URL http://hdl.handle.net/10466/15391 Rights http://repository.osakafu-u.ac.jp/dspace/ Development and improvement of ALMA Band 10 receiver Yasunori Fujii Feburary, 2017 Osaka Prefecture University この論文を妻 由美に捧げる あなたがいなければ論文書く気にならなかったです まったくも~~ 泰範 Table of contents 1. Introduction ....................................................................................................................... 1 1.1. Radio astronomy ........................................................................................................... 1 1.2. ALMA telescope ............................................................................................................ 3 1.3. Science of the Band 10 receiver ................................................................................... 5 1.3.1. Spectrum observations .......................................................................................... 5 1.3.2. High-mode rotational spectra of molecules .......................................................... 6 1.3.3. Continuum observations ....................................................................................... 7 1.4. Heterodyne receiver ...................................................................................................... 7 1.5. Development and refinement of the ALMA Band 10 receiver ................................... 9 1.5.1. Design ..................................................................................................................... 9 1.5.2. Test systems and performance ........................................................................... 10 1.5.3. Balanced mixer–receiver ..................................................................................... 10 References ........................................................................................................................... 10 2. ALMA Band10 receiver: Design ...................................................................................... 13 2.1. Cartridge Overview..................................................................................................... 13 2.1.1. General Description ............................................................................................. 13 2.1.2. Optics scheme ...................................................................................................... 17 2.1.3. LO scheme ............................................................................................................ 17 2.1.4. Mixing scheme ..................................................................................................... 18 2.1.5. IF scheme ............................................................................................................. 18 2.2. Optics ........................................................................................................................... 19 2.2.1. Overview .............................................................................................................. 19 2.2.2. Optical design ...................................................................................................... 19 2.2.3. Quasi-optical Analysis ......................................................................................... 21 2.3. LO injection ................................................................................................................. 23 2.3.1. Overview .............................................................................................................. 23 2.3.2. Application to ALMA Band 10 prototype ........................................................... 25 2.3.3. Side-band noise and LO injection ....................................................................... 27 2.4. Mixer Design ............................................................................................................... 30 2.4.1. Design Overview .................................................................................................. 30 2.4.2. Design of LO and RF Paths ................................................................................ 31 2.4.3. Design of Tuning Circuit ..................................................................................... 35 2.5. Other components ....................................................................................................... 38 2.5.1. Cryogenic Low Noise Amplifier (CLNA) ............................................................ 39 2.5.2. Cryogenic isolator ................................................................................................ 41 2.5.3. Warm IF amplifier ............................................................................................... 42 2.5.4. Wiring ................................................................................................................... 43 2.6. Mechanical design and analysis ................................................................................ 49 2.6.1. Cartridge design overview .................................................................................. 49 2.6.2. 300K Base plate assembly .................................................................................. 50 2.6.3. 110K stage assembly ........................................................................................... 52 2.6.4. 15K stage assembly ............................................................................................. 53 2.6.5. 4K stage assembly ............................................................................................... 54 2.6.6. Optics assembly ................................................................................................... 55 2.6.7. Mechanical analysis ............................................................................................ 64 References ........................................................................................................................... 77 3. ALMA Band10 receiver: Test Systems/ Performance and Mass production ................. 80 3.1. Overview of ALMA Band 10 Test System ................................................................. 80 3.2. Noise Test System ....................................................................................................... 83 3.2.1 DSB Measurement Configuration ....................................................................... 84 3.2.2 Narrow-Band Cartridge Output Power and Noise Temperature ...................... 85 3.2.3. Total Power Receiver Noise and Output Power Determination ....................... 87 3.2.4. In-Band and 0-18GHz Output Power ................................................................. 87 3.2.5. Spurious Response ............................................................................................... 89 3.2.6. Typical test results .............................................................................................. 89 3.3. Sideband Ratio(S.B.R.) Measurement Configuration............................................... 94 3.3.1. Requirememt ....................................................................................................... 94 3.3.2. Test method ......................................................................................................... 95 3.3.3. Typical test results .............................................................................................. 97 3.4. Amplitude stability ................................................................................................... 101 3.4.1. Requirement ...................................................................................................... 101 3.4.2. Typical test results ............................................................................................ 102 3.5. Gain Compression Measurement Configuration .................................................... 106 3.6. Beam Test System .................................................................................................... 109 3.7. Mass Production ........................................................................................................ 114 3.7.1. Description of the production process .............................................................. 114 3.7.2. Challenges during production........................................................................... 118 3.7.3. Noise performance ............................................................................................. 119 3.7.4. First light of the ALMA Band 10 receivers ...................................................... 120 References ......................................................................................................................... 121 4. Low-Noise Integrated Balanced SIS Mixer for 787–950 GHz ...................................... 123 4.1. Overview and motivation of the integrated balanced mixer .................................. 123 4.2. Design ........................................................................................................................ 126 4.2.1 Integrated balanced mixer configuration .......................................................... 126 4.2.2. RF hybrid design ............................................................................................... 128 4.2.3. IF power combiner design ................................................................................. 132 4.3. Assembly and measurement setup .......................................................................... 134 4.3.1. SIS mixer chip selection .................................................................................... 134 4.3.2. Receiver setup .................................................................................................... 137 4.3.3. LO sources .......................................................................................................... 138 4.3.4. Measurement setup ........................................................................................... 141 4.4. Measurement results ................................................................................................ 142 4.4.1. Evaluation of the 90hybrid coupler ................................................................ 142 4.4.2. Noise temperature of the balanced mixer ........................................................ 144 4.4.3. Estimation of Noise Rejection and LO noise ................................................... 148 References ......................................................................................................................... 150 5. Summary ........................................................................................................................ 154 Acknowledgment ............................................................................................................... 156 1. Introduction 1.1. Radio astronomy The discipline of modern astronomy started in 1610 when Galileo Galilei pointed a small telescope towards the skies. For more than three centuries, until the 1930s, most astronomical observations were limited to the visible part of the electromagnetic spectrum. In 1931, Karl Jansky, an engineer at Bell Telephone Laboratories, pointed a radio antenna towards the sky and detected some unexpected extraterrestrial radiation at a wavelength of 14.6 m and a frequency of 20.5 MHz. He determined that its source was not the Sun. That observation marked the beginning of radio astronomy [1]. We now know that the radiation Jansky observed came from the plasma in the interstellar medium (ISM) in the region of the Milky Way called the Galactic Center. In the decades since Jansky’s work, observations at radio frequencies, powered by huge advances in microwave technology, have multiplied, and many discoveries have been made [2]. For example, different molecules, such as CH, OH, NH , H CO, HCN, and CO were detected in interstellar clouds in 3 2 the 1940s [3]. Radio observations also paved the way for the discovery of new objects such as pulsars, quasars, and radio galaxies [4]. In 1965, Robert Wilson and Arno Penzias detected the cosmic microwave background (CMB) spectrum, which corresponds to black-body radiation at around 3 K [5]. Observations in different parts of the electromagnetic spectrum provide information about different physical processes. Therefore, the combination of results of observations in different frequency bands helps researchers achieve a comprehensive understanding of astronomical sources. Figure 1-1 shows an image of the central part of the galaxy Messier 77 (M77) formed by combining the images obtained from radio and optical telescopes. 1 Figure 1-1. Images of M77. Top: Image of the central part of M77 formed by combining images from a radio telescope (Atacama Large Millimeter/submillimeter Array) and an optical telescope (Hubble Space Telescope). Bottom: The original images obtained by the radio (left) and optical (right) telescopes. The yellow, red, and blue in the ALMA image represent cyanoacetylene (HC N), 3 carbon monosulfide (CS), and carbon monoxide (CO), respectively. HC N is 3 abundant in the central part of the galaxy (CND), CO is mainly distributed in the starburst ring, and CS appears in both the CND and starburst ring. Credits: ALMA (ESO/NAOJ/NRAO), S. Takano et al. NASA/ESA Hubble Space Telescope and Andre van der Hoeven. 2 1.2. ALMA telescope Figure 1-2. Atacama Compact Array (Morita Array) of the ALMA telescope. This array comprises four 12 m antennas and twelve 7 m antennas capable of making extended observations of celestial objects with high sensitivity. In contrast, fifty 12 m antennas do not display high sensitivity to extended objects, but they can observe compact objects in detail with extremely high resolution. Credit: ALMA (ESO/NAOJ/NRAO). ALMA, the Atacama Large Millimeter/submillimeter Array, located in the Atacama Desert in Chile at an altitude of 5000 m, is the world’s largest radio-astronomy interferometer. Composed of fifty-four 12-m- and twelve 7-m-diameter antennas, the array was constructed by international partners from Europe, North America, and East Asia. ALMA, a complete imaging and spectroscopic instrument operating at millimeter-to-submillimeter wavelengths, provides scientists with the capabilities and wavelength coverage that complement the capacities of other research facilities of its era, such as the planned Thirty Meter Telescope (TMT) [6]. Atmospheric water vapor readily absorbs submillimeter radiation (frequencies of 300 GHz to 3 THz and wavelengths of 1 mm to 0.1 mm). Thus, the Atacama Desert was chosen for the ALMA site because of its high altitude and dry air. The site is large and open, allowing easy repositioning of the antennas over a region at least 16 km across. Each antenna receives radio signals from space, capturing both amplitude and phase. By operating as an interferometer that combines these signals, the array functions as a 3 huge single dish that offers observations with unprecedented resolution. ALMA enables transformational research into the physics of the cold universe, regions that are optically dark but shine brightly in the millimeter portion of the electromagnetic spectrum. With its state-of-the-art technology, ALMA offers breakthrough data-gathering to aid in solving many significant problems faced by astronomers, astrophysicists, planetary scientists, and astrobiologists studying the questions the universe presents. These questions ask, for instance, “How was the first galaxy formed after the Big Bang?”, “How were the solar system and planets formed?”, and “What clues may help to explain the origin of life?” Figure 1-3 shows an image of the high-density condensation of MC27/L1521. By offering high-sensitivity and high-resolution observations, ALMA has aided in determining whether the center of MC27 contains not only gas that surrounds the central protostar but also two high-density gas condensations [7]. 4

Description:
ALMA Band10 receiver: Test Systems/ Performance and Mass production .. results of observations in different frequency bands helps researchers achieve a comprehensive understanding of astronomical sources. one Aluminum frame, a so-called “grid box”, to minimize the beam squint.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.